5
Sarah Banner History of Mathematics Shanyu Ji Mathematical Symbols and Their Effect on Facing Infinity and Irrationality Increasing complexity of a subject or idea prompts a desire from the human mind to simplify. It strives to break down the idea into several entities, so it may keep track of all parameters and details. With the advancement of mathematics came more unknowns and more solutions. Rather than assigning each mathematical situation its own independent representation, individuals desired to represent mathematical entities in a more general form. A new mathematical language began to form, one in which symbols and abbreviations took the place of words. Its introduction opened the doors to understanding groundbreaking mathematical concepts. Notably, the introduction of symbols to the mathematical world prompted increased exposure to irrational and infinite entities, making their existence difficult to ignore for much longer. Diophantus of Alexandria, labeled by some as the “father of algebra”, is noted to be among the first to use symbols in his calculations. Diophantine equations contained integer coefficients, and were strictly solved for integer solutions. He viewed irrational solutions as impractical and illogical. i Figure 1 depicts a solved problem extracted from Diophantus’ work, Arithmetica.. ii

Sarah Banner History of Mathematics Shanyu Jishanyuji/History/E2-3.pdf · 2016-10-28 · Sarah Banner History of Mathematics Shanyu Ji ... Sarah Banner History of Mathematics Shanyu

Embed Size (px)

Citation preview

SarahBannerHistoryofMathematicsShanyuJi

MathematicalSymbolsandTheirEffectonFacingInfinityandIrrationality

Increasingcomplexityofasubjectorideapromptsadesirefromthehumanmindto

simplify.Itstrivestobreakdowntheideaintoseveralentities,soitmaykeeptrackofall

parametersanddetails.Withtheadvancementofmathematicscamemoreunknownsand

moresolutions.Ratherthanassigningeachmathematicalsituationitsownindependent

representation,individualsdesiredtorepresentmathematicalentitiesinamoregeneralform.

Anewmathematicallanguagebegantoform,oneinwhichsymbolsandabbreviationstookthe

placeofwords.Itsintroductionopenedthedoorstounderstandinggroundbreaking

mathematicalconcepts.Notably,theintroductionofsymbolstothemathematicalworld

promptedincreasedexposuretoirrationalandinfiniteentities,makingtheirexistencedifficult

toignoreformuchlonger.

DiophantusofAlexandria,labeledbysomeasthe“fatherofalgebra”,isnotedtobe

amongthefirsttousesymbolsinhiscalculations.Diophantineequationscontainedinteger

coefficients,andwerestrictlysolvedforintegersolutions.Heviewedirrationalsolutionsas

impracticalandillogical.iFigure1depictsasolvedproblemextractedfromDiophantus’work,

Arithmetica..ii

SarahBannerHistoryofMathematicsShanyuJi

Intheproblem,Diophantusassigns‘x’asanunknownnumericalquantity,notspecifyingthe

stateofitsrationality.Fromtheequationintheproblem,hederives32x2=1.Heacknowledges

theexistenceofanirrationalsolutionbutproceedstosolvefortherationalsolution.Preceding

Diophantus,usingwordstodescribemathematicalexercisespromoteda‘real-life’viewofthe

situationwhich,inturn,madeiteasiertojustifytheabsurdityofirrationalnumbers.However,

generalizingthesituationviatheuseofsymbols,asportrayedinDiophantus’problem,

counteractswhateverounceofjustificationstillheld.DespiteDiophantus’unwillingnesstodeal

withirrationalentities,hisuseofsymbolstorepresentgeneralpolynomicsituationswasafirst

steptowardfacingirrationalityheadon.

TheIndiansemployedtheirownversionofsymbolsandabbreviations.Brahmagupta,an

Indianmathematicianandastronomer,ismostnotableforhisdevelopmentofthesymbolfor

zero.iiiPreviously,zerowasconsideredamereplaceholderbytheBabyloniansandalackof

valuebytheGreeksandRomans.iiiHowever,Brahmaguptaacknowledgedzeroasalegitimate

numericalentityandpromptlyassigneditasymbolicrepresentation.ivThedevelopmentofa

symboltorepresentzerowascrucial,asitsassignmentasanumberwasaforeignandabstract

Figure1:ProblemextractedfromDiophantus''Arithmetica'inmodernnotation.

SarahBannerHistoryofMathematicsShanyuJiconcepttomathematicians.WhereasBrahmaguptadenotedzeroasameredotplacedbeneath

numbersv,theIndiansymbolultimatelymorphedintotheillustrationinFigure2iii.

Therecognitionofzeroasanumber,followedbyitsnecessarysymbolicrepresentation,

ultimatelypavedthewaytowardadiscoverymadebyBhaskaraIIapproximately500years

later.BhaskaraIIunderstoodthatonedividedbyone-halfyieldedtwo,onedividedbyone-third

yieldedthree,andsoonandsoforth.Thus,hecametotheconclusionthatonedividedbyzero,

wouldyieldinfinity.viThiswasakeydiscoveryforIndianmathematicsandsignaledfurther

developmentofanunderstandingofinfinityandirrationality.

TheintroductionandspreadoftheHindu-ArabicNumeralSystemplayedakeyrolein

developingmethodstocopewithirrationalentities.PrecedingtheintroductionoftheHindu-

ArabicNumeralSystem,manyemployedtheRomanNumeralsystem.However,its

cumbersomeandspecificnaturecouldbelikenedtothatofwords,notashorthandnotation.vii

TheHindu-ArabicNumeralSystemwasmuchsimpler.Itcontainedonlytenfigures,including

zero,andcouldrepresentanynumberusinganycombinationoffigures.viiiDespitethesimple

andgeneralnatureoftheHindu-ArabicNumeralSystem,manycontinuedtousetheRoman

NumeralSystem.However,certainindividuals,suchasSimonStevin,madethetransition.As

outlinedinhisworkLaDisme,SimonStevinextendedtheHindu-ArabicNumeralSystemto

introducetheconceptofdecimalfractions.viiHisintroduction,inturn,pavedthewayforany

Figure2:Indiansymbolforzero.

SarahBannerHistoryofMathematicsShanyuJinumber,regardlessofitswholeandpartialcomponents,tobewrittenasacombinationof

figures.Perhaps,certainnumbersthatwerethoughttocontinueforeverwerethusproven

otherwise.Itisalsoconceivablethatirrationalnumberscouldnowbeapproximatedmore

accurately.Irrationalnumbers,whichpreviouslycouldonlyberepresentedasaratiooftwo

integers,couldnowberepresentedbyafamiliarcombinationoffigures.Understandingofthe

irrationalnumberwouldinherentlyincrease,forindividualscouldphysicallyseeevery

componentthatdefinedtheirrationalnumber.Stevin’sintroductionofdecimalfractions

removedsomeofthefearassociatedwithirrationalnumbers,asitwasnowapparentthatthey

werejustaninfinitecombinationoffamiliarwholeintegers.

Adirectrelationshipexistsbetweentheintroductionandmodificationofmathematical

symbolsandarequirementtofaceinfiniteandirrationalentities.Previously,each

mathematicalsituationreserveditsown,uniquerepresentation,allowingthedeveloperto

modifytherepresentationhowhepleased.Mostnotably,afearofirrationalentitieswould

drivehimtoaltertherepresentationtoservetwocriteria:1)Suitthatparticularsituation2)

Disregardirrationalsolutions.However,symbolsandabbreviationsgeneralizedmathematicsso

thatarepresentationnolongerappliedtoasinglesituationbutmanysituations.Thus,

disregardingirrationalsolutionsbecamemoredifficult.Thecopingmethodsmaynothave

developeduntilhundredsofyearsfollowingtheintroductionofthenewsymbolic

representation.However,thetransitiontosymbolstogeneralizemathematicalsituations

undoubtedlyplayedaroleinfacingthefearofinfinityandirrationality.

SarahBannerHistoryofMathematicsShanyuJi

i"Diophantus-HellenisticMathematics-TheStoryofMathematics."Diophantus-Hellenistic

Mathematics-TheStoryofMathematics.Web.03Oct.2016.

ii"DiophantusofAlexandria;aStudyintheHistoryofGreekAlgebra."DiophantusofAlexandria;

aStudyintheHistoryofGreekAlgebra.Web.02Oct.2016.

iii"IndianMathematics-TheStoryofMathematics."IndianMathematics-TheStoryof

Mathematics.Web.01Oct.2016.

iv“IndianBrahmagupta–TheStoryofMathematics.”IndianBrahmagupta–TheStoryof

Mathematics.Web.01Oct.2016.

vBy879AD,ZeroWasWrittenAlmostasWeNowKnowIt,anOval-butinThisCaseSmaller

thantheOtherNumbers.AndThankstotheConquestofSpainbytheMoors,ZeroFinally

ReachedEurope;bytheMiddleoftheTwelfthCentury,TranslationsofAl-Khowarizmi'sWork

HadWeavedTheirWaytoEngland."TheHistoryofZero."TheHistoryOfZero.Web.02Oct.

2016.

vi"BhāskaraII."-NewWorldEncyclopedia.Web.30Sept.2016.

viiJi,Shanyu.“Hindu-ArabicNumeralSystem.”HistoryofMathematics,Math

4388,30September2016,UniversityofHouston,Houston,TX.Lecture.

viii"Hindu-ArabicNumerationSystem."Basic-mathematics.com.Web.01Oct.2016.