33
I, .i SC-RR-67-256 April 1967 PLANETARY QUARANTINE A Rational Model for Spacecraft Sterilization Requirements J. P. Brannen, 2571 i SANDIA CORPORATION PRIME CONTRACTOR TO THE US. ATOMIC ENERGY COMMISSION I ALBUQUERQUE, NEW MEXICO: LIVERMORE. CALIFORNIA: TONOPAH. NEVADA https://ntrs.nasa.gov/search.jsp?R=19670016154 2020-03-17T17:49:14+00:00Z

SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

I ,

.i

SC-RR-67-256 April 1967 PLANETARY QUARANTINE

A Rational Model for Spacecraft Sterilization Requirements

J. P. Brannen, 2571

i SANDIA CORPORATION PRIME CONTRACTOR TO THE US. ATOMIC ENERGY COMMISSION I ALBUQUERQUE, NEW MEXICO: LIVERMORE. CALIFORNIA: TONOPAH. NEVADA

https://ntrs.nasa.gov/search.jsp?R=19670016154 2020-03-17T17:49:14+00:00Z

Page 2: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

SC-RR- 67- 2 56

A R a t i o n a l Model f o r Spacecraf t S t e r i 1 i z a t i o n Requirements

J . P. Brannen, 2571

P l a n e t a r y Quarant i ne Department I Sandia Laboratory , A1 buquerque New Vexico

‘ A p r i l 1967’

ABSTRACT

COSPAR r e q u i rements t h a t t h e probabi 1 i ty o f s p a c e c r a f t con tamina t ion n o t

exceed l o m 4 demand an e x t r a p o l a t i o n o f e m p i r i c a l da ta throuqh f o u r p o p u l a t i o n

decades beyond t h e ranqe o f p o s s i b l e measurement. The i n h e r e n t danaers i n

such e x t r a p o l a t i o n prompts t h e i n t r o d u c t i o n o f maximum r a t i o n a l i t y i n t h e

niodels used. I n t h i s r e p o r t , r a t i o n a l i t , y i s i n t r o d u c e d throuqh chemical r e a c t i o n

k i n e t i c s . The model i s t e s t e d a g a i n s t e m p i r i c a l da ta ; techniques f o r

computat ion a re i n v e s t i g a t e d .

*

P r o j e c t No. 340.229.00

T h i s work was performed f o r t h e Biosc ience D i v i s i o n , O f f i c e of Space Science and Apnl i c a t i o n s , NASA t ieadquarters, under NASA Con t rac t rlumber -nQ-nlq-Q40. zp

1

Page 3: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

TABLE OF CONTENTS

I n t r o d u c t i on

"a t l i enia t i c a l Flodel

Appl i c a t i o n s

F i qures

Appendix

References

1) i s t r i b u t i on

3

5

12

1 7

23

28

30

8

2

Page 4: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

1 . I n t r o d u c t i o n . Observed nonloqarithmic survival of microbial populations

exposed t o a lethal thermal environment i s often at t r ibuted t o e i t he r

sampl i r lq errors or Dopulation inhomogeniety r l ] . I f these explanations

are v a l i d , then s t e r i l i za t ion cycles fo r various applications can be s e t

!iy extrapolation of empirical d a t a t o the desired probability of contamina-

tioil r21. I f nonlosarithmic survival i s a n i n t r in s i c function of the

orqanism involved, then serious doubts a r i s e concerninq the efficacy o f

t h i s procedure. Our par t icular in te res t i s in spacecraft s t e r i l i za t ion

cycles and the tentat ive COSPAR r31 objective of keepincl the probability

of a sinrlle viable orqanism aboard a vehicle intended for planetary landino

or atmospheri c penetration below 10-'[41.

There are two distrubing aspects i n the application of the loqarithmic

model in the planetary quarantine proqram. One, i t i s consistent with only

one of the four types of survivor curves described by Schmidt r5J for the

thermal inactivation of microorganisms; a n d , two , i t needs a rational basis.

The second of these i s actually the most disturbina since empirical data

must he extrapolated four decades beyond the ranqe of measurabi 1 i t y to obtai n

a contamination probability less t h a n Lucas rG1 points out t h a t

"enipirical models usually lead to

t o the reaion of the data used t o f i t the model. On the other h a n d , rational

models often predict very we1 1 f o r points * * e t h a t are f a r from the experi-

mental reqi on . I'

bad predictions fo r points . * * n o t close

This i s a report on the derivation of a rational model fo r determining

probability of microbial survival based on reaction kinet ics . \!sinq kinetics

as observed in various organic reactions, the four types of survival curves

described by Schmidt [5] may be obtained. This model provides a rational

basis f o r the loqarithrnic model, h u t i f the s t e r i l i za t ion kinetics are o f

3

Page 5: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

a foriii f o u n d i n the denaturation of protein, then probability o f contamina-

t i o n will be clreater than indicated from loqarithmic extrapolation of

empirical d a t a .

Since many researchers have selected Bacillus s u b t i l i s var . niger

as a standard orqanism for thermal inactivation s tudies , we qive a formula-

tion for survivors as a function of time and temperature which compares

quite favorably with the resu l t s of Silverman 1131 for dry heat s t e r i l i za t ion

of th i s oraanism.

4

Page 6: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

2 . Vathematical Plodel. Our i n i t i a l assumptions are:

( i )

( i i ) Mi crobi a1 deaths are independent.

( i i i ) There i s no reproduction.

The p o p u l a t i on i s homogeneous.

Under these conditions, the expected population, Er.1, a t time t i s qiven

t)Y

where p ( t ) i s an organisms's probability of s u r v i v i n g to time t and X(0)

i s the i n i t i a l population.

We next assume t h a t microbial deaths in a thermal environment a re the

resu l t of chemical reactions a n d t h a t these reactions resu l t in the

inactivation o f biologically v i t a l molecular types. Each molecular type

may contain more t h a n one molecule and the cel l i s considered functional

as reqards the ac t iv i ty performed by a type as long as any one molecule of

t h a t type i s s t i l l active. The cell i s reqarded as dead ( s t e r i l e ) i f i t

i s no longer functional re la t ive t o any one of these types.

Suppose there are N types and l e t n i , i = 1 , . . . , N denote the number

of molecules belonging t o the i t h type.

a given molecule of type i i s active a t time t.

the cell contains a t l ea s t one active type i molecule i s yiven by

Let q i ( t ) be the probability t h a t

Then the probability t h a t

5

Page 7: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

so t h a t t h e p r o b a b i l i t y t h a t i t i s s t i l l f u n c t i o n a l i n t h e N v i t a l areas

i s q i v e n by

N n,

Equat ion 2 a l s o g i ves t h e r e l i a b i l i t y o f a dev i ce o f N components w i t h a

redundancy o f ni i n t h e i t h component w i t h q i ( t ) t h e p r o b a b i l i t y t h a t

a s t r u c t u r e of t h e i t h t y p e i s f u n c t i o n a l a t t i m e t.

We observe t h a t e q u a t i o n 2 a l l ows us t o account f o r N d i f f e r e n t death

mechanisms. I f t h e c e l l i s p a r t i c u l a r l y v u l n e r a b l e t o thermal i n a c t i v a t i o n

o f t h e i t h mo lecu la r type, t h e i t h f a c t o r w i l l dominate t h e d e t e r m i n a t i o n

o f p ( t ) . I n t h i s case, one may wish t o use o n l y t h e i t h f a c t o r i n equa t ion 2

f o r a c o n s e r v a t i v e e s t i m a t e of p ( t ) .

We would expect t h e molecules of a p a r t i c u l a r

complex, f o r example, t h e p r o t e i n o f t h e c e l l wal

a c i d , DNA. The number, ni, of molecules of t h e i

t y p e t o be ex t reme ly

o r perhaps t h e n u c l e i c

Y.

a h t

h t y p e may va ry q r e a t

A va lue o f one t o t h r e e seems a p p r o p r i a t e f o r DNA, w h i l e t e n thousand m

be used f o r o t h e r types [7].

To f i n d va lues f o r q i ( t ) , we examine t h e k i n e t i c s o f i n a c t i v a t i o n .

S ince we do n o t know t h e s p e c i f i c react ions,we cannot expec t t o proceed v i a

t h e s t o i c h i o m e t r y . However, we can compare s u r v i v a l curves r e s u l t i n g f rom

i n a c t i v a t i o n s o f d i f f e r e n t orders. P r o t e i n dena tu ra t i on , f o r example,is

o f t e n o f f i r s t o r d e r b u t t h e o r d e r may change w i t h t i m e and th ree -ha lves

o r d e r s have been observed [SI.

f o r n o n l o g a r i t h m i c s u r v i v a l , c o n s i d e r a t i o n o f f i r s t and second o r d e r

r e a c t i o n s w i l l s u f f i c e .

F o r t h e purpose o f p r o v i d i n q a k i n e t i c b a s i s

6

Page 8: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

I f the reaction inactivating the i t h molecular type i s f i r s t order, then

from an i n i t i a l concentration o f c i ( 0 ) the r a t e of chanqe of concentration

i s qiven, where c i ( t ) is concentration a t time t , by

I f c i ( 0 ) i s large, we would expect the probability tha t a molecule i s

active a t time t t o be c i ( t ) / c i ( 0 ) .

c i ( t ) = c i ( 0 ) exp r - k t ] . T h u s , c i ( t ) / c i ( 0 ) = exp r - k t ] .

take

I t follows from equation 3 tha t

In tu i t ive ly , we

q i ( t ) = exp r - k t ]

i n case the inactivating reaction i s f i r s t order.

We note tha t f o r the 1 s t order model, N = 1 and n l = 1 equation 2 wi l l

give the familiar logarithmic model.

Ne may approach the determination o f q i ( t ) i n a less i n tu i t i ve manner

by aqain drawinq an analogy t o re1iabilit.y theory [?I. conditional fa i 1 ure r a t e defined as fo l l ows :

Let B ( t ) denote the

B ( t ) d t is the probability t h a t a g i v e n system f a i l s (molecule i s

inactivated) i n the time interval ( t , t + d t ) , assuminq i t d i d not

f a i 1

Let be

l e t F be -

(was not inactivated) up t o time t.

a random variable equal t o the time of f a i lu re o f the system and

i t s dis t r ibut ion. Then,

7

Page 9: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

F ( t ) = i - ~ ( s ) d s ] . 0

We assume B ( t ) d t i s t h e concen t ra t i on change i n t h e i n t e r v a l ( t , t + d t )

d i v i d e d by t h e c o n c e n t r a t i o n a t t, i .e .

ci ( t ) - c i ( t + d t )

ci ( t ) R ( t ) d t =

L e t t i n g d t -+ n, we q e t

B ( t ) = - C i ( t ) / C i ( t ) .

Thus

exl, r - jt ~ ( s ) d s ] = exp l n [ c i ( t ) / c i (0 ) ] , 0

S O t h a t

U t ) = 1 - Ci(t)/Ci(0).

Hence,

8

Page 10: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

S t r i c t l y speaking, c , ( t ) is an expected concentration.

Since equation 5 was derived independently of reaction order, i t will

be used fo r a l l orders. Thus,for a second order reaction, i . e .

c ; ( t ) = - k r c i ( t ) ] , we s e t 2

q i ( t ) = l / r l+c i ( O ) k t ] .

I n equation 6 we s e t the i n i t i a l concentration equal t o n i , the number o f

molecules of the i t h t y p e , i . e . , concentration = rnolec./cell.

A reaction o f three-halves order has been observed by Lauffer r l n l i n

the thermal destruction o f In f luenza A virus hemagglutinin. For t h i s

react i on

3/ 2 ~ ' ( t ) = - k r c ( t ) l

so t h a t

2 c ( t ) = c ( O ) / [ 2 k t ~ ~ ) + l ] .

For t h i s case we s e t

9

Page 11: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

c

I n Fiqure 1 we show typical curves for p ( t ) obtained by use o f

equations 5 a n d 7 in equation 3 for various values of N and n i .

equivalent t o plott ing E [ X ( t ) ] for an i n i t i a l population of 1 .

i s for N = 1 , a f i r s t order inactivation, a n d n l = 3.

N = 2 , n

order reaction, and the second type inactivated by a second order

reaction.

order reaction.

reaction we obtain the logarithmic curve, Curve D.

This i s

Curve A

Curve B i s for

= 1 , n2 = 1 , the f i r s t molecular type inactivated by a f i r s t 1

Curve C i s fo r N = 1 , n l = 1 , and the inactivation by a second

I f we s e t N = 1 , n l = 1 , and inact ivate by a f i r s t order

Since empirical d a t a ex is t s , Fiqure 2 , r l l ] t h a t i s s imilar t o Curve C ,

we investigate the consequence of extrapolating such d a t a i f p ( t ) f i t s the

model of equation 3 a n d the inactivating mechanism i s a second order

reaction. For demonstration purposes, we use only the simplest assumption.

Let N = 1 , n l = 1 , and l e t q i ( t ) be aiven by equation 6. Then

Let

f ( t ) = I n q i ( t ) = I n 1 - ln r l+kt l so t h a t

Page 12: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

f ' ( t ) = - k / l + k t .

Therefore, i f tl < t2 , then f ' ( t l ) < f ' ( t 2 ) so t h a t a logarithmic extrapola-

tion of f ( t ) , i . e . , with a constant slope, will be below f ( t ) .

This could have some far reaching consequences for the planetary

quarantine proaram i f microbial death resul ts only from a 2nd order reaction.

However, i t seems more l ikely t h a t a collection of mechanisms i s involved

and t h a t d a t a such as in Fiqure 2 simply shows a dominant mechanism.

Fiqure 3 qives typical d a t a fo r Bacillus s u b t i l i s var. niqer from

the laboratory of Angelotti, e t . a l . r12]. We observe t h a t t h i s d a t a i s not

compatible with any of the curve types in Fiqure 1 .

qenerated by the model of equation 2 under the assumption t h a t N molecules

are beincl destroyed hy cormetitiq 1 s t anc! ?rx! order reactions with probabili t ies

of, reaction orders also functions o t time.

Fiqure 4 , shows a curve

For Figure 4 , we simply s e t ,

see Appendix,

where k

values of q i ( t ) from equations 4 and 6,respectivel.y.

and k 1 2 are the reaction r a t e constants and u i ( t ) and v i ( t ) are the

More investiqation i s needed in t h i s area and we simply present equation ?

because o f the s imilar i ty of these resul ts t o those of Angelotti, e t . a l .

11

Page 13: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

Remarks ( a ) Values f o r q i ( t ) can be assigned v i a r e l i a b i l i t y t heo ry . For

example, t h e assumption t h a t i n a c t i v a t i o n i s t h e consequence of a f i r s t o r d e r

r e a c t i o n i s e q u i v a l e n t t o t h e assumption t h a t t h e f a i l u r e r a t e f o r t h e sub-

systems of t h e i t h system i s constant . We have chosen t o concen t ra te on t h e

k i n e t i c approach because o f t h e d e s i r a b i l i t y o f r e l a t i n q t h e model t o tempera-

t u r e as a f u n c t i o n o f t ime. The Arrhenius equa t ion ,

k = ATnexpr-Ea/RTI

where k i s t h e r e a c t i o n r a t e constant ; A, Ea, and R a r e constants ; T i s

temperature i n O K ; and n may have any va lue d i c t a t e d by exper iment, p rov ides

t h e d e s i r e d r e l a t i o n s h i p .

( b ) An adequate languaqe f o r a r e p o r t of t h i s n a t u r e i s n o t a v a i l a b l e .

For example, an o u t s i d e observer w i l l be unable t o d i s t i n g u i s h , from an

examinat ion o f t h e shape o f s u r v i v o r curves, between t h e case o f N = 1 ,nl = 1

and t h e case N = 100, ni = 1, i = 1,. . . ,100. Thus, perhaps t h e e x t e n s i v e use

o f t h e word molecule i s un fo r tuna te . However, a b e t t e r t e r m f o r c o v e r i n q

b o t h cases i s n o t a v a i l a b l e .

Also, c o n c e n t r a t i o n i s no t used i n t h e usual sense. We s imp ly

view c o n c e n t r a t i o n as molecules per cel1,and a l l r e a c t i o n s occur i n t h e

i n d i v i d u a l c e l l s .

( c ) Our l a s t remark i s r e l a t e d t o t h e a p p l i c a t i o n o f r e a c t i o n r a t e s

t o r e a c t i o n s o f low concen t ra t i on . The assumption i s t h a t r e a c t i o n s i n t h e

" s m a l l " a re much l i k e r e a c t i o n s i n t h e " l a r q e " . Readers i n t e r e s t e d i n i n v e s t i -

q a t i n q t h i s area more c l o s e l y could s t a r t w i t h t h e Jachimowski t h e s i s [14].

12

Page 14: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

3. Applications. For th i s section we assume t h a t Bacillus sub t i l i s var .

niqer i s a microbial standard of comparison and t h a t the spacecraft

s t e r i 1 ization environment i s approximately t h a t encountered by the micro-

orpanisms in the ovens used by Silverman [13].

report which we shall use are qiven in Figures 5 and 6 .

The curves from Silverman's

F i r s t we observe t h a t Silverman's d a t a i s convex so t h a t i f our model

i s t o f i t t h i s d a t a i t will be w i t h a f i r s t order reaction (Curve A , Firlure 1 ) .

Experimentation a t the computer console, G.E. 235, led t o the conclusion

t h a t i f t h i s model i s t o f i t Silverman's data i t will be under t

t h a t two vi ta l molecules are beinq deactivated in each cel l by a

reaction. A reaction rate constant of .55 hr.-' aives the f i t i

in Figure 5 t o Silverman's 106' d a t a and a r a t e constant of 2.65

qives the f i t t o Silverman's 120' d a t a i l l u s t r a t ed in Fiqure 6.

e assumption

f i r s t order

1 us tra ted -1 hr.

We next

t u r n t o the Arrhenius equation which relates reaction rate constants t o

temperature. If ra te constants k l and k 2 are known for temperatures T1

and T2, i o O K , then the ra te constant k f o r temperature T,in OK,is qiven by

I: = exp[( l/T-l/Tl ) ( I n k2-1 n k l ) / ( 1/T2-l/T1 ) + l n k l 3. ( Q )

-1 - 1 , and 1 2 O o C , 2.65 hr. Usinq the r a t e constants for 106OC, .55 hr.

i n

A comparison of Silverman's 135OC data a n d the curve result inq from th i s

, equation c ) , we get a constant of 12.49+ hr.-' for T = 408'K 1 3 5 O C .

constant i s qiven in Fiqure 6.

of survivors can be made for Silverman's laboratory conditions.

!\le t h u s conclude tha t an accurate prediction

0 Given a temperature T in K, I: i s determined from equation 9 with

T1 = 106+273, T2 = 120+273, k l = .55, and k 2 = 2.65.

a t time t from an i n i t i a l population X(0) i s aiven by

Then expected survivors

13

Page 15: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

Some workers i n t h e p l a n e t a r y qua ran t ine program a r e a l r e a d y u s i n q t h e

l o c l a r i t hm ic nlodel; however, t h e procrram m o d i f i c a t i o n s r e q u i r e d t o c o n v e r t

t o equa t ion 10 a re n o t p r o h i b i t i v e . The proaram, i n G. E. Bas ic , used i n

t h i s s tudy i s q i ven i n t h e Appendix.

A t t h i s t ime, ou r a v a i l a b l e data i s f o r cons tan t temperature c o n d i t i o n s .

S ince a non-constant temperature p r o f i l e i s t o be expected d u r i n a s n a c e c r a f t

s t e r i l i z a t i o n , we i n v e s t i q a t e numerical methods, based on t h e qeneral model

of e q u a t i o n 2, f o r p red ic t i nc r t h e p r o b a b i l i t y of con tamina t ion when t h e l e t h a l

temperature v a r i e s w i t h t ime. Pecal l t h a t t h e l o q a r i t h m i c model i s a s p e c i a l

case o f equa t ion 2 so t h a t t h e techniques d iscussed he re a re a p p l i c a b l e

even i f equa t ion 10 i s n o t adopted.

S ince t h e f u n c t i o n v a r y i n a w i t h t i m e w i l l be t h e p r o b a b i l i t y o f s i n q l e

soore surviva1,we b e q i n w i t h equa t ion 5, i . e .

From t h i s i t f o l l o w s t h a t

q ; ( t ) = c ; ( t ) / c i (0 ) .

Page 16: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

Assuminq f i r s t o r d e r k i n e t i c s f o r B a c i l l u s s u b t i l i s var. n i q e r we have -'

c ; ( t ) = - k ( t , T ( t ) ) c i ( t )

where k ( t , T ( t ) ) i s t h e r e a c t i o n r a t e c o n s t a n t which i s a f u n c t i o n o f t ime

and temperature, T, i n deqrees Ke lv in .

Suppose we hypo thes i ze a temperature p r o f i l e T ( t ) . I t f o l l o w s f rom

e q u a t i o n 5 and 11 t h a t

Thus, knowing T ( t ) we may s o l v e f o r k ( t , T ( t ) ) by equa t ion 10 and o u r problem

becomes t h a t o f s o l v i n q t h e d i f f e r e n t i a l e q u a t i o n 12.

We know t h a t qi(0) = 1. Therefore, an approximate s o l u t i o n can he

o b t a i n e d by s imp le d i f f e r e n c e methods.

f o r app rox ima t ion and l e t q i ( h j ) = q

s t e p w i l l be denoted by qj.

For example, l e t h be t h e s t e p s i z e

i .e. , t h e va lue of qi a t t h e j t h j

Then, forward d i f f e r e n c i n q q i ves

and hackward d i f f e r e n c i n g r l ives

+1-q j h = - k ( t , T ( t ) ) q j . (14)

15

Page 17: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

S o l v i n q eqi la t ions 13 and 13 f o r q and ave raq inq y i e l d s ,i+l

9 . = $2-h2[k( t ,T( t ) ) l2 >/ { l+h rk ( t , T ( t ) > I 1 q j + l

Equat ion 15 then, p rov ides a s imple s t e p by s t e p procedure f o r f i n d i n a

qi ( t ) f o r v a r y i ncl temperatures.

I n Ficlure 7, we show p ( t ) f o r d i f f e r e n t temperature p r o f i l e s and f o r

b o t h t h e l o g a r i t h m i c assumption and e q u a t i o n 10.

cons tan ts ob ta ined by Si lverman, .5n5 hr . - ' a t l06OC, 2.88 h r . - ' a t 12OoC,

and 18.35 h r .

Since t h e r e a c t i o n r a t e

-1 a t 135OC do n o t vary a r e a t l y f rom t h e ones we ob ta ined f rom

h i s da ta and equa t ion 10, we have used o u r r a t e constants , .55 h r . -1 a t

1W0C, 2.65 hr . - ' a t 12OoC, and 12.5 hr.- ' a t 135OC, f o r t h e l o q a r i t h n i i c

case.

8 h r s . f rom 100°C t o 135' and cons tan t t h e r e a f t e r , Curve A ' has t h e same

ten iperature p r o f i l e as curve A bu t we used equa t ion 10 i n s t e a d of t h e l o g a r i t h -

mic assumption. Curves B and B' a r e f o r t h e two mathematical models used f o r

A and A ' b u t t h e temperature p r o f i l e i s f o r 4 h r s . f rom 100° t~ l ? F ; O .

Curve A shows p ( t ) f o r t h e l o q a r i t h m i c case and a l i n e a r h e a t up t i m e o f

The program used t o generate t h e curves of F iau re 9 i s shown i n t h e

Appendix.

o f computat ion i s obvious f rom the program.

I n a l l cases, q i ( t ) was approximated by equa t ion 15. The ease

I n t h e computat ion o f q i ( t ) , one can e a s i l y use equa t ion 12 w i t h

Runqe-Kutta methods w i t h no apprec iab le a d d i t i o n s t o t h e comp lex i t y .

an a l t e r n a t i v e one c o u l d use i n t e a r a t i o n t o o b t a i n from e q u a t i o n 12 t h e

e q u a t i o n

As

16

Page 18: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

q i ( t ) = exp[- it k(s,T(s) )ds] . 0

However, i t may be s i m p l e r t o use equat ion 1 5 o r a Runge-Kutta method.

Runge-Kutta program i s q iven i n the Appendix.

A

1 7

Page 19: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

H E A T I N G TIME

F I G U R E 1.

vital molecular types a n d inactivation orders.

tion o f 3 molecules o f one t y p e .

molecules. Curve C:

inactivation o f 1 molecule.

Expected survivors for various assumptions regardincl number o f

Curve A: 1 s t order inactiva-

Curve E : 2nd order inactivation o f 3

1 s t order inactivation of 1 molecule, 7nd order

Curve 0: 1 s t order inactivation o f 1 molecule.

Page 20: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

v-

.-. J -

4 --- v V Lx c -

v Q

1 < . .

+

I- C

!

Effect of dry heat treatment a t

125'C on dry spores o f Bacillus

Effect of dry heat treatment a t

1 2 5 O C on dry spores o f Bacillus

s u b t i l i s var . niqer on paper s t r i n s . coaqulans on paper s t r i p s . _I__L_

19

Page 21: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

F I G U R E 4.

1 c- 2

EXPOSURE T I M E IN HOURS

Expected survivors i f death resul ts from deactivation o f 1 molecule I

by e i the r 1 s t or 2nd order reactions w i t h r a te constants 6 hr-' f o r the 1st

order reaction and 50 rnolec-'hr-l for the 2nd order reaction.

20

Page 22: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

.

V \

I\

\

I I 1 I i t 8 16 24

EXPOSURE T IME I N HOURS

5. Comparison of empirical d a t a for inactivation of Bacillus sub t i l i s 0 var niqer a t 106 C , v , t o expected survivors i f death resul ts from i n a c t i v a t i o n

of 2 molecules by 1 s t order reaction with ra te constant .55 hr-'.

curve represents computed expected survivors.

The sol id

21

Page 23: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

1 no

1 f2

1 f4

1 2 4 6

EXPOSURE TIME I N HOURS

F I G U R E (,. Conparison o f empirical data for Bacillus s u b t i l i s var. niger

a t 120°C, v , and 135°C,o , t o expected survivors i f death resu l t s from

inactivation o f 2 molecules by 1st order reaction with ra te constants 2 .65 ,

Curve A, a n d 12.5, Curve C. The solid curves represent computed expected

survivors w i t h Curve B predicted by the Arrhenius equation.

2 2

Page 24: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

. 1 no

l d

10-4

FIGURE 7 .

\

I i I I I 5

EXPOSURE T IME I N HOURS

Survivor curves f o r various temperature prof i les . A ' a n d A - 8 hour

heat u p from 100°C t o 135OC.

A ' and B ' - 2 molecules inactivated by 1 s t order reaction. A a n d B - 1 molecule

inactivated by 1st order reaction.

B ' and B - 4 hour heat up from 100°C t o 135OC.

23

Page 25: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

APPEND1 X

PROGRAM FOR COMPUTING PROBABILITY OF SINGLE SPORE SURVIVAL TO TIME X

UNDER LETHAL TEMPERATURE T'K. THE PROGRAM I S I N G.E.BASIC.

5LETR=2

6REM R=NUMBER OF MOLEC.TO BE DEACTIVATED

10LETT=398

1 5LETW= ( LOG ( . 5 5 ) -LOG ( 2.6 5 ) ) *379*39 2/ 1 4

2rlLETW=W*( l / T - l / 3 7 9 ) + L O G ( . 55)

25LETD=EXP( 14)

26REM D=REACTION RATE CONSTANT FOR TEMPERATURE T

3T)LETS=. 1

35LETV= 3

40 P R 1 PJT" R= I' ; R ; I' D= I' ; D

45FORX=S TO V STEP S

5nL ETZ= ( 1 -E XP ( - D**) ) f f\

55LETYZ1 - Z

6 0 P R I NT X ; Y

6 5 Pi E XT X

70 END

T t i I S I S THE PROGRAM USED TO COMPUTE THE 135'C CURVE I N FIGURE 6 FROM THE

REACTION RATE CONSTANTS FOR 106' AND 120'C.

Page 26: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

THIS I S THE PRGGRAM USED TO COMPUTE THE CURVES I N FIGURE 7 FOR TEMPERATURE

A VARIABLE.

5LETR=2

6REM R=NUMBER OF MOLEC.BEING DEACTIVATED

1 OLETTI=4

15LETS=. 5

20LETA=(LOG( 2.65)-LOG( . 5 5 ) ) / ( 1 / 3 9 3 - 1 / 3 7 9 )

2 5LETQ=1

26REM Q I S THE VALUE OF Q SUB I .

3r)FORX=S TO T 1 STEP S

35LETZ=7/6

4r)LETW=135

41REI.I Z IS THE TIME TO GO FROM 100°C TO W°C

4 5 L ET\d=2 7 3+W

5OIFX>=Z THEN 70

5 5L E T V= ( W - 3 7 3 ) / Z

GOLETT= X*V+373

66REF.1 T IS THE TEMP. AT TIME X

6 5 GO TO 7 5

70LETT=W

75LETB=( l / T - l / 3 7 9 ) * A + L O G ( .55)

VLETB=EXP( R)

RlREM 5=REACTION RATE CONSTANT FOR TEMP. T

95LETQz. 5*Q*( 2-S*S*B*B)/ ( l +S*B)

~ o L E T Y = ~ - ( 1 - Q ) t ~

25

Page 27: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

95PRINTX ,Y

lOONEXTX

105 END

T H I S I S THE PROGRAM USED TO GENERATE THE CURVES I N FIGURE 7. THE TEMPERA-

TURE PROFILE IS AS FOLLOWS:

Z

TIME in hours

26

Page 28: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

Four th o rde r Runge-Kutta approximat ion f o r qi ( t ) .

From equat ion 12,

where h i s t h e s tep s i z e .

qn+1 - - qn + k1/6+k2/3+k3/3+k4/6+0( h5)

where

k g = -hk[tn+h/2 ,T( tn+h/2)][qn+k2/2];

kd = -hk[tn+h ,T(tn+h)][q,+k3].

k(t,, T ( t n ) i s determined f rom Equation 9.

27

Page 29: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

I n t u i t i v e b a s i s f o r Equat ion 8.

Assume t h a t a molecule may be i n a c t i v a t e d by e i t h e r a f i r s t o r second o r d e r

Assume t h a t t h e p r o b a b i l i t y o f r e a c t i o n of i t h o rder , r e a c t i o n b u t n o t by both.

i = 1, 2, o c c u r r i n g between t i m e t and t + d t i s r e l a t e d t o t h e r a t e s a t

which t h e separa te r e a c t i o n s occur.

f i r s t o r d e r r e a c t i o n w i l l occu r t o be

Thus we take, p1 ( t ) , t h e p r o b a b i l i t y t h a t

S i m i 1 a r l y , we s e t

For Equat ion 8, we s i m p l i f y equat ions a and b by s e t t i n g

p2 = k2nii/(kl+k2ni).

28

Page 30: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

Ref e r e nces

.

1. L . D. J a f f e , L i f e Sciences and Space Research 11, (North Holland,

Amsterdam, 1964) , p . 409.

2. S . Schalkowsky and R . Weiderkehr, A S t o c h a s t i c S t e r i l i z a t i o n Model,

Topical Report prepared under Contract NASw-1340 for NASA, (Exotech

Inc . , Washinqton, D. C . , 1966). This report i s n o t r e s t r i c t e d t o

l o a a r i thmic e x t r a p o l a t i o n .

3. Committee on Space Research o f the I n t e r n a t i o n a l Council of S c i e n t i f i c

Unions.

4. J. 0. L i g h t , W . Vishniac, C . W . Craven, and L. B . Ha l l , - 7th

I n t e r n a t i o n a l Space Science Symposium, Vienna 1 (1966) .

5. G. F. Reddisch, E d i t o r , An t i sep t i c s , D i s i n f e c t a n t s , Fungicides - and

S t e r i l i z a t i o n , Lea and Febiger, Ph i l ade lph ia , Pa. , 1957.

6. J . Gurland, E d i t o r , S tochas t i c Models i n Medicine and Bioloqy, ( I l n i v .

of Wisconsin Press, 1964) , p. 358.

7. E . C. P o l l a r d , American S c i e n t i s t , 53, 440(1965).

8. F. H . Johnson, H . Eyring, and M . 3. P o l l i s a r , The Kine t ic Basis of

Molecular Biology, (John Wiley & Sons, New York, 195n) , p . 458.

9. A Papoul i s , P r o b a b i l i t y , Random Var iab les , and S t o c h a s t i c Processes ,

(McGraw-Hill, New York, 1965) , p . 109.

10. F. H. Johnson, I b i d , p . 277.

11. M. G . Koes te rer , S tud ie s f o r S t e r i l i z a t i o n of Soace Probe Components,

fiASA CR-191, Prepared under Cont rac t No. NASw-879. (Wilmot Cas t l e Co. ,

Rochester, N. Y., 1965) , p . 30.

29

Page 31: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

12. R. Anc le lo t t i , l i . E . H a l l , 3. ti. Maryanski , R. G. Crawford, Ecology and

Thermal I n a c t i v a t i o n of Microbes i n and on I n t e r p l a n e t a r y Space Veh ic le

Components, Q u a r t e r l y Report prepared f o r NASA - Research P r o j e c t

R-36-Ol5-OO1, Jan 1 - !'arch 31, 1966.

13. G. J. Si lverman, The R e s i s t i v i t y of hlicroorqanisms t o Thermal - - - I n a c t i v a - --- -- t i o n t o Dry I ieat , P4ASA-CR-70029, Report prepared under C o n t r a c t

NSG-6Q1 f o r NASA, (1966).

14. C. J. Jachimowski, "On t h e A p p l i c a t i o n o f S t o c h a s t i c Processes t o

React ion K i n e t i c s " , Ph.D. Thesis, Mich iqan S t a t e U n i v e r s i t y , Chemistry,

Phys i ca l , 1964.

Page 32: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

D I STRI BUT I ON : J . A . Hornbeck, 1 C. F. B i l d , 1100 R . W . Henderson, 2000 L . J . Heilman, 2100 T . T . Robertson, 2200 L . J . Paddison, 2400 H . E. Lenander, 2500 J . R . Meikle, 2520 J . W . Jones, 2540 R . E. Hepplewhite, 2550 J . R . S u b l e t t , 256’3 D . W . B a l l a r d , 2564 H . D. S i v i n s k i , 2570 (50 ) C . A . l’rauth, J r . , 2571 J . P. Brannen, 2571 ( 5 ) R. C. F l e t c h e r , 5000 R. S. Claassen, 5100 T . B . Cook, J r . , 5200 L. D. Smith, 5500 B. H . Van Domelen, 5530 M. C. Reynolds, 5530 R . T . Di l lon , 5590 D. R . S h u s t e r , 5600

A . Y . Pope, 9300 NASA, Code SC, Grants and Contracts , 400 Maryland Avenue, SW

L . B . H a l l , NASA, Code SB, 400 Maryland Avenue, SW

J . J . 14cDade , Love1 a c e Foundati on , A1 buquerque , New Mexico 1J. F. Carstens, 3410 R . S. G i l l e s p i e , 3413 ( 4 ) C . H . Sproul , 3415-3 ( 3 ) B. R. Allen, 3421

B . F . t ief ley, 8232

J . H . S c o t t , w o n

Washington D. C . 20546 (25 )

Washinqton D . C. 20546 ( 2 )

W . K. C O X , 3428-1

John W . Beakley Department o f Bioloqy Uni versi t y of New Mexico Albuquerque, New Mexico

Loren D . P o t t e r , Chairman Department of Bioloqy Univers i ty o f New Mexico A1 buquerque, New Mexi co

Robert Anqelo t t i Deputy Chief, Milk and Food Res. Robert A. T a f t S a n i t a r y Enqineerinq Center C i n c i n a t t i , Ohio

Geral d S i 1 verman Department o f N u t r i t i o n and Food Science Massachusetts I n s t i t u t e of Technoloqy Cambridge, Massachusetts 021 39

Richard G. Cornel1 Samuel Schal kows ky Assoc ia te Professor o f S t a t i s t i c s Department of S t a t i s t i c s 525 School S t r e e t , S.W. F lor ida S t a t e Univers i ty Washington, D . C . 20024 Tal 1 ahassee , F1 o r i d a

Exotech Incorporated

31

Page 33: SANDIA CORPORATION - NASA · result of chemical reactions and that these reactions result in the inactivation of biologically vital molecular types. Each molecular type may contain

Ur. Allen H. Brown B i ol ogy Depa rtrnent Univers i ty o f Pennsylvania Phi ladelDhia. Pennsylvania 19104

Robert S . Runkle Biohazards, E t io logy , NCI, NIH Wiscon Bui ld inq , Rm 4C01 7550 Wisconsin Avenue Bethesda, Maryland 20014

A. H . Schwichtenberq Aerospace Medi c i ne Lovelace Foundation 5200 Gibson B1vd.S.E. Albuquerque, New Mexico

Robert Wol fson General E l e c t r i c Company Miss i l e and Space Division 301 E. Colorado Blvd. Pasadena, C a l i f o r n i a 91109

Joshua Lederberg Department o f Genet ics S tan fo rd Uni ve r s i t y School o f Medicine Palo Al to , C a l i f o r n i a

N. H. Horowitz Div is ion of Biology C a l i f o r n i a I n s t i t u t e of Technology Pasadena, C a l i f o r n i a

Melvin H. Goodwin Sci en t i s t D i r e c t o r CDC-Phoeni x F i e l d S t a t i o n Phoeni x , Ari zona

Georqe S. Michael sen Di r e c t o r , D i v i s i o n o f Envi ronmental

Health and Safe ty Univers i ty o f Minnesota Mi nneapol i s , Mi nnesota

Keith H. Lewis Chief , Milk and Food Research Robert A. T a f t San i t a ry Eng inee r iw

C i n c i n a t t i , Ohio Center

Georqe Ma1 1 i son CDC-Atlanta A t l a n t a , Georciia

Ralph A . Slepecky Assoc ia te P ro fes so r of Microbiology Syracuse Uni versi t y Syracuse, New York

Joseph S te rn J e t Propuls ion Laboratory 4800 Oak Grove Dr. Pasadena, C a l i f o r n i a 91103

P ro fes so r Richard G. Bond School of Pub l i c Health Colleqe of Medical Science Uni versi t y o f Minnesota Mi nneapol i s , Minnesota 55455

Dr. John H. Brewer Bio loqica l Sa fe ty and Control Becton, Di cki nson and Company P . 0. Box 6711 Bal t imore, Maryland 21204

Mr. Mark A . Chatigny Research Enqi necr Naval Bio loqica l Laboratory Naval Supply Center llni vers i t y o f Cal i fo rn i a , Berkeley Oakland, C a l i f o r n i a S4625

Dr. Frank 6 . Enqley, J r . Chai rman, Department of Mi c robi ol oqy School o f Medicine Univers i ty of Missouri Col umbi a , Missouri

Dr. G i l b e r t V . Levin Hazl e ton Laborator i es , I nc. Box 30 Fa1 1 s C h u r c h , V i rg i ni a

P ro fes so r I rv inq J . P f l u q Department of Food Science Michigan S t a t e Univers i ty East Lansing, Michiclan

Dr. John A. Ulrich Department of Microbioloqy Mayo C l i n i c Rochester , Minnesota 55902

32