38

San Diego µTAS 2008 - University at Buffalo

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: San Diego µTAS 2008 - University at Buffalo
Page 2: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 1

Program at a GlanceSan Diego µTAS 2008

Conference Registration and Check-In

Wine & Cheese Welcome Reception

Opening Remarks

PLENARY I - Jeremy Nicholson, Imperial College, UK

Break & Exhibit Inspection

Lunch & Exhibit Inspection

PLENARY II - Harold Craighead, Cornell University, USA

Innovation In Science Award

Poster Session 1

PLENARY III - Teruo Fujii, University of Tokyo, JAPAN

Break & Exhibit Inspection

Lunch & Exhibit Inspection

PLENARY IV - Andrew Griffiths, Institut de Science et d’Ingenierie Supermoleculaires, FRANCE

Poster Session 2

Conference Banquet at the San Diego Zoo

Announcement of MicroTAS 2009

PLENARY V - Tomokazu Matsue, Tohoku University, JAPAN

Break & Exhibit Inspection

Lunch & Exhibit Inspection

PLENARY VI - Julio M. Ottino, Northwestern University, USA

Art In Science Award

Poster Session 3

Poster Awards Ceremony

Break & Exhibit Inspection

Conference Adjourns

16:00 - 19:00

17:00 - 19:00

08:00 - 08:20

08:20 - 09:00

09:15 - 10:15

10:15 - 10:45

10:45 - 11:45

11:45 - 13:00

13:00 - 13:40

13:40 - 14:00

14:00 - 16:20

16:20 - 17:20

08:00 - 08:40

08:55 - 09:55

09:55 - 10:25

10:25 - 11:25

11:25 - 12:40

12:40 - 13:20

13:20 - 15:40

15:40 - 16:40

18:00 - 22:00

08:00 - 08:20

08:20 - 09:00

09:15 - 10:15

10:15 - 10:45

10:45 - 11:45

11:45 - 13:00

13:00 - 13:40

13:40 - 14:00

14:00 - 16:20

16:20 - 17:20

08:00 - 08:40

09:00 - 10:00

10:00 - 10:30

10:30 - 11:30

11:30

Monday

Sunday

Tuesday

Wednesday

Thursday

Session 1A1Single Cell Analysis

Session 1B1Sample Preparation & Separation

Session 1A2Cell Interactions

Session 1B2Single Molecular Manipulation & Measurement

Session 1A3Tools for Nucleic Acid Research & Discovery

Session 1B3Mapping & Imaging

Session 2A1Fluidic Design & Assembly

Session 2B1Channels, Tubes and Pores on the Nanoscale

Session 2A2Clinical Diagnostic 1

Session 2B2On Chip Synthesis and Production

Session 2A3Extreme Multiplexed Analysis

Session 2B3Analyzing Blood Components

Session 3A1Cell Sorting

Session 3A1Innovative Chemistries for Microfluidics

Session 3A2Sample Preparation

Session 3B2Tools for Controlled Cell Culture I

Session 3A3Protein Expression & Characterization

Session 3B3Clinical & Biomolecular Analysis

Session 4A1Microfluidic Integrated Optics

Session 4B1In Vivo & Cellular Screening

Session 4A2Tools for Controlled Cell Culture II

Session 4B2Innovative Microfluidic Applications

Page 3: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego2

MONDAY Program µTAS 2008 San Diego

Technical Program

USING MICROFLUIDICS TO CONTROL THE EXTRACELLULAR ENVIRONMENT AND TO MEASURERELEASE FROM SELECTED NEURONSJ.V. Sweedler1, M. Zhong1, J.N. Hanson1, K. Jo2, L. Millet1, S.S. Rubakhin1,M.U. Gillette1 and R.G. Nuzzo11University of Illinois, Urbana-Champaign, USA and 2Songang University, KOREA

QUANTIFICATION OF AMYLOID SECRETION IN ISOLATED OPTOFLUIDIC CHAMBER ARRAYL.Y. Wu, Y. Choi, S.G. Hong, H. Wu, M. Dueck, and L.P. LeeUniversity of California, Berkeley, USA

HYBRID DIGITAL-CHANNEL MICROFLUIDICS FOR PRE-PROCESSING AND SEPARATIONSA.R. Wheeler, M. Abdelgawad, and M.W. WatsonUniversity of Toronto, CANADA

09:15 - 09:35

09:35- 09:55

Session 1B1Sample Preparation & Separation

INTEGRATED FLUORESCENCE-LABELING AND POLYACRYLAMIDE GEL ELECTROPHORESIS FORANALYSIS OF PROTEIN ISOFORMSA. Apori and A.E. HerrUniversity of California, Berkeley, USA

Session 1A1Single Cell Analysis

Grand Ballroom A-B Grand Ballroom C

Monday, October 13, 2008

08:00 – 08:20 Opening Remarks

08:20 - 09:00 Plenary ISTATISTICAL SPECTROSCOPY AND METABOLOME-WIDE ASSOCIATION APPROACHESIN PERSONAL AND PUBLIC HEALTH INVESTIGATIONSJ. NicholsonImperial College London, UK

10:15 – 10:45 Break & Exhibit Inspection

SINGLE-CELL LEVEL GENE EXPRESSION PROFILING USING MICROFLUIDIC LINEAR AMPLIFICATIONJ.G. Kralj1, A. Player2, M.S. Munson1, S.P. Forry1, D. Petersen2, D. Edelman2, E. Kawasaki2,P. Meltzer2, and L.E. Locascio1

1National Institute of Standards and Technology (NIST), USA and2National Cancer Institute, National Institute of Health (NIH), USA

09:55- 10:15A MICROFLUIDIC MOLECULAR TRACKING SYSTEM DETECTS A TIME-TO-SEARCH DNASEQUENCE TO BE CLEAVED BY RESTRICTION ENZYMESD. Onoshima1, N. Kaji1, M. Tokeshi1, and Y. Baba1,2,3

1Nagoya University, JAPAN, 2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN and 3Institute for Molecular Science, JAPAN

Grand Ballroom A-B Grand Ballroom C

A CHIP-BASED IN VITRO MODEL FOR CYTOTOXICITY TEST USING CACO-2 AND HEP G2H. Kimura, T. Yamamoto, Y. Sakai, and T. FujiiUniversity of Tokyo, JAPAN

MICROFLUIDIC PLATFORM TO STUDY THREE DIMENSIONAL CELL MIGRATION & CAPILLARYMORPHOGENESISS. Chung, R. Sudo, I. Zervantonakis, T. Rimchala, P.J. Mack, C.-R. Wan, V. Vickerman, and R.D. KammMassachusetts Institute of Technology, USA

THE TOMO-TWEEZERS: A NEW INSTRUMENT COMBINING MAGNETIC TWEEZERS ANDMICROCHIP TECHNOLOGY FOR SINGLE MOLECULE STUDIESL. Disseau1, J. Miné1, M. Dilhan2, H. Camon2, G. Cappello1, and J.-L. Viovy1

1Institut Curie, FRANCE and 2LAAS, FRANCE

10:45 - 11:05

11:05- 11:25

Session 1B2Single Molecule Manipulation & Measurement

A MICROFLUIDIC NANOPORE SYSTEM FOR SINGLE MOLECULE MASS DISCRIMINATIONL.P. Hromada, Jr.1, B.J. Nablo2, J.J. Kasianowicz2, M.A. Gaitan2, D.L. DeVoe1, and J.W.F. Robertson2

1University of Maryland, USA and 2National Institute of Standards and Technology, USA

Session 1A2Cell Interactions

HYDRODYNAMIC CELLULAR PATTERNING FOR 3D CO-CULTUREY.-S. Torisawa, B. Mosadegh, G.D. Luker, and S. TakayamaUniversity of Michigan, USA

11:25- 11:45ISOLATION OF SINGLE DNA MOLECULE IN A PICOLITRE-SIZED DROPLET FORMEDBY LIQUID DIELECTROPHORESISB. Wee, M. Kumemura, D. Collard, and H. FujitaUniversity of Tokyo, JAPAN

Page 4: San Diego µTAS 2008 - University at Buffalo

11:45 – 13:00 Lunch & Exhibit Inspection

13:00 - 13:40 Plenary IINANOSTRUCTURE INCORPORATION IN MICROANALYTICAL SYSTEMSH. CraigheadCornell University, USA

13:40 - 14:00 Innovation In Science AWARD sponsored by Analytical Chemistry

14:00 - 16:20 Poster Session I

µTAS 2008 • San Diego 3

MONDAY ProgramSan Diego µTAS 2008

M1AA FAST AND ACCURATE ISOTACHOPHORESIS SIMULATION CODEM. Bercovici, S.K. Lele, and J.G. SantiagoStanford University, USA

M2AMATHEMATICAL AND EXPERIMENTAL STUDY ON BACKWARD FLOW IN A SURFACE TENSIONDRIVEN MICROPUMPJ. Ju1, J.Y. Park1, E. Berthier2, D.J. Beebe2, and S.H. Lee1

1Korea University, KOREA and 2University of Wisconsin, USA

M3AFLUID FLOW SIMULATIONS AND MEASUREMENT OF OXYGEN CONSUMPTION OFHEPATOCYTES IN PERFUSED MULTIWELL BIOREACTORK. Domansky1, M.H.M. Lim2, A. Dash1, J.R. Llamas Vidales1, and L.G. Griffith1

1Massachusetts Institute of Technology, USA and 2University of Cambridge, UK

M4AJOULE HEATING EFFECTS ON INSULATOR-BASED DIELECTROPHORESISP. Sabounchi1, D.E. Huber2, M.P. Kanouff1, A.E. Harris1, and B.A. Simmons1

1Sandia National Laboratories, USA, and 2Stanford University, USA

M5AMICROFLUIDIC DRIFTING: THREE DIMENSIONAL HYDRODYNAMIC FOCUSING OFMICROPARTICLESX. Mao and T.J. HuangPennsylvania State University, USA

M6ASINGLE-PHASE DIGITAL MICROFLUIDICS BASED ON ISOTACHOPHORETIC TRANSPORTF. Schönfeld1, G. Goet1, K.S. Drese1, and S. Hardt21Institut für Mikrotechnik Mainz GmbH, GERMANY and 2Leibniz Universität Hannover, GERMANY

M7ATHREE-DIMENSIONAL HYDRODYNAMICALLY ADJUSTABLE LENS CHIPFABRICATED BY RAPID PROTOTYPINGM. Rosenauer and M.J. VellekoopVienna University of Technology, AUSTRIA

M10AA NEW VORTEX-TYPE MICROMIXERS.-Y. Yang1 and G.-B. Lee1,2

1National Cheng Kung University, TAIWAN and 2Industrial Technology Research Institute, TAIWAN

M11AA VERTICAL LAMINATING MICROMIXER (VLM)W.S. Yang 1, J.-O. Ryu2, and D.S. Kim1

1Chung-Ang University, KOREA and 2Allmedicus Co. Ltd, KOREA

M12AAU/PPY ACTUATORS FOR ACTIVE MICROMIXING AND MASS TRANSPORT ENHANCEMENTX. Casadevall i Solvas, R.A. Lambert, R.H. Rangel, and M.J. MadouUniversity of California, Irvine, USA

M13ACONTINUOUS MICROFLUIDIC IMMUNOSENSING WITH ANTIBODY CONJUGATEDPARAMAGNETIC BEADSL.A. Sasso and J.D. ZahnRutgers University, USA

M14AEFFECTIVE MIXING OF LAMINAR FLOWS AT A DENSITY INTERFACE BY ANINTEGRATED ULTRASONIC TRANSDUCERL. Johansson, S. Johansson, F. Nikolajeff , and S. ThorslundUppsala University, SWEDEN

M15AHIGH-SPEED CHEMICAL SIGNAL GENERATION WITH MULTI-PLUG MODULATORSF. Azizi and C.H. MastrangeloCase Western Reserve University, USA

M16AON-DEMAND DROPLET METERING AND FUSION UTILIZING MEMBRANE ACTUATIONB.-C. Lin and Y.-C. SuNational Tsing Hua University, TAIWAN

M17ARAPID MIXING BY MICRO-VORTEX IN A CONTRACTION-EXPANSION ARRAY MICROCHANNELS. Choi, M.G. Lee, and J.-K. ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

M18ASIMULATION OF MICROFLUIDIC FLUID MIXING USING ARTIFICIAL CILIAM.G.H.M. Baltussen1, J.M.J. den Toonder1,2, F.M. Bos1, and P.D. Anderson1

1Technische Universiteit Eindhoven, THE NETHERLANDS and 2Philips Research, THE NETHERLANDS

W19ATIPPING THE BALANCE WITH DIELECTROPHORETIC FORCES - AN ELECTRIC DETERMINISTICLATERAL DISPLACEMENT DEVICEJ.P. Beech, P. Jönsson, and J.O. TegenfeldtLund University, SWEDEN

M8AAUTOMATED DELIVERY OF SMALL FLUID VOLUMES THROUGH TUBING TO MICROFLUIDIC CHIPSK. Liu, C. Xia, C.K.-F. Shen, and R.M. van DamUniversity of California, Los Angeles, USA

M9ALOCALIZED BRAIN SLICE CHEMICAL STIMULATION USING A MICROFLUIDICDEVICE AND OFF-THE-SHELF PERFUSION CHAMBERH.H. Caicedo, J. Shaikh Mohammed, and C.P. Fall, and D.T. EddingtonUniversity of Illinois, Chicago, USA

MicrofluidicsFluid Mechanics & Modeling

MicrofluidicsWorld-to-Chip Interfacing

MicrofluidicsAliquoting, Mixing & Pumping

Page 5: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego4

MONDAY Program µTAS 2008 San Diego

M20ATUNABLE DELIVERY OF CHEMICAL GRADIENTS OVER LARGE CELL CULTURESUBSTRATES USING STACKED FLOWSC. Sip, H. Lai, and A. FolchUniversity of Washington, USA

M21AVENTURI-BASED TWO-LAYER MICROFLUIDIC PUMPING SYSTEMK. Hettiarachchi and A.P. LeeUniversity of California, Irvine, USA

M22AA NEW MICROFLUIDIC DEVICE FOR FORMATION AND SWITCHING OF MICRO-DROPLETSC.-Y. Lee1, Y.-H. Lin2, and G.-B. Lee1,2

1National Cheng Kung University, TAIWAN and2Industrial Technology Research Institute, TAIWAN

M23AMICROFLUIDIC ASSEMBLY OF CELL-LIKE SYSTEMS IN GIANT UNILAMELLAR LIPID VESICLESJ.C. Stachowiak, T.H. Li, D.L. Richmond, and D.A. FletcherUniversity of California, Berkeley, USA

M24ACLUSTER FORMATION AND EVOLUTION IN PARTICLE-LADEN MICROCHANNEL FLOWT. Gudipaty, L.S.L. Cheung, L. Jiang, and Y. ZoharUniversity of Arizona, USA

M25ADESIGN AND CHARACTERISATION OF MULTIPHASE LPG INTERFEROMETER USING DROPLETMICROFLUIDICSL.K. Chin, C.S. Lim, and A.Q. LiuNanyang Technological University, SINGAPORE

M26ADISPOSABLE, CONTINUOUS-FLOW BIOSENSOR FOR MULTI-ANALYTE MONITORING ANDMICROFLUIDIC CONTROL OF THE LINEAR RANGEO. Frey, S. Talaei, N.F. de Rooij, and M. Koudelka-HepUniversity of Neuchâtel, SWITZERLAND

M27AFAST, ROBUST AND SIMULTANEOUS SORTING WITH DROPLET GENERATION BYSYNCHRONIZED HIGH SWITCHING FREQUENCY OF ELECTROSTATIC ACTUATIONB. Ahn, R. Panchapakesan, K. Lee, and K.W. OhState University of New York, Buffalo, USA

M28AHIGH EFFICIENCY OF BIOCONJUGATION ON CARBOXYLATED COPOLYMERPARTICLES FABRICATED VIA A MICROFLUIDIC DEVICES.-H. Huang1, H.S. Khoo2, and F.-G. Tseng2

1National Taiwan Ocean University, TAIWAN and 2National Tsing Hua University, TAIWAN

M29ALIQUID CRYSTALLOGRAPHY IN MICROCHANNELSL. Shui1, S. Kooij2, J. C.T. Eijkel1, and A. van den Berg1

1MESA+, University of Twente, THE NETHERLANDS and 2University of Twente, THE NETHERLANDS

M30AMICROFLUIDIC DROPLET ADDER IN MICROCHANNELSE. Um and J.-K ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

M31AMICROFLUIDIC SPINNING OF BIODEGRADABLE POLYMER AND CELL ORIENTATIONCONTROL ON THE FIBERSC.M. Hwang1, K. Sun1, A. Khademhosseini2,3, and S.H. Lee1

1Korea University, KOREA, 2Massachusetts Institute of Technology, USA, and3Brigham and Women’s Hospital, Harvard Medical School, USA

M32AOPTOFLUIDIC ENCAPSULATION OF CRYSTALLINE COLLOIDAL ARRAYS USING PHOTOCURABLEDOUBLE EMULSION DROPLETSS.-H. Kim, S.-J. Jeon, and S.-M. YangKorea Advanced Institute of Science and Technology (KAIST), KOREA

M33AMICROWAVE TECHNIQUE FOR MONITORING PHASE SEPARATION OF A MULTIPHASE-FLOWREGIME UTILISED FOR CONTINUOUS MOLECULAR ENRICHMENTO. Castell, A. Masood, R. Göritz, D. Barrow, C. Allender, and A. PorchCardiff University, UK

M34ASINGLE MOLECULE DETECTION AND ISOLATION USING DROPLET MICROFLUIDICSM. Srisa-Art and J.B. EdelImperial College London, UK

M35ATWO-PHASE STRATIFIED FLOW OF LIQUID AND AIR IN PDMS MICROFLUIDIC CHANNELS FOROPTOFLUIDIC WAVEGUIDESJ.-M. Lim, S.-H. Kim, J.-H. Choi, and S.-M. YangKorea Advanced Institute of Science and Technology (KAIST), KOREA

M36AACOUSTOPHORESIS IN WET-ETCHED GLASS CHIPSA. Lenshof, M. Evander, T. Laurell, and J. NilssonLund University, SWEDEN

M37ACONTINUOUS SEPARATION OF PARTICLES USING INERTIAL LIFT FORCE AND VORTICITY VIAMULTI-ORIFICE MICROCHANNELJ.S. Park and H.-I. JungYonsei University, KOREA

M38AMICROFLUIDIC SELECTIVE ELECTROCHEMICAL LYSIS (µSEL) FOR ISOLATING PROKARYOTESFROM BIOLOGICAL SAMPLESR.M. Cooper, J.T. Nevill, M. Dueck, and L.P. LeeUniversity of California, Berkeley, USA

M39AHIGH-THROUGHPUT CELL SORTER WITH PIEZOELECTRIC ACTUATIONC.H. Chen, S.H. Cho, A. Erten, and Y.-H. LoUniversity of California, San Diego, USA

M40AINTEGRATED IMMUNOAFFINITY MONOLITH/POLYACRYLAMIDE-MEMBRANE/ELECTROPHORESISMICRODEVICES FOR TRACE BIOMARKER ANALYSISW. Yang, X. Sun, and A.T. WoolleyBrigham Young University, USA

M41AMULTIPLE NODE ULTRASONIC STANDING WAVE SEPARATION IN MICROCHANNELSIMPROVES LIPID DISCRIMINATION FROM COMPLEX BIO-SUSPENSIONSC. Grenvall1, P. Augustsson1, H. Matsuoka2, and T. Laurell11Lund University, SWEDEN and 2Tokyo University of Agriculture and Technology, JAPAN

M42APINCHED FLOW FRACTIONATION DEVICE FOR SIZE- AND DENSITY-DEPENDENTSEPARATION OF PARTICLES UTILIZING CENTRIFUGAL PUMPINGS. Sunahiro1, M. Senaha2, M. Yamada3, and M. Seki1,2

1Osaka Prefecture University, JAPAN, 2Chiba University, JAPAN, and3Tokyo Women's Medical University, JAPAN

MicrofluidicsMulti-Phase Microfluidics

MicrofluidicsSeparation Methods

Page 6: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 5

MONDAY ProgramSan Diego µTAS 2008

M43ARAPID AND SELECTIVE CONCENTRATION OF MICROPARTICLES USINGOPTOELECTRO-OSMOTIC FLOW IN LAB-ON-A-DISPLAYH. Hwang and J.-K. ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

M44ASIZE SEPARATION OF PARTICLES USING FLOW-INDUCED ELECTROKINETIC TRAPPINGL.C. Jellema1, A.P. Markesteijn2, J. Westerweel2, and E.M.J. Verpoorte1

1University of Groningen, THE NETHERLANDS and 2Delft University of Technology, THE NETHERLANDS

M45ASPATIALLY-MULTIPLEXED PROTEIN SEPARATIONS ENABLED BY MULTIFUNCTIONALPHOTOPOLYMERIZED GELSS. Yang, J. Liu, and D.L. DeVoeUniversity of Maryland, USA

M46AA DROPLET ON DEMAND MICROFLUIDIC DEVICE FOR DETECTING DNA SINGLEBASE SUBSTITUTION USING PNA PROBES. Kaneda, T. Nojima, T. Yamamoto, and T. FujiiUniversity of Tokyo, JAPAN

M47AAPPLICATION OF TOPOLOGY OPTIMIZATION IN LAB-ON-A-CHIP DESIGNF. Okkels and H. BruusTechnical University of Denmark, DENMARK

M48AELECTROCHEMICAL BUBBLE-ACTUATED MICROVALVES AND PERISTALTIC PUMPS BASED ONEMBEDDED SU-8 MICROCANTILEVERSA. Ezkerra1, L.J. Fernández1, A. Wolff2, K. Mayora1, and J.M. Ruano-López1

1Ikerlan S. Coop., SPAIN and 2Technical University of Denmark (DTU), DENMARK

M49AA MICROFLUIDIC DEVICE FOR TISSUE BIOPSY CULTURE AND INTERROGATIONA. Webster, C.E. Dyer, K.J. Welham, A.M.L. Seymour, J. Greenman, and S.J. HaswellUniversity of Hull, UK

M50AON-CARD DRY REAGENT STORAGE FOR DISPOSABLE MICROFLUIDIC IMMUNOASSAYSD.Y. Stevens1, C.R. Petri2, and P. Yager11University of Washington, USA and 2Boston College, USA

M51ASOLVING THE SHRINKAGE-INDUCED PDMS REGISTRATION PROBLEM INMULTILAYER SOFT LITHOGRAPHYC. Moraes, C.A. Simmons, and Y. SunUniversity of Toronto, CANADA

M52ATOWARDS SIMULTANEOUS ELECTRICAL AND OPTICAL INVESTIGATION OF BLMS USING A NOVELMICROFLUIDIC DEVICEI. van Uitert, Y. Cesa, H. de Boer, J. Bomer, M. Bennink, S. Le Gac, and A. van den BergUniversity of Twente, THE NETHERLANDS

M2BELECTRO-PRECONCENTRATION OF BIO-MOLECULES IN NANOFLUIDIC DEVICESA. Plecis, C. Nanteuil, A.M. Haghiri-Gosnet, and Y. ChenCentre National de la Recherche Scientifique (CNRS), Marcoussis, FRANCE

M3BFABRICATION AND CHARACTERIZATION OF REVERSIBLY BONDED NANOFLUIDIC CHANNELSP. Kim, J.K. Kim, and K.Y. SuhSeoul National University, KOREA

M4BION PUMPING IN NANOCHANNELS USING AN ASYMMETRIC ELECTRODE ARRAYW. Sparreboom, C.F. Cucu, J.C.T. Eijkel, and A. van den BergUniversity of Twente, THE NETHERLANDS

M5BOPTOFLUIDIC MANIPULATION WITH SUB-WAVELENGTH SCALE PHOTONICSA.H.J. Yang, S.D. Moore, B.S. Schmidt, M. Lipson, and D. EricksonCornell University, USA

M6BTHE EFFECTS OF CONCENTRATION POLARIZATION ON MOLECULE TRANSLOCATIONIN A NANOPORE DEVICET.A. Zangle, A.H. Talasaz, R.W. Davis, and J.G. SantiagoStanford University, USA

M1BAMPLIFIED ELECTROKINETIC FLUID PUMPING AND SWITCHING BY CONCENTRATIONPOLARIZATION NEAR NANOFLUIDIC CHANNELS.J. Kim and J. HanMassachusetts Institute of Technology, USA

M7BCELL RUPTURE MICROFLUIDIC DEVICE USING NANO NEEDLE ALLAY FORDAMAGE-FREE EXTRACTION OF ORGANELLEST. Arakawa1,3, Y. Shirasaki2, D. Yamazaki1, T. Funatsu3, and S. Shoji11Waseda University, JAPAN, 2Kazusa DNA Research Institute, JAPAN, and3University of Tokyo, JAPAN

M8BENCAPSULATION OF PAL ENZYMES IN FLUORINATED REVERSE EMULSIONSP.R. Marcoux1, N. Faure2, V. Lanet2, P. Joly1, M. Dupoy1, F. Rivera1, F. Mallard2, and J.-P. Moy1

1CEA-LETI, FRANCE and 2bioMérieux, FRANCE

M9BINTEGRATION OF IMMUNOASSAY INTO EXTENDED NANOSPACE FOR ANALYSISAT SINGLE-MOLECULE LEVELF. Hiruma1, K. Mawatari2, T. Tsukahara1, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science and Technology, JAPAN

M10BMICROFLUIDIC SELECTION OF LIBRARY ELEMENTSD.J. Solis, R. Lovchik, and E. DelamarcheIBM Research Gmbh, SWITZERLAND

M11BNANOTECHNOLOGY MEETS PLANT BIOTECHNOLOGY: CARBON NANOTUBES DELIVERDNA AND INCORPORATE INTO THE PLANT CELL STRUCTUREM. Fouad1, N. Kaji1, M. Jabasini1, M. Tokeshi1, and Y. Baba1,2

1Nagoya University, JAPAN and2National Institute of Advanced Industrial Science & Technology (AIST), JAPAN

Microfluidics

NanotechnologyNanofluidics

NanotechnologyNanobiotechnology

M12BCELL DRIVEN NANO LOCOMOTIONT. Hoshino1, Y. Hori1, T. Konno2, K. Ishihara2, and K. Morishima1

1Tokyo University of Agriculture and Technology, JAPAN and 2University of Tokyo, JAPAN

NanotechnologyNanoassembly

Page 7: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego6

MONDAY Program µTAS 2008 San Diego

M13BELECTRICAL MANIPULATION OF GOLD NANOPARTICLES FOR MICROFLUIDIC APPLICATIONSD.R. Reyes, G.I. Mijares, K.A. Briggman, J. Geist, and M. GaitanNational Institute of Standards and Technology (NIST), USA

M14BTEMPLATE-GUIDED SELF-ASSEMBLY OF BIOMIMETIC POLYMERS USINGEVAPORATION-ASSISTED PLASMA LITHOGRAPHYJ. Keyes1, M. Junkin1, J. Cappello2, X. Wu1, and P.K. Wong1

1University of Arizona, USA and 2Protein Polymer Technologies, Inc., USA

M1CA UNIVERSAL SURFACE MODIFICATION PROTOCOL FOR ACTIVE SURFACE CATALYTIC MICRODEVICESC.J. Cullen1, P. Williams2, and R.C.R. Wootton2

1Imperial College London, UK and 2Liverpool John Moores University, UK

M2CCARBON NANOTUBES PRESSURE SENSORS MODIFIED FOR CHEMICAL ANALYSISR. Ficek1, R. Vrba1, L. Zajickova2, O. Jasek2, and F. Matejka31Brno University of Technology, CZECH REPUBLIC, 2Masaryk University, CZECH REPUBLIC, and3Academy of Sciences of the Czech Republic, CZECH REPUBLIC

M3CDUAL FUNCTION SURFACE PREPARED ON POLYMERIC SUBSTRATE FOR HIGHLY SENSITVEIMMUNOASSAY-BASED MICROARRAY BIOSENSORSJ. Sibarani1,2, M. Takai1, and K. Ishihara1

1University of Tokyo, JAPAN and 2University of Udayana, INDONESIA

M4CROBUST SURFACE MODIFICATION FOR PROTEIN SEPARATION CHIP USINGA FILM OF A CELLULOSE DERIVATIVEH. Okada1, N. Kaji1, M. Tokeshi1, and Y. Baba1,2

1Nagoya University, JAPAN and 2National Institute of Advanced Industrial Science and Technology(AIST), JAPAN

M5CSURFACE MODIFICATION OF POLY(METHYL METHACRYLATE) MICROFLUIDIC DEVICESUSING THIN FILMS WITH ENTRAPPED HYDROXYPROPYL CELLULOSEX. Sun, W. Yang, and A.T. WoolleyBrigham Young University, USA

MaterialsSurface Modification

M7CA HYDRODYNAMICALLY FOCUSED STREAM AS A DYNAMIC TEMPLATE FOR SITE-SPECIFICELECTROCHEMICAL MICROPATTERNING OF CONDUCTING POLYMERSS. Wang, S. Hou, Z.T.F. Yu, K. Liu, J. Sun, W.-Y. Lin, C.K.F. Shen, and H.R. TsengUniversity of California, Los Angeles, USA

M8CFLUORESCENCE ENHANCEMENT USING SILVER NANO PARTICLES FABRICATEDBY MODIFIED SILVER MIRROR REACTIONK. Kurooka1, K. Hanada1, K. Deguchi1, H. Kojima1, T. Chishiro1, D. Citterio1,2,K. Suzuki1,2, T. Saiki1,2, and N. Miki1,2

1Keio University, JAPAN and 2Kanagawa Academy of Science and Technology, JAPAN

M9CMETALLIZATION OF SILICON NANOWIRES AND SERS RESPONSE FROMA SINGLE METALLIZED NANOWIREC. Fang, A. Agarwal, L. Linn, and N. Balasubramanian Agency for Science, Technology and Research (A*Star), SINGAPORE

M10CSYNTHESIS OF PALLADIUM NANOPARTICLES FROM ORGANOMETALLICCHEMISTRY ROUTE IN A TWO PHASE FLOW MICROREACTORS. Desportes, D.M. Fries, F. Trachsel, and P. Rudolf von RohrETH Zurich, SWITZERLAND

MaterialsNanostructured Materials

M11CFEMTOSECOND-LASER-BASED FUSED SILICA MICROMACHINING FOR µTAST. Haddock, and P. BadoTranslume, Inc., USA

M12CSHRINKY-DINK WRINKLESC.-S. Chen, A. Grimes, A. Gopinathan, and M. KhineUniversity of California, Merced, USA

M13CVISCOELASTIC CHARACTERIZATION OF SOFT MICROPILLARS FOR CELLULAR MECHANICS STUDYI.-K. Lin, Y.-M. Liao, K.-S. Chen, and X. Zhang1Boston University, USA and 2National Cheng Kung University, TAIWAN

MaterialsInnovative Chip Materials

M1DA HIGH-SENSITIVITY ON-CHIP FLUORESCENCE DETECTION FOR LAB-ON-A-CHIPY. Shuai, A. Banerjee, D. Klotzkin, and I. PapautskyUniversity of Cincinnati, USA

M2DA NOVEL AIR/NANOPOROUS DIELECTRIC CLAD OPTOFLUIDIC WAVEGUIDESYSTEM FOR SENSOR APPLICATIONSV. Korampally, M. Hossain, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. GangopadhyayUniversity of Missouri, USA

M3DA THERMALLY TUNABLE MICROLENS ARRAY ON INDIUM TIN OXIDE GLASSX. Huang, B. Wang, J. Song, and Q. LinColumbia University, USA

Detection TechnologiesOptical

MaterialsInterface Characterization

M15BNANOCAVITY-NANOPARTICLE MIRROR STRUCTURE FOR OPTIMIZATION OFLOCAL FIELD ENHANCEMENTB.M. Ross and L.P. LeeUniversity of California, Berkeley, USA

M6CCREATING CELLULAR MICROPATTERNS BY SWITCHING FOULING PROPERTIESOF ELECTROACTIVE ITO SURFACESS.S. Shah, JY. Lee, and A. RevzinUniversity of California, Davis, USA

Nanotechnology

Page 8: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 7

MONDAY ProgramSan Diego µTAS 2008

M4DDETECTION OF THROMBIN BY APTAMER-BASED SURFACE ENHANCED RESONANCERAMAN SPECTROSCOPYH. Cho1, B.R. Baker2, S. Wachsmann-Hogiu3, C. Pagba3, T. Laurence2, S.M. Lane3, L.P. Lee1,and J.B.-H. Tok2

1University of California, Berkeley, USA, 2Lawrence Livermore National Laboratory, USA, and3University of California, Davis, USA

M5DDEVELOPMENT OF SOLID STATE LASER-INDUCED-FLOURESENCE DETECTION SYSTEMK. Yano1,3, T. Ohtsuka2, M. Katayama2, T. Kanie2, and D. Ehrlich3

1afiZEx Technologies., Inc., USA, 2Sumitomo Electric Industries, Ltd. JAPAN, and3Massachusetts Institute of Technology, USA

M6DDYNAMIC IMAGING OF SINGLE BIOMOLECULAR INTERACTION USING FLOW CONTROL ANDTIRFMT. Arakawa1,3, T. Sameshima3, Y. Sato1, Y. Sumiyoshi1, T. Ueno3, Y. Shirasaki2, T. Funatsu3,and S. Shoji11Waseda University, JAPAN, 2Kazusa DNA Research Institute, JAPAN, and 3University of Tokyo, JAPAN

M7DGENERATION AND DETECTION OF LAMINAR FLOW WITH LATERALLY-VARYINGOXYGEN CONCENTRATION LEVELSV. Nock, R.J. Blaikie, and T. DavidUniversity of Canterbury, NEW ZEALAND

M8DHIGH SENSITIVITY SESSILE DROPLET RESONATOR FOR LOW CONCENTRATION PROTEINDETECTIONY.F. Yu1,2, T. Bourouina2, C.S. Lim1, M.K. Chin1, and A.Q. Liu1

1Nanyang Technological University, SINGAPORE and2Ecole Superieure d'Ingnieurs en Electronique et Electrotechnique, FRANCE

M9DLASER-SCANNING FLOW CYTOMETER WITH A THREE-DIMENSIONAL MICROFLUIDIC CHIPS. Imanishi1, M. Furuki1, M. Shinoda1, Y. Morita2, Y. Yamazaki2, and H. Nakauchi21Sony Corporation, JAPAN and 2University of Tokyo, JAPAN

M10DMICROGAP FILTERING BASED LASER-INDUCED FLOURESCENCE DETECTION SYSTEMFOR HING-EFFICIENCY MICROFLUIDIC ELECTROPHORESIS ANALYSISQ.-H. Jin, B.-J. Xu, X.-C. Liao, H.-L. Zhang, and J.-L. ZhaoShanghai Institute of Microsystem and Information Technology, CHINA

M11DON-CHIP ELECTROKINETIC SAMPLE FOCUSING FOR MICROARRAY-BASEDBIOMOLECULAR INTERACTION ASSAYSG. Krishnamoorthy, E.T. Carlen, D. Kohlheyer, R. Schasfoort, and A. van den BergMESA+, University of Twente, THE NETHERLANDS

M12DOPTOFLUIDIC DEVICE FOR ULTRA-SENSITIVE MOLECULE DETECTION USING SURFACE-ENHANCED RAMAN SPECTROSCOPYM. Wang, N. Jing, M. Benford, I.-H. Chou, H.T. Beier, G.L. Coté, and J. KameokaTexas A&M University, USA

M13DSENSITIVE OPTICAL ABSORBANCE MEASUREMENTS ON A MICROFLUIDIC DEVICE USINGCONDUCTIVITY-BASED PHOTOTHERMAL DETECTIONE.R. Ferguson, P.J. Dennis, J.P. Alarie, J.M. Ramsey, and J.W. JorgensonUniversity of North Carolina, Chapel Hill, USA

M15DHIGH SENSITIVITY PH SENSING USING SCHOTTKY CONTACTED SILICON NANOWIREFIELD-EFFECT TRANSISTORS.K. Yoo, I.-H. Hwang, B.P. Mun, and J.H. LeeGwangju Institute of Science and Technology (GIST), KOREA

M16DMULTIMODAL PH AND LIGHT IMAGING DEVICES FOR DYNAMIC CHEMICALREACTION OBSERVATIONJ. Matsuo1, K. Sawada1,2,3, H. Takao1,2,3, and M. Ishida1,2,31Toyohashi University of Technology, JAPAN, 2Intelligent Sensing System Research Center, JAPAN, and3Japan Science and Technology Agency (JST), JAPAN

M17DAPPLYING ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING (ECIS) TO STUDY CELL ADHESIONAND CELL SPREADING OF AN INDIVIDUAL CELLP. Seriburi and D.R. MeldrumMicroscale Life Sciences Center, USA

M14DA MINIATURIZED CMOS MICROELECTRODE ARRAY SYSTEM FOR SINGLE DROPLETELECTROCHEMISTRY APPLICATIONSS. Hwang, V. Agarwal, C. LaFratta, J. Yu, D. Walt, and S.SonkusaleTufts University, USA

Detection TechnologiesElectrochemical

M1EA SINGLE MASK SINGLE-ETCH PROCESS FOR CONSTRUCTING THREE DIMENSIONALMICRO TOTAL ANALYSIS SYSTEMSP.A. Zellner and M. AgahVirginia Polytechnic Institute and State University, USA

M2ECONTROLLED MICROFRACTURE AND FOCUSED ION BEAM FOR MICRONOZZLE PROCESSINGM.J. Lopez1, E.M. Campo1, R. Pérez-Castillejos1,2, J. Esteve1, and J.A. Plaza1

1Centro Nacional de Microelectrónica, SPAIN and 2Harvard University, USA

M3EFABRICATION OF HYDRODYNAMICALLY-SHAPED SUB-MICRON PMMA FILAMENTSA.L. Thangawng, J.S. Erickson, P.B. Howell, and F.S. LiglerNaval Research Laboratory, USA

M4EMICROFABRICATION OF DUAL OPPOSITE SILVER ELECTRODES INSIDE A MICROCHANNEL BYMEANS OF MULTIPHASE LAMINAR FLOW WITH DENSITY DIFFERENCES.-H. Paek1, J.S. Kim2, C.J. Hwang2, Y.K. Choi1, and D.S. Kim1

1Chung-Ang University, KOREA and 2Korea Institute of Industrial Technology (KITECH), KOREA

MEMS & NEMS TechnologiesMicro & Nano-Machining

M18DIMPROVED PROTEIN BINDING RATE FOR BIOSENSORS USING AC ELECTROOSMOSISR. Hart, R.M. Lec, and H. NohDrexel University, USA

M19DLABEL-FREE, SINGLE-CELL CYTOTOXIN KINETICS ASSAY BY DIFFERENTIALIMPEDANCE SPECTROSCOPYD. Malleo1, J.T. Nevill2, L.P. Lee2, and H. Morgan1

1University of Southampton, UK and 2University of California, Berkeley, USA

M20DON-CHIP COULTER COUNTER WITH VARIABLE APERTURE USING A TWO LAYERSU-8 PROCESS FOR IMPROVED SAMPLE FOCUSINGS. Kostner and M.J. VellekoopVienna University of Technology, AUSTRIA

M21DQUANTIFICATION OF AMYLOID FIBRILIZATION BY SIMULTANEOUS DUAL MODE DETECTION WITHOPTICAL SCATTERING IMAGE DIELECTRIC RELAXATION SPECTROSCOPYY. Choi and L.P. LeeUniversity of California, Berkeley, USA

Detection Technologies

Page 9: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego8

MONDAY Program µTAS 2008 San Diego

M6EA MODULAR DISPENSING SYSTEM FOR LEAKAGE-FREE PICOLITER DROPLET RELEASEIN LIQUID ENVRIONMENTSJ. Steigert, M. Strasser, O. Brett, N. Wangler, W. Streule, P. Koltay, M. Daub, and R. ZengerleUniversity of Freiburg (IMTEK), GERMANY

M7EASSEMBLY-FREE MICROFABRICATION PROCESS FOR MULTI-LAYERED MICROFLUIDICNETWORKS USING SINGLE-MASK MULTIDIRECTIONAL PHOTOLITHOGRAPHYT. Suzuki1, Y. Hirabayashi2, I. Kanno2, M. Washizu3,4, and H. Kotera2,4

1Kagawa University, JAPAN, 2Kyoto University, JAPAN, 3Japan Science and Technology Agency (JST),JAPAN, and 4University of Tokyo, JAPAN

M8EDETERMINISTIC STORAGE OF LIQUID PLUGS IN MICROFLUIDIC CHANNELS USING PASSIVE VALVESJ. Atencia and L.E. LocascioNational Institute of Standards and Technology (NIST), USA

M9EELECTROSTATIC HYDRAULIC THREE-WAY GAS MICROVALVE FOR HIGH-PRESSURE APPLICATIONSH. Kim and K. NajafiUniversity of Michigan, USA

M10EFAST SELF-DIRECTED MICROLITER DROPLET MOVEMENTS INDUCED BYNANOTOPOGRAPHIC-ENHANCED GRADIENT SURFACESH.S. Khoo1 and F.-G. Tseng1,2

1National Tsing Hua University, TAIWAN and 2Academia Sinica, TAIWAN

M11EMASSIVE FORMATION OF UNIFORM-SIZED EMBRYONID BODIES IN ALGINATE WITHTHE REGULATION OF ENCAPSULATED CELL NUMBERC. Kim1,2, K.S. Lee3, E. Kang1, J.H. Kim1, K.J. Lee2, T.S. Kim1, and J.Y. Kang1

1Korea Institute of Science and Technology (KIST), KOREA, 2Korea University, KOREA, and3State University of New York, Buffalo, USA

M12EMICROFLUIDIC GLASS NEEDLE ARRAYS FOR DRUG DOSING DURING NEURAL RECORDINGE. Vrouwe, A.J. Kelderman, and M. BlomMicronit Microfluidics, THE NETHERLANDS

M13EOPTICAL TRAPPING IN A MICROFLUIDIC CHANNEL USING AN INTEGRATED FRESNEL ZONE PLATEE. Schonbrun1, J. Wong2, and K.B. Crozier11Harvard University, USA and 2Schlumberger-Doll Research Center, USA

M14EPORTABLE MICRO LIQUID DISPENSER SYSTEM WITH PRESSURIZATION AND DECOMPRESSIONSWITCHABLE MICRO PUMP CHIPT. Hasegawa1, F. Omatsu2, and K. Ikuta3

1Shibaura Institute of Technology, JAPAN, 2Osaka Institute of Technology, JAPAN, and3Nagoya University, JAPAN

M15EPROPOSAL OF A MICRO LIQUID ROTOR OPERATED BY SURFACE-ACOUSTIC-WAVET. Saiki1,2, K. Okada2, and Y. Utsumi21Hyogo Prefectural Institute of Technology, JAPAN and 2University of Hyogo, JAPAN

M16ESYNTHESIS OF CARBON NANOTUBES AT “ROOM TEMPERATURE” USING CAPILLARYMICROFLUIDICS AND DIP PEN TECHNIQUESR. Gargate and D. BanerjeeTexas A&M University, USA

MEMS & NEMS TechnologiesMicrofluidic Components

MEMS & NEMS TechnologiesHybrid Devices, Packaging & Components Interfacing

M17EA NEW FLEXIBLE MICROFABRICATED POLYMIDE-BASED PLATINUM ELECTRODES FORSTIMULATION OF RAT RETINAL TISSUE IN VITRO AND RECORDING USING A MULTI-ELECTRODE ARRAYH. Kasi1, B. Kolomiets3,4, S. Picaud2,3,4, J.A. Sahel3, and P. Renaud1

1Swiss Federal Institute of Technology at Lausanne (EPFL), SWITZERLAND, 2INSERM-U592, FRANCE,3Fondation Ophtalmologique Ade Rothschild, FRANCE, and 4Université Pierre et Marie Curie, FRANCE

M18EMICROMANIPULATION OF MICROTOOLS MADE OF SU-8 BY INTEGRATED OPTICAL TWEEZERSF. Arai, K. Onda, H. Matsumoto, and R. IitsukaTohoku University, JAPAN

M19EROBUST HYBRIDIZATION OF NANOSTRUCTURED BURIED INTEGRATED OPTICALWAVEGUIDE SYSTEMS WITH ON-CHIP FLUID HANDLING FOR CHEMICAL ANALYSISK.B. Gylfason1, B. Sánchez2, A. Griol2, C.A. Barrios3, H. Sohlström1, M.J. Bañuls2, V. González-Pedro2,Á. Maquieira2, M. Holgado3, R. Casquel3, D. Hill2, and G. Stemme1

1Royal Institute of Technology (KTH), SWEDEN, 2Universidad Politécnica de Valencia, SPAIN, and3Universidad Politécnica de Madrid, SPAIN

MEMS & NEMS TechnologiesIntegration “Sample to Result” Systems

M20EA COMPACT MICROFLUIDIC SYSTEM WITH AN INTEGRATED OPTICAL SYSTEM FORSINGLE-MOLECULE DETECTION VIA FLUORESCENCE RESONANCE ENERGY TRANSFERFOR REAL-TIME MOLECULAR ANALYSESJ.M. Emory, Z. Peng, F. Crawford-Drake, P.-C. Chen, M.C. Murphy, and S.A. SoperLouisiana State University, USA

M21ECONTINUOUS MONITORING OF RARE WATERBORNE BACTERIA VIA DIELECTROPHORESIS-ENHANCED POLYMERASE CHAIN REACTION (DEPCR) DEVICEK. Hsieh, B.S. Ferguson, and H.T. SohUniversity of California, Santa Barbara, USA

M22EINTEGRATED MICROFLUIDIC CAPILLARY ELECTROPHORESIS SYSTEM FOR BIOCHEMICALANALYSIS ON MARS AS PART OF THE UREY INSTRUMENTP.A. Willis1, J.A. Smith1, F. Greer1, F.J. Grunthaner1, L. Epp1, D. Hoppe1, T.N. Chiesl2,R.A. Mathies2, J.J. Sprague3, and J.P. Rolland3

1NASA Jet Propulsion Laboratory, USA, 2University of California, Berkeley, USA, and3Liquidia Technologies Inc., USA

M23ELOW-COST, FULLY INTEGRATED LIQUID HANDLING PLATFORM FOR PROTEIN ASSAYSJ. Nestler1, K. Hiller1, A. Morschhauser1, S. Bigot2, C. Griffiths2, J. Auerswald3, J. Gavillet4,G. Nonglaton4, T. Otto5, and T. Gessner1,5

1Chemnitz University of Technology, GERMANY, 2Cardiff University, UK, 3CSEM, SWITZERLAND,4Commissariat à l’Energie Atomique (CEA), FRANCE, and5Fraunhofer Research Institution for Electronic Nano Systems (ENAS), GERMANY

M24EINTEGRATED MICROFLUIDIC ELECTROCHEMICAL DNA SENSOR (IMED)B.S. Ferguson, J.S. Swensen, K. Hsieh, and H.T. SohUniversity of California, Santa Barbara, USA

M25ERAPID POINT OF CARE (POC) BLOOD ANALYSIS USING INTEGRATED DYNAMIC BLOODSEPARATION AND SANDWICH IMMUNOASSAY ON A POLYMER LAB CHIPA.W. Browne, W.Jung, K.K. Lee, S.H. Lee, J. Do, and C.H. AhnUniversity of Cincinnati, USA

M5EMONOLITHICAL INTEGRATION OF FORCE SENSOR, SIGNAL-PROCESSING CIRCUITRY ANDSELF-ASSEMBLED CELLS FOR CHARACTERIZATION OF MUSCLES' MECHANICSX. Ji, L. Wang, J. Xi, and Z.H. LiPeking University, CHINA

Page 10: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 9

MONDAY ProgramSan Diego µTAS 2008

M10F96-IMMUNOASSAY DIGITAL MICROFLUIDIC MULTIWELL PLATER.S. Sista, A. Sudarsan, V. Srinivasan, A.E. Eckhardt, M.G. Pollack, and V.K. PamulaAdvanced Liquid Logic Inc., USA

M11FA VERSATILE PLATFORM FOR RAPID LABEL-FREE DETECTION OF PROTEINS ANDSMALL MOLECULES USING MICROFABRICATED ELECTRODE ARRAYSY.-W. Huang, F.A. Shaikh, and V.M. UgazTexas A&M University, USA

M12FANALYSIS OF WHOLE BLOOD PLATELET TRANSLOCATION ON A VWF-COATEDMICROFLUIDIC FLOW CHAMBERB. Lincoln1, G. Meade2, N. Kent1, L. Basabe-Desmonts1, D. Kenny2, A.J. Ricco1, and L.P. Lee1,3

1Dublin City University, IRELAND, 2Royal College of Surgeons in Ireland, IRELAND, and3University of California, Berkeley, USA

M13FCELLSCOPE: MOBILE MICROSCOPY FOR SINGLE CELL ANALYSISD.N. Breslauer1, R.N. Maamari1, W. Lam2, T. Hunt1, L.P. Lee1, and D.A. Fletcher11University of California, Berkeley, USA and 2University of California, San Francisco, USA

M14FHIGH PERFORMANCE ACETYLCHOLINE BIOSENSOR USING CHARGE TRANSFER TECHNIQUES.-R Lee1, K. Sawada1, H. Takao1, M. Ishida1, and H.D. Seo2

1Toyohashi University of Technology, JAPAN and 2Yeungnam University, JAPAN

M15FLAB-ON-A-DISC FOR SIMULTANEOUS ANALYSIS OF BLOOD CHEMISTRY AND IMMUNOASSAY Y.-K. Cho1, J.-M. Park2, B.-S. Lee2, S. Kim2, and J.-G. Lee2

1Ulsan National Institute of Science and Tecchnology (UNIST), KOREA and 2Samsung AdvancedInstitute of Technology (SAIT), KOREA

M16FMICROFLUIDIC ENUMERATION PROTOCOL FOR COMPREHENSIVE PROFILINGOF NUCLEATED CELLS IN MILD PHENOTYPE SICKLE CELL DISEASE (SCD)W.N. White, A. Raj, M.D. Nguyen, S.J. Bertolone, and P. SethuUniversity of Louisville, USA

M17FPORTABLE MICROELISA SYSTEM FOR TOXICOLOGICAL HAIR ANALYSIST. Ohashi1, H. Miyaguchi2, H. Takahashi1, K. Mawatari1, Y.T. Iwata2, H. Inoue2, and T. Kitamori1,3

1Kanagawa Academy of Science and Technology, JAPAN, 2National Research Institute of PoliceScience, JAPAN, and 3University of Tokyo, JAPAN

M18FON-CHIP SURFACE PLASMON RESONANCE MEASUREMENT OF DISEASE MARKER PROTEIN ANDSMALL METABOLITE COMBINED WITH IMMUNO AND ENZYMATIC REACTIONSK. Nakamoto1,2, N. Sekioka1,2, R. Kurita2, and O. Niwa1,2

1University of Tsukuba, JAPAN and2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

ApplicationsGenomics & Proteomics

ApplicationsClinical Diagnostics

M19FDYNAMIC MICROFLUIDIC DEVICES WITH NANOCHANNELS FOR THE ARRAYOF 1MICRON-SIZED OBJECTSK. Iwai, N. Misawa, and S. TakeuchiUniversity of Tokyo, JAPAN

M20FHIGHLY EFFICIENT SINGLE CELL CAPTURING IN MICROWELL ARRAY USING HYDRODYNAMICGUIDING STRUCTURESJ. Chung1, Y.-J. Kim1, I.-J. Cho2, and E. Yoon2

1University of Minnesota, USA and 2University of Michigan, USA

M21FMICROFLUIDIC PROCESSING OF DIAGNOSTIC AND COMMERCIAL DNA MICROARRAYSJ. Petersen1, L. Poulsen2, L.B. Moller3, H.S. Birgens1, and M. Dufva2

1Copenhagen University Hospital, DENMARK, 2Technical University of Denmark, DENMARK, and3Kennedy Center, DENMARK

ApplicationsMicroarrays

M1FDEVELOPMENT OF APTAMER-BASED AFFINITY ASSAYS USING TEMPERATUREGRADIENT FOCUSING: MINIMIZATION OF THE LIMIT OF DETECTIONM.S. Munson, J.M. Meacham, D. Ross, and L.E. LocascioNational Institute of Standards and Technology (NIST), USA

M2FINTEGRATED ONE-STEP AND TWO-STEP GENE SYNTHESIS ON A CHIPM.C. Huang, Y.K. Kuan, H. Ye, M.-H. Li, and J.Y. YingInstitute of Bioengineering and Nanotechnology, SINGAPORE

M3FMICROCHIP INTEGRATED ROLLING CIRCLE AMPLIFICATION FOR SINGLE DNAMOLECULE DETECTION IN MINUTE SAMPLE VOLUMESA. Tachihara1, K. Sato1, B. Renberg1, Y. Tanaka2, J. Jarvius2, M. Nilsson2, and T. Kitamori11University of Tokyo, JAPAN and 2Uppsala University, SWEDEN

M4FMICROFLUIDIC REVERSED PHASE COLUMN ARRAY FOR LIQUID CHROMATOGRAPHY -DUAL IONIZATION MODE MASS SPECTROMETRY SHOTGUN PROTEOMIC ANALYSISD.R. Knapp, J. Liu, R. Nayak, and D. HigbeeMedical University of South Carolina, USA

M5FNANOPILLAR CHIPS ARRANGED IN TILTED ARRAY PATTERN FORFAST SEPARATION OF DNA AND PROTEINST. Yasui1, N. Kaji1, M. Reza Mohamadi2, R. Ogawa3, S. Hashioka3,M. Tokeshi1, Y. Horiike3, and Y. Baba1,4,5

1Nagoya University, JAPAN, 2Institut Curie, FRANCE, 3National Institute for Materials Science, JAPAN,4National Institute for Advanced Industrial Science and Technology (AIST), JAPAN, and5Institute for Molecular Science, JAPAN

M6FON-LINE DETECTION OF PRION PROTEIN IN A MICROFLUIDIC CHIPA. Le Nel1, C. Smadja2, J.-M. Peyrin3, J.-L. Viovy1, and M. Taverna2

1Curie Institute, FRANCE, 2University of Paris, Sud, FRANCE, and 3CNRSI-UMR7102, FRANCE

M7FPARALLEL MONITORING OF SINGLE CELL RESPIRATION ACTIVITY BY USING MICROARRAYEDOXYGEN SENSORSM. Suzuki, T. Yamada, S. Kato, and Y. IribeUniversity of Toyama, JAPAN

M8FREAL-TIME MONITORING OF CONFORMATIONAL TRANSITION OF DNA AT A SINGLEMOLECULE LEVEL IN MICROFLUIDIC DEVICESK. Fujiyoshi1, N. Kaji1, M. Tokeshi1, and Y. Baba1,2

1Nagoya University, JAPAN and2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

M9FSYNTHESIS OF SILICA MICROPARTICLES WITH STEP-EMULSIFICATION MICROFLUIDICSV. Chokkalingam1, B. Weidenhof2, W.F. Maier2, S. Herminghaus1, and R. Seemann1,2

1Max Planck Institute for Dynamics and Self-Organization, GERMANY and2Saarland University, GERMANY

Page 11: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego10

MONDAY Program µTAS 2008 San Diego

M23FDEVELOPMENT OF A MICROFLUIDIC SOUTHERN HYBRIDIZATION ANALYSIS SYSTEMK. Sato1,2, H. Harada1, Y. Sakamoto1, and E. Yoshimura1

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency, JAPAN

M24FHIGH PERFORMANCE MULTIPLE BIOMOLECULES SORTING SYSTEMK. Ozaki1, H. Sugino2, T. Arakawa1,2, Y. Shirasaki3, T. Funatsu2, and S. Shoji11Waseda University, JAPAN, 2University of Tokyo, JAPAN, and 3KAZUSA DNA Research Institute, JAPAN

M25FMICROFLUIDIC PROTEIN SEPARATION BY FREE FLOW ISOELECTRIC FOCUSINGJ. Wen, J. Albrecht, E.W. Wilker, M.B. Yaffe, and K.F. JensenMassachusetts Institute of Technology, USA

M26FQUANTITATIVE EVALUATION OF DYNAMIC COATING ON PLASTIC MICROCHIPSFOR PREVENTING PROTEIN ADSORPTIONM.R. Mohamadi1, T. Yasui2, N. Kaji2, M. Tokeshi2, and Y. Baba2

1Institut Curie , FRANCE and 2Nagoya University, JAPAN

M27FSPINTRONIC DEVICE FOR CELL/MAGNETIC PARTICLE SORTING AND COUNTINGJ. Loureiro1,2, R. Ferreira1,2, S. Cardoso1,2, J. Germano1,3, D. Snakenborg4,J.M.S. Cabral2,5, and P.P. Freitas1,2

1Universidade Técnica de Lisboa, PORTUGAL,2Instituto Superior Técnico (IST), PORTUGAL, 3INESC-Investigação e Desenvolvimento, PORTUGAL,4Technical University of Denmark, DENMARK, and5IBB- Institute for Biotechnology and Bioengineering, PORTUGAL

ApplicationsSeparation Science

M28F4D IMAGING OF INTRACELLULAR RESPONSE TO LOCALIZED STIMULUS ONTISSUE-MIMICKING MICRODEVICEK. Terao1, A. Okonogi1, T. Okitsu2, T. Suzuki3, M. Washizu4, and H. Kotera2

1Kyoto University, JAPAN, 2Kyoto University Hospital, JAPAN, and 3Kagawa University, JAPAN, and3University of Tokyo, JAPAN

M29FA MICRO CELL CHIP INTEGRATED WITH A CAPACITIVE PRESSURE SENSOR ARRAY FOR THESTUDY OF STIMULATION EFFECT ON THE STEM CELL DIFFERENTIATIONW.-Y. Sim, S.-W. Lee1, S.-W. Park1, S.-S. Yang1, S.-H. Park2, and B.-H. Min1

1Ajou University, KOREA and 2Tufts University, USA

M30FA MULTIPLE RECORDING PATCH CLAMP CHIP WITH INTEGRATED SUBTERRANEANMICROFLUIDIC CHANNELS FOR CULTURED NEURONAL NETWORKSC. Py1, G. Mealing1, M. Denhoff1, A. Charrier2, R. Monette1, T. Comas1,T. Ahuja1, D. Martinez1, A. Krantis3, and S. Wingar11National Research Council, CANADA,2Centre National de la Reserche Scientifique (CNRS), FRANCE, and3University of Ottawa, CANADA

M31FA NOVEL VERSATILE BIOMECHANO SENSOR FOR REAL TIME VASCULAR CELL CONTRACTILITYMAPPINGX. Zheng1, H. Surks2, and X. Zhang1

1Boston University, USA and 2Tufts Medical School, USA

ApplicationsCell Handling & Analysis

M32FANALYSIS OF BACTERIAL CHEMOTAXIS USING MICROFLUIDIC CONTACTINGS.-H. Lee1, H.-E. Kim2, C.-S. Lee2, and H. Kang1

1Korea Institute of Industrial Technology (KITECH), KOREA and2Chungnam National University, KOREA

M33FBIOLOGICAL VALIDATION OF HIGH THROUGHPUT MICROCHANNEL CULTUREJ.P. Puccinelli, A.L. Paguirigan , and D.J. BeebeUniversity of Wisconsin, USA

M34FCELL TRAPPING PLATFORM TOWARDS A PATCH-CLAMP MICROCHANNEL ARRAYM. Alberti, D. Snakenborg, and J.P. KutterTechnical University of Denmark (DTU), DENMARK

M35FCONTROL OF 3D COLLAGEN MATRIX POLYMERIZATION FOR HUMAN MAMMARYFIBROBLAST (HMF) CULTUREK.E. Sung1, G. Su1, A. Friedl1,2, and D.J. Beebe1

1University of Wisconsin, USA and 2Department of Veteran Affairs Medical Center, USA

M36FDEVELOPMENT OF MICROFLUDIC CHIP-BASED ALGINATE MICROTUBE FOR ANGIOGENESISS.J. Shin, K.H. Lee, and S.H. LeeKorea University, KOREA

M37FDROPLET-BASED MICROFLUIDIC SYSTEM FOR ENCAPSULATION AND CULTURE OFNEURON CELLS IN MICRO-GEL-PARTICLESS. Long1, D.P. Desai1, K. Kumar1, C.-C. Chen1,2, P. Ingram1, C.E. Schmidt1, and X. Zhang1

1University of Texas, Austin, USA and 2Industrial Technology Research Institute, TAIWAN

M38FAN INTEGRATED MICROFLUIDIC FISH CHIP: ENUMERATING CHROMOSOMES ON ACELL-BY-CELL BASIS IN LESS THAN 1 HOURV.J. Sieben, C.S. Debes-Marun, L.M. Pilarski, and C.J. BackhouseUniversity of Alberta, CANADA

M39FFLEXIBLE AND AUTOMATED MICROFLUIDIC PICOLITER DROPLET SYSTEMFOR SINGLE CELL ANALYSISS.-Q. Gu, W.-B. Du, and Q. FangZhejiang University , CHINA

M40FHIGH FREQUENCY CHEMICAL STIMULATION OF LIVING DICTYOSTELIUM DISCOIDEUM CELLSJ.-C. Galas, S. Dorent, D. Bartolo, and V. StuderEcole Supérieure de Physique et de Chimie Industrielles (ESPCI), FRANCE

M41FHIGH-YIELD PARALLEL ELECTRO-FUSION DEVICE BASED ON FIELD CONSTRICTIONAT AN ORIFICE ARRAYY. Kimura1,2, M. Gel1, B. Techaumnut2, K. Tsuda1, H. Oana1,2, H. Kotera2,4, T. Tada2,4,and M. Washizu1,2

1University of Tokyo, JAPAN, 2Japan Science and Technology Agency (JST), JAPAN,3Chulalongkorn University, THAILAND, and 4Kyoto University, JAPAN

M42FINVESTIGATING THE POROSITY OF TRABECULAR MESHWORK USING MICROFABRICATEDSTRUCTURES FOR GLAUCOMA TREATMENTSS.W. Price, B. Kim, C.J. Roberts, D.M. Grzybowski and Y. ZhaoOhio State University, USA

M43FMICROCHIP ANALYSIS OF CELLULAR RESPIRATORY ACTIVITY ON PDMS MEMBRANEHAVING GAS PERMSELECTIVE PROPERTYT. Shirai1, T. Sakata1, M. Takai1, Y. Miyahara1,2, and K. Ishihara1

1University of Tokyo, JAPAN and 2National Institute for Material Science, JAPAN

M22FSEQUENTIALLY ADDRESSABLE TWO-DIMENSIONAL MICROWELL ARRAY FORHIGH-THROUGHPUT SINGLE CELL-BASED ASSAYY.-J. Kim1, H.-K. Lee2, J. Chung1, I.-J. Cho3, and E.Yoon1,3

1University of Minnesota, USA, 2Seagate Technology, USA, and 3University of Michigan, USA

Page 12: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 11

MONDAY ProgramSan Diego µTAS 2008

M57FDEVELOPMENT OF A MICRO TOTAL BIOASSAY SYSTEM MIMICKING THE HUMAN BODYFOR ORAL MEDICINESY. Imura, E. Yoshimura, and K. SatoUniversity of Tokyo, JAPAN

M58FMICROFLUIDIC CHIP-BASED IN VIVO-LIKE DRUG PERMEABILITY ASSAY SYSTEMJ.H. Yeon and J.-K. ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

M59FPOLYMER-BASED DENSE FLUIDIC NETWORKS FOR HIGH THROUGHPUT SCREENING (HTS)WITH ULTRASENSITIVE FLUORESCENCEP.I. Okagbare, J. Gottert, P. Datta, V. Singh, and S.A. SoperLouisiana State University, USA

ApplicationsDrug Discovery

M60FBIOLUMINESCENT WHOLE-CELL BIOSENSOR FOR ON-LINE WATER TOXICITY DETECTIONR. Almog1, R. Daniel1, S. Yagur-kroll2, T. Elad2, S. Melamed2, S. Belkin2, and Y. Shacham-Diamond1

1Tel-Aviv University, ISRAEL and 2Hebrew University of Jerusalem, ISRAEL

M61FMONITORING OF PHOSPHATE LEVELS IN WASTEWATER USING AN AUTONOMOUSMICROFLUIDIC SENSORJ. Cleary1, C. Slater1, D. Kim1, W.S. Yerazunis2, and D. Diamond1

1Dublin City University, IRELAND and 2Mitsubishi Electric Research Laboratories, USA

ApplicationsEnvironmental

M62FAPPLICATION OF A MICROFLUIDIC DROPLET MIXER FOR [18F]FLUORINE LABELINGOF BIOMOLECULES FOR POSITRON EMISSION TOMOGRAPHYS. Olma, K. Liu, Y.-C. Chen, H.R. Tseng, R.M. van Dam, and C.K.F. ShenUniversity of California, Los Angeles, USA

M63FMULTI-STEP PARALLEL PROCESSING ON A CHIP FOR ENZYMATIC REACTIONSJ.Y. Yun1, D. Kim1,2, S. Jambovane1, and J.W. Hong1

1Auburn University, USA and 2Korea Institute of Machinery and Materials (KIMM), KOREA

M64FPREPARATION AND CHARACTERIZATION OF MICROCAPSULES CONTAINING FLUORESCENTNANOPARTICLES SENSITIVE TO ORGANIC SOLVENTM.J. Kim1, J.C. Park1, J.M. Cha1, D.G. Won1, T. Arakawa2, S. Shoji2, and J.S. Go1

1Pusan National University, KOREA and 2Waseda University, JAPAN

ApplicationsChemical Synthesis

M44FMICROFLUIDIC APOPTOSIS CHIP FOR DRUG SCREENING TO IMPROVE ANDPERSONALIZE CANCER THERAPYF. Wolbers1, H.R. Franke2, H. Andersson-Svahn3, I. Vermes2, and A. van den Berg1

1MESA+, University of Twente, THE NETHERLANDS, 2Medisch Spectrum Twente, THE NETHERLANDS, and3Royal Institute of Technology (KTH), SWEDEN

M45FMICROFLUIDIC MAGNETIC CELL SORTING SYSTEM FOR CANCER DIAGNOSISL. Saias1, A.-E. Saliba1, J.-Y. Pierga1, P. Vielh2, F. Farace2, and J.-L. Viovy1

1Institut Curie, FRANCE and 2Institut Gustave Roussy, FRANCE

M46FMICROFLUIDIC TECHNOLOGIES FOR SINGLE CELL GENETIC AND EXPRESSION ANALYSISY. Zeng, P. Kumaresan, N.M. Toriello, E.S. Douglas, C.J. Yang, R.G. Blazej, S.A. Cronier, N. Thaitrong,S.C.H. Hsiao, M.B. Francis, C.R. Bertozzi, and R.A. MathiesUniversity of California, Berkeley, USA

M47FA MICROFLUIDIC-BASED PLATE SYSTEM FOR CELL BASED ASSAYS WITH REDUCED CELL USAGEAND INTEGRATED COMPOUND DILUTIONC. Park1, I. Kazakova1, J. Kim1, J. Farinas1, A. Chow1, and P. Tagari21Caliper Life Sciences, USA and 2Amgen, USA

M48FMICROVALVE-ASSISTED PATTERNING PLATFORM FOR 3D CELL CULTUREAND IN SITU CELL-BASED ASSAYSM.S. Kim and J.-K. ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

M49FON-CHIP CO2 CONTROL FOR MICROFLUIDIC CELL CULTURES.P. Forry1, A. Tona1, P.C. Thomas1,2, and L.E. Locascio1

1National Institute of Standards and Technology (NIST), USA and 2University of Maryland, USA

M50FORGANIZING COMPLEX MULTICELLULAR CONSTRUCTS USING STENCIL-DELINEATEDELECTROACTIVE PATTERNING (S-DEP)S. Sampattavanich, B.M. Taff, S. Desai, and J. VoldmanMassachusetts Institute of Technology, USA

M51FPATTERNING ADHERENT CELLS WITHIN MICROCHANNELS BY COMBINATION OFELECTROCHEMICAL BIOLITHOGRAPHY AND DIELECTROPHORESISH. Kaji, M. Hashimoto, and M. NishizawaTohoku University, JAPAN

M52FREAL-TIME MONITORING GLUCOSE UTILIZATION IN SINGLE CELL USING A CELLCULTURE CHIP WITH AN EMBEDDED DETECTORZ.T.F. Yu1, N.T. Vu1, K. Kamei1, C.Y.N. Chang1, R.W. Silverman1, R. Farrell2, K.S. Shah2, M.E. Phelps1,C.G. Radu1, A.F. Chatziioannou1, and H.-R. Tseng1

1University of California, Los Angeles, USA and 2Radiation Monitoring Devices Inc., USA

M53FPCR AMPLIFICATION AND GENETIC ANALYSIS IN A MICROWELL CELL CULTIVATION CHIPS. Lindström, M. Hammond, J. Gantelius, A. Ahmadian, and H. Andersson-SvahnRoyal Institute of Technology (KTH), SWEDEN

M54FSTRETCHABLE SUBSTRATES USING PNEUMATIC ACTUATORS FOR MONITORINGMECHANICAL-STRESS-DEPENDENT CELL RESPONSEY.J. Heo, E. Iwase, K. Matsumoto, and I. ShimoyamaUniversity of Tokyo, JAPAN

M55FSURFACE PROTEIN PATTERNING FOR AXON GUIDANCE AND NEURAL MATURATIONP. Björk1,2, S. Khalifa2, T. Schönberg1, B. Kostyszyn2, P. Linderholm1,2, A. Magnusson2,A. Erlandsson2, E. Scarfone2,3, C. Vieider1, and M. Ulfendahl21Acreo AB, SWEDEN, 2Karolinska Institute, SWEDEN, and 3CNRS, FRANCE

M56FTHE VIABILITY ENHANCEMENT OF ENCAPSULATED CELLS IN ALGINATE BEADSUSING HYDRODYNAMIC REMOVAL OF TOXIC OLEIC ACIDC. Kim1,2, K.S. Lee3, E. Kang1, J.H. Kim1, K.J. Lee2, S.H. Kim4, T.S. Kim1, and J.Y. Kang1

1Korea Institute of Science and Technology (KIST), KOREA, 2Korea University, KOREA,3State University of New York, Buffalo, USA, and 4Kyungwon University, KOREA

Page 13: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego12

MONDAY Program µTAS 2008 San Diego

M65FA MICROFLUIDIC PLATFORM FOR FOCAL CHEMICAL STIMULATION OF CELLSG. Mallén-Ornelas, L. Chang, P.Y. Li, T. Hoang, L.J. Ho, K. Swertfager, and E. MengUniversity of Southern California, USA

M66FBRAIN INTERFACE DEVICE FOR LONG-TERM OBSERVATION OF NEURAL CELLSIN VIVO USING 2-PHOTON LASER SCANNING MICROSCOPYH. Takehara, A. Nagaoka, J. Noguchi, T. Akagi, H. Kasai, and T. IchikiUniversity of Tokyo, JAPAN

M67FDESIGN AND PERFORMANCE OF A RAPID, NANOLITER, CONTINUOUS FLOWPOLYMERASE CHAIN REACTOR FOR A HIGH THROUGHPUT MICROSYSTEMP.C. Chen1, D.S. Park1, B.H. You1, N. Kim1, T. Park1, P. Datta1, Y. Desata2, S.A. Soper1,D.E. Nikitopoulos1, and M.C. Murphy1

1Louisiana State University, USA and 2BioFluidica Microtechnologies, USA

M68FLAB-ON-A-CHIP FOR LABEL-FREE MULTIDETECTION OF RESIDUAL ANTIBIOTICS IN MILKY.-H. Jin1, G. Suárez2, S. Berchtold2, J. Auerswald2, J.-M. Diserens3, A Sayah1, Y. Leterrier1,J.-A.E. Månson1, and G. Voirin2

1Ecole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND,2Centre Suisse d'Electronique et de Microtechnique, SWITZERLAND, and3Nestlé Research Center, SWITZERLAND

M69FMICROFLUIDIC CO-CULTURE PLATFORM FOR CNS AXON MYELINATIONJ. Park, H. Koito, J. Li, and A. HanTexas A&M University, USA

M70FQUANTITATIVE PHENOTYPING OF C.ELEGANS BEHAVIOR IN AN AUTOMATED MICROSYSTEMG. Cremona, J. Stirman, and H. LuGeorgia Institute of Technology, USA

M71FSPONTANEOUS FORMATION OF POLYMER VESICLES FROM MICRODROPLETSOF POLYION COMPLEX VIA MICROPHASE SEPARATIONH. Oana1, K. Yonehara1,2, A. Kishimura1, Y. Yamasaki1,2, K. Kataoka1,2, and M. Washizu1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

DNA SEQUENCING BY LIGATION ON SURFACE-BOUND BEADS IN A MICROCHANNELENVIRONMENTC.R. Forest, A.M. Rosenbaum, and G.M. ChurchHarvard University, USA

QUANTITATIVE EVALUATION OF PATTERNED SELF-ASSEMBLED MONOLAYERS BY COLORIMAGING OF ZETA-POTENTIAL OBTAINED FROM TWO-COLOR FLUORESCENCE ANDEVANESCENT WAVE ILLUMINATIONY. Kazoe, S. Miyakawa, N. Miki, and Y. SatoKeio University, JAPAN

16:20 - 16:40

16:40 - 17:00

17:00 - 17:20

Session 1B3Mapping and Imaging

Session 1A3Tools for Nucleic Acid Research and Discovery

MICROFLUIDIC DARWINIAN EVOLUTIONB.M. Paegel and G.F. JoyceScripps Research Institute, USA

THREE-DIMENSIONAL IN SITU TEMPERATURE MEASUREMENT IN MICROFLUIDIC SYSTEMUSING BROWNIAN MOTION OF NANOPARTICLESK. Chung, J. Cho, L. Cheplen, V. Breedveld, and H. LuGeorgia Institute of Technology, USA

INTEGRATED NASBA ARRAY FOR DRUG SCREENING AND EXPRESSION PROFILINGI.K. Dimov1 and L.P. Lee1,2

1Biomedical Diagnostics Institute, IRELAND and 2University of California, Berkeley, USA

NOVEL APPROACH FOR 3D LIVE CELL FLUORESCENCE MICROSCOPYBASED ON MICROFABRICATED MIRRORSH. Hajjoul1, J. Girard1, M. Dilhan1, S. Kocanova2, K. Bystricky2, and A. Bancaud1

1Centre National de la Recherche Scientifique (CNRS)-LAAS, FRANCE and2Centre National de la Reserche Scientifique (CNRS)-LBME, FRANCE

Applications

17:20 Adjourn for the Day

Grand Ballroom A-B Grand Ballroom C

Page 14: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 13

TUESDAY ProgramSan Diego µTAS 2008

ADVANCES TOWARDS PROGRAMMABLE MATTERM.T. Tolley, M. Krishnan, H. Lipson, and D. EricksonCornell University, USA

STOCHASTIC SENSING USING CHEMICALLY MODIFIED SOLID-STATE NANOPORESA.L.R. Holland, L.D. Menard, and J.M. RamseyUniversity of North Carolina, Chapel Hill, USA

08:55 - 09:15

FABRICATION AND HETEROGENOUS ASSEMBLY OF MICROGEL ARRAY USING RAILEDMICROFLUIDICSW. Park, S. Shin, S.-H. Lee, S.E. Choi, and S. KwonSeoul National University, KOREA

INTEGRATION OF CARBON NANOTUBES IN ELECTROKINETIC SEPARATION DEVICESK.B. Mogensen1, L. Gangloff2, P. Boggild1, K.B.K. Teo2, W.I. Milne2, and J.P. Kutter11Technical University of Denmark (DTU), DENMARK and 2University of Cambridge, UK

09:15 - 09:35

MICROFLUIDICS-BASED LITHOGRAPHY FOR FABRICATING CERAMIC AND CELL-LADENMICROPARTICLESP. Panda1, R.E. Shepherd2, Z. Bao3, S. Ali4, E. Lo4, B.G. Chung4, K.H. Sandhage3, J.A. Lewis2,A. Khademhosseini4, T.A. Hatton1, and P.S. Doyle1

1Massachusetts Institute of Technology, USA, 2University of Illinois, Urbana-Champaign, USA,3Georgia Institute of Technology, USA, and 4Harvard-MIT Division of Health Sciences, USA

POLARIZATION ANISOTROPY OF DNA IN NANOCHANNELSF. Persson1, F. Westerlund2, J.O. Tegenfeldt3, and A. Kristensen1

1Technical University of Denmark (DTU), DENMARK, 2Copenhagen University, DENMARK, and3Lund University, SWEDEN

09:35 - 09:55

FLOW-THROUGH CHIP FOR SEQUENTIAL TREATMENT AND ANALYTE ELUTION FROM BEADS ORCELLSP. Augustsson, T. Laurell, and S. EkströmLund University, SWEDEN

CHANNEL SWITCHING AND CROSS-T INJECTION WITHOUT EXTERNALLY ACTIVATED VALVESD.C. Leslie1, E. Seker1, C.J. Easley2, J.P. Landers1, M. Utz1, and M.R. Begley1

1University of Virginia, USA and 2Vanderbilt University, USA

10:25 - 10:45

MICROFLUIDIC TEMPORAL CELL STIMULATIONN. Andrew1, D. Craig2, J.P. Urbanski1, J. Gunawardena1, and T. Thorsen2

1Harvard University, USA and 2Massachusetts Institute of Technology, USA

MULTIPLEXED PNEUMATIC VALVE CONTROL SYSTEM FOR LARGE SCALE INTEGRATEDMICROFLUIDIC CIRCUIT (LSIMC)K. Kawai1, Y. Shibata1, M. Kanai2, and S. Shoji11Waseda University, JAPAN and 2Shimadzu Corporation, JAPAN

10:45 - 11:05

MICROFLUIDIC CONTROL OF STEM CELL DIFFUSIBLE SIGNALINGK. Blagovic, L.Y. Kim, A.M. Skelley, and J. VoldmanMassachusetts Institute of Technology, USA

A TERNARY MICROFLUIDIC MULTIPLEXER USING DIFFERENT THRESHOLD PRESSURE VALVESD.W. Lee and Y.-H. ChoKorea Advanced Institute of Science and Technology (KAIST), KOREA

11:05 - 11:25

Session 2B1Channels, Tubes and Pores on the Nanoscale

Session 2A1Fluidic Design and Assembly

Session 2B2Fluid Circuits

Session 2A2Microfluidic Cell Signaling and Response

Tuesday, October 14, 2008

08:00 - 08:40 Plenary IIICELLS AND TISSUES ON A DEVICE: SHOWCASING THEIR INTEGRATIVE DYNAMICS IN VITROT. FujiiUniversity of Tokyo, JAPAN

09:55 – 10:25 Break & Exhibit Inspection

Grand Ballroom A-B Grand Ballroom C

Grand Ballroom A-B Grand Ballroom C

Page 15: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego14

Tuesday Program µTAS 2008 San Diego

11:25 – 12:40 Lunch & Exhibit Inspection

12:40 - 13:20 Plenary IVMINIATURIZING THE LABORATORY IN EMULSION DROPLETSA. GriffithsInstitut de Science et d'Ingenierie Supramoleculaires, FRANCE

13:20 - 15:40 Poster Session II

T1AA METHOD FOR SIMULATING DNA ELECTROPHORESIS IN ELECTRICALLY INSULATINGMICROFLUIDIC AND NANOFLUIDIC GEOMETRIESJ. Cho and K.D. DorfmanUniversity of Minnesota, USA

T2AFLUID-PARAMETER-INDEPENDENT MICRO-FLUIDIC DEVICE FOR RELIABLE GENERATION OFMULTI-COMPONENT DROPLETSK. Liu, Y.-C. Chen, H.-R. Tseng, C.K.-F. Shen, and R.M. van DamUniversity of California, Los Angeles, USA

T3AMEASURING METHOD OF ELECTROOSMOTIC FLOW VELOCITY AND ELECTRIC FIELDDISTRIBUTIONS USING MICRO-PIVK. Tatsumi, K. Fukuda, Y. Katsumoto, and K. NakabeKyoto University, JAPAN

T4AMULTIMODE COMPUTATIONAL MODELS OF ISOTACHOPHORETIC SAMPLE CONCENTRATIONCOMBINED WITH BINDING REACTION KINETICSL. Bousse, C. Li, T. Kawabata, and G. WadaWako Pure Chemical Industries, USA

T5ATHERMALLY INDUCED DEFLECTION OF MICROJETS K.M. Vaeth, J. Grace, E. Furlani, and K. NgEastman Kodak Company, USA

T6ATHREE-DIMENSIONAL VISUALIZATION OF MICROSCOPIC FLUIDIC STRUCTURES FORMED INVISCOELASTIC FLUID FLOWH. Kinoshita1, F.-C. Li2, N. Oshima3, M. Oshima1, and T. Fujii11University of Tokyo, JAPAN, 2Harbin Institute of Technology, CHINA, and 3Hokkaido University, JAPAN

T7ACHARACTERIZATION AND FABRICATION OF HIGH-DENSITY, ON-DEMAND, REUSABLE, IN-PLANEPOLYMER INTERCONNECTS TOWARDS STANDARDIZED MICROFLUIDIC PACKAGINGR. Lo and E. MengUniversity of Southern California, USA

T8AMODULAR MICROFLUIDIC SYSTEM WITH A CAST PDMS PUMPING BED AND PLANAR PDMSINTERCONNECTION BLOCKSD. Sabourin, D. Snakenborg, P. Skafte-Pedersen, J.P. Kutter, and M. DufvaTechnical University of Denmark (DTU), DENMARK

T9APROPOSAL OF A NOVEL CONTINUOUS FLOW PUMPING OPERATED BY SURFACE ACOUSTIC WAVEY. Utsumi1, T. Saiki1,2, and K. Okada1

1University of Hyogo, JAPAN and 2Hyogo Prefectural Institute of Technology, JAPAN

T10AAC ELECTROOSMOTIC PUMPING IN 3D C-MEMS STRUCTURESH.A. Rouabah1, B.Y. Park2, R.B. Zaouk2, M.J. Madou2, H. Morgan1, and N.G. Green1

1University of Southampton, UK and 2University of California, Irvine, USA

T11AAC FIELD EFFECT FLOW CONTROL OF EOF IN COMPLEX MICROFLUIDIC SYSTEMSWITH INTEGRATED ELECTRODES E.J. van der Wouden1, S. Pennathur2, and A. van den Berg1

1MESA+, University of Twente, THE NETHERLANDS and 2University of California, Santa Barbara, USA

T12ACHARACTERIZATION OF ADVECTIVE MICRO-SCALE MIXING IN 3D BY MEANS OF ASTEREOSCOPIC PARTICLE IMAGING SYSTEMR. Lindken1, J. van Esch1, B. Wieneke2, and J. Westerweel11Delft University of Technology, THE NETHERLANDS and 2LaVision GmbH, GERMANY

T13ACONTROLLED SEQUENTIAL DROPLET MANIPULATION IN RATCHETED MICRO-CHANNELSTHROUGH AMPLITUDE MODULATED VIBRATIONSZ. Ding and B. ZiaiePurdue University, USA

T14AELECTRICAL EQUIVALENT CIRCUIT MODEL OF MICROFLUIDIC SYSTEM CONTAININGPIEZOELECTRIC VALVELESS MICROPUMP AND VISCOELASTIC PDMS MICROCHANNELA. Nakata, S. Tanaka, K. Sugano, T. Tsuchiya, and O. TabataKyoto University, JAPAN

T15AINTEGRATED LIQUID AND DROPLET DEP FOR LAB ON A CHIP APPLICATIONSD. Chugh and K.V.I.S. KalerUniversity of Calgary, CANADA

T16AMICROPARTICLE-ASSISTED CONTINUOUS 2-DIMENSIONAL GRADIENTS OF THERAPEUTICAGENTS IN MICROCHANNEL FOR DRUG TESTSM. Estes and C.H. AhnUniversity of Cincinnati, USA

T17APASSIVE FLOW-RATE REGULATORS USING PRESSURE-DEPENDENT AUTONOMOUS DEFLECTIONOF PARALLEL MEMBRANE VALVESI. Doh and Y.-H. ChoKorea Advanced Institute of Science and Technology (KAIST), KOREA

T18AREAL-TIME MONITORING OF BINDING ASSAYS ON MICROFLUIDIC DEVICES WITH CONTACTLESSCONDUCTIVITY DETECTIONW.K.T. Coltro1, J.A. Fracassi da Silva2, and E. Carrilho1

1Universidade de São Paulo, BRAZIL and 2Universidade Estadual de Campinas, BRAZIL

MicrofluidicsFluid Mechanics & Modeling

MicrofluidicsAliquoting, Mixing & Pumping

MicrofluidicsWorld-to-Chip Interfacing

Page 16: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 15

Tuesday ProgramSan Diego µTAS 2008

T19ASUB-NANOLITER PER MINUTE FLOW RATES WITH CUSTOM MICROSYRINGE PUMPS IN AMICROFLUIDIC CHIP: THE IMPORTANCE OF TEMPERATURE CONTROLJ.T. Nevill, D.M. Hartmann, D. Wyrick, G. Votaw, C. Buckner, and H.C. CrenshawGlaxoSmithKline, USA

T20AUNIDIRECTIONAL SHAKE-MODE FOR MIXING HIGHLY WETTING FLUIDS ON CENTRIFUGALPLATFORMSS. Lutz1, V. Reitenbach1, D. Mark1, J. Ducree1, R. Zengerle1,2, and F. von Stetten1,2

1Institute for Micromachining and Information Technology (HSG-IMIT), GERMANY and 2University ofFreiburg, GERMANY

T21AMULTIPLE GENE ANALYSIS WITHIN A SIMPLE DROPLET-IN-OIL MICROFLUIDIC PCR PLATFORMY. Zhang, V. Bailey, C.M. Puleo, C. Chen, and T.H. WangJohns Hopkins University, USA

T22AAC ELECTROKINETIC PHASE SEPARATION, FOCUSING AND CONCENTRATION IN MICROCHANNELN. Sasaki, K. Hosokawa, and M. MaedaRIKEN, JAPAN

T23AAUTOMATED CONTINUOUS FLOW PLATFORM FOR DNA DETECTION BY HYPERBRANCHEDROLLING CIRCLE AMPLIFICATION IN DROPLETSG. Colas, S. Begolo, M. Chabert, and J.-L. ViovyInstitut Curie , FRANCE

T24ACONTROLLABLE GENERATION AND TRANSFORMATION OF HIGHLY UNIFORM NONSPHERICALDROPLETS IN MICROCHANNEL ARRAY DEVICESI. Kobayashi1, K. Uemura1, and M. Nakajima1,2

1National Food Research Institute, JAPAN and 2University of Tsukuba, JAPAN

T25ADIGITAL MICROFLUIDICS FOR SCREENING ASSAYSA.R. Wheeler, E.M. Miller, I. Barbulovic-Nad, and V.N. LukUniversity of Toronto, CANADA

T26AEFFECTIVE DILUTION OF PROTEIN FOR SINGLE MOLECULE ASSAY IN AN INTEGRATED ASSAYDEVICET. Nakayama1, K. Tabata2, H. Noji2, and R. Yokokawa1,3

1Ritsumeikan University, JAPAN, 2Osaka University, JAPAN, and3Japan Science and Technology Agency (JST), JAPAN

T27AFORMATION OF POLYMER VESICLES UTILIZING PDMS DOUBLE EMULSIFICATION DEVICESC.-Y. Liao and Y.-C. SuNational Tsing Hua University, TAIWAN

T28AIMPROVING THE OPERATION OF ELECTROWETTING-BASED DIGITAL MICROFLUIDIC SYSTEMS BYUSING WATER-OIL CORE-SHELL DROPLETS D. Brassard1,2, L. Malic1,3, F. Normandin1, M. Tabrizian3, and T. Veres1,2

1National Research Council, CANADA, 2Laval University, CANADA, and 3McGill University, CANADA

T29ALOCALLY DEFINED THERMALLY REVERSIBLE HYDROGEL FORMATION IN MICROCHANNELSJ. Flueckiger and K. CheungUniversity of British Columbia, CANADA

T30AMICROFLUIDIC INVESTIGATION OF MASS TRANSPORT ENHANCEMENT IN NANOPARTICLESUSPENSIONSS. Ozturk, Y.A. Hassan, and V.M. UgazTexas A&M University, USA

T31ANOVEL METHOD FOR ANALYSING PHASE DIAGRAMS USING PERVAPORATIONA. Moumen1, J. Leng2, M. Joanicot2, and P. Tabeling1

1Ecole Supérieure de Physique et de Chimie Indutriells (ESPCI), FRANCE and 2Lab of the Future,FRANCE

T32APREPARATION OF WATER-IN-OIL-IN-WATER EMULSION WITH ULTRA-THIN OIL PHASE LAYERUSING HYDROPHOBIC MICROCHANNEL WITH STEP STRUCTURED. Saeki1,2, S. Sugiura1, T. Baba1, T. Kanamori1, S. Sato2, and S. Ichikawa2

1National Institute of Advanced Industrial Science and Technology (AIST), JAPAN and2University of Tsukuba, JAPAN

T33ASELECTIVE EXTRACTION OF RECOMBINANT PROTEINS BY MULTIPLE-AFFINITY TWO-PHASEPARTITIONING IN MICROCHANNELSR.J. Meagher, Y.K. Light, and A.K. SinghSandia National Laboratories, USA

T34ATHE EFFECT OF INTERFACIAL FORCES ON 2-PHASE MICROFLUIDICSL. Shui, J.C.T. Eijkel, D. Wijnperlé, and A. van den BergUniversity of Twente, THE NETHERLANDS

T35AA FULLY AUTOMATED MICRO-SOLID PHASE EXTRACTION CHIP USING MONOLITHIC HIGHPRESSURE MICROVALVESS.-I. Han, H. Lee, and K.-H. HanInje University, KOREA

T36ACONTINUOUS, HIGH THROUGHPUT MAGNETIC SEPARATION OF PATHOGENS FROM BLOODJ. Fiering1, C.W. Yung2, A.J. Mueller1, M. Varghese1, K.M. Isaac3, and D.E. Ingber21Charles Stark Draper Laboratory, USA, 2Harvard Medical School & Children's Hospital, USA, and3Missouri University of Science and Technology, USA

T37AGRADIENT ELUTION MICROCHIP ELECTROCHROMATOGRAPHY USING A MONOLITH STATIONARYPHASEA.G. Chambers and J.M. RamseyUniversity of North Carolina, Chapel Hill, USA

T38AIMPROVED BACTERIAL AND VIRAL RECOVERIES FROM COMPLEX SAMPLES USINGELECTROPHORETICALLY ASSISTED ACOUSTIC FOCUSINGK.D. Ness, K.A. Rose, B. Jung, K. Fisher, and R.P. Mariella Jr.Lawrence Livermore National Laboratory, USA

T39AMICROFLUIDIC DEVICE FOR BLOOD PLASMA EXTRACTION USING DIELECTROPHORETIC BLOODCELL REMOVALY. Nakashima and T. YasudaKyushu Institute of Technology, JAPAN

T40AON-CHIP CREATION AND ELIMINATION OF MICROBUBBLES BY ELECTROLYSIS AND EWOD FORMICRO-OBJECT MANIPULATORS.K. Chung and S.K. ChoUniversity of Pittsburgh, USA

T41AA DIFFUSION-DEFINED PHOTOPOLYMERIZATION PROCESS FOR POLYACRYLAMIDE GRADIENTGELS FOR ON-CHIP PROTEIN SIZINGC.T. Lo1, D.J. Throckmorton2, A.K. Singh2, and A.E. Herr21Yale University, USA and 2Sandia National Laboratories, USA

MicrofluidicsMulti-Phase Microfluidics

MicrofluidicsSeparation Methods

Page 17: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego16

Tuesday Program µTAS 2008 San Diego

T42APRESSURE-PINCHED INJECTION IN PDMS MICROCHIPS CONTAINING IN SITU PREPAREDMONOLITHIC PHASES A. Filipowicz-Szymnaska1,2, T. Rosenling2, R. Bischoff2, Z. Brzózka1, and E. Verpoorte2

1Warsaw University of Technology, POLAND and 2University of Groningen, THE NETHERLANDS

T43ARAPID SEPARATION AND CAPTURE OF PLATELETS FROM WHOLE BLOODL. Basabe-Desmonts1, S. Ramstrom2, G. Meade2, S. O'Neill2, A. Riaz1, L. Kent1, D. Kenny2,L.P. Lee1,3, and A.J. Ricco1

1Dublin City University, IRELAND, 2Royal College of Surgeons in Ireland (RCSI), IRELAND, and3University of California, Berkeley, USA

T44ASIZE-BASED PARTICLE SORTING BY CALIPER WALLS IN A WIDE MICROFLUIDIC CHANNELK. Mogi, T. Yamamoto, H. Kinoshita, and T. FujiiUniversity of Tokyo, JAPAN

T45ASWEEPING FLOW ELECTROPHORESIS (SFE): A NEW CONTINUOUS SEPARATION TECHNIQUEP. Vulto1, D. Kohlheyer2, G.A. Urban1, and R.B.M. Schasfoort21University of Freiburg (IMTEK), GERMANY and 2MESA+, University of Twente, THE NETHERLANDS

T46AA MONOLITHIC PASSIVE CHECK-VALVE FOR SYSTEMATIC CONTROL OF TEMPORAL ACTUATIONIN MICROFLUIDIC DEVICESB. Mosadegh, C.-H. Kuo, Y.-C. Tung, Y.-S. Torisawa, and S. TakayamaUniversity of Michigan, USA

T47ADETECTION OF DNA HYBRIDIZATION ON A CONFIGURABLE DIGITAL MICROFLUIDIC BIOCHIPUSING SPR IMAGINGL. Malic1, T. Veres2, and M. Tabrizian1

1McGill University, CANADA and 2National Research Council, CANADA

T48AENGINEERING 3D ECM MICROARCHITECTURES FOR CELL CO-CULTURE STUDIESC.P. Huang, H. Seon, J. Lu, A. Putnam, and N.L. JeonUniversity of California, Irvine, USA

T49AMOVING MASK LITHOGRAPHY FOR REAL-TIME SYNTHESIS OF PHOTOPOLYMERIZEDMICROSTRUCTURES IN MICROFLUIDIC CHANNELSH. Park1, K. Yu2, H. Kim1, N. Park1, and S. Kwon1

1Seoul National University, KOREA and 2University of California, Berkeley, USA

T50AON-DEMAND FLUID CONTROL ON MICROCHIP BY MICRO-PATTERNED LIGHT IRRADIATION USINGPHOTO-RESPONSIVE HYDROGELSS. Sugiura1, A. Szilágyi1,2, K. Sumaru1, T. Takagi1, M. Zrínyi2, and T. Kanamori11National Institute of Advanced Industrial Science and Technology (AIST), JAPAN and2Budapest University of Technology and Economics, HUNGARY

T51ATHE GENERATION OF STATIONARY CHEMICAL GRADIENTS AROUND STAGNANT POINTS USING AMICROFLUIDIC PROBEM.A. Qasaimeh, P. Sanyal, R. Safavieh, C.M. Perrault, A. Queval, and D. JunckerMcGill University, CANADA

T52ATUNABLE LIQUID GRADIENT REFRACTIVE INDEX (L-GRIN) LENSX. Mao, S.-C.S. Lin, J. Shi, M.I. Lapsley, and T.J. HuangPennsylvania State University, USA

T1BANALYSIS OF SINGLE DNA MOLECULES TRANSLOCATING THROUGH NANOCHANNELSFABRICATED IN SiO2L.D. Menard1, S.A. Soper2, K.L. Braun1, C. Huang1, and J.M. Ramsey1

1University of North Carolina, Chapel Hill, USA and 2Louisiana State University, USA

T2BELECTROKINETIC TRAPPING AT SINGLE NANOPORES INTEGRATED IN MICROFLUIDIC DEVICESM.L. Kovarik, K. Zhou, and S.C. JacobsonIndiana University, USA

T3BFABRICATION OF MASSIVELY-PARALLEL REGULAR NANOFILTERS FOR HIGH-THROUGHPUT BIOMOLECULE SEPARATIONP. Mao and J. HanMassachusetts Institute of Technology, USA

T4BLENGTH-BASED SEPARATION OF SHORT DNA USING NANOSLIT ARRAYSE.A. Strychalski, H.W. Lau, L. Archer, and H.G. CraigheadCornell University, USA

T5BRAPID IMMUNOASSAY USING STEADY-STATE DISPERSION EFFECTS IN NANOCHANNELSN.F.Y. Durand, E. Saveriades, A. Valero, and P. RenaudEcole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

Microfluidics

NanotechnologyNanofluidics

T6BISOLATION AND MANIPULATION OF SINGLE MICROTUBULE BY SILICON MICROTWEEZERSM.C. Tarhan1, D. Collard1, C. Bottier1, R. Yokokawa2, M. Hosogi3, G. Hashiguchi3, and H. Fujita1

1University of Tokyo, JAPAN, 2Ritsumeikan University, JAPAN, and 3Shizuoka University, JAPAN

NanotechnologyNanoengineering

T7BDETERMINATION OF PROTEIN CONCENTRATION WITH TWO-DIMENSIONAL (2D) PHOTON BURSTDIAGRAMS USING MICROFLUIDIC CHANNELN. Jing1, C.B. Su1, C.-K. Chou2, M.-C. Hung2, and J. Kameoka1

1Texas A&M University, USA and 2University of Texas, M.D.Anderson Cancer Center, USA

T8BFIELD-EFFECT BASED SILICON NANOWIRE WHOLE-CELL BACTERIAL BIOSENSORS FOR NEUTRALSPECIES DETECTIONI.K. Lao, A. Agarwal, and N. BalasubramanianA*Star (Agency for Science, Technology and Research), SINGAPORE

T9BKINESIN-BASED TRANSPORTATION AND ELECTROFUSION OF LIPID VESICLESC. Bottier1, M.C. Tarhan1, D. Collard1, R. Yokokawa2, and H. Fujita1

1University of Tokyo, JAPAN and 2Ritsumeikan University, JAPAN

T10BMITOCHONDRIAL AND GENOMIC DNA DAMAGE ANALYSIS IN MICROFLUIDIC CHIPSY. Tanaka1, H. Johansson1, C. Larsson1, J. Jarvius1, T. Kitamori2, and M. Nilsson1

1Uppsala University, SWEDEN and 2University of Tokyo, JAPAN

T11BSURFACE-ENHANCED RAMAN SPECTROSCOPY AND CONFOCAL IMAGING OF PERIODICNANOHOLE ARRAYS SURROUNDED BY PLASMONIC BRAGG MIRRORSN.C. Lindquist, H. Im, K.C. Bantz, A. Lesuffleur, C.L. Haynes, and S.-H. OhUniversity of Minnesota, USA

NanotechnologyNanobiotechnology

Page 18: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 17

Tuesday ProgramSan Diego µTAS 2008

T12BDETERMINISTIC TRANSPLANTING ASSEMBLY OF INDIVIDUAL CARBON NANOTUBES TO MEMSCANTILEVERS FOR BIOSCANNINGS. Kim, H.W. Lee, and S.-G. KimMassachusetts Institute of Technology, USA

T13BRAPID ELECTROKINETIC PATTERNING OF COLLOIDAL PARTICLES WITH OPTICAL LANDSCAPESA. Kumar, S.J. Williams, and S.T. WereleyPurdue University, USA

T14BUNEXPECTEDLY HIGH ENTRAPMENT EFFICIENCIES IN NANOMETER SCALE LIPOSOMES WITHHYDRODYNAMIC FOCUSING USING CONTINUOUS-FLOW MICROFLUIDICSA. Jahn1,2, J.E. Reiner1, W.N. Vreeland1, D.L. DeVoe2, L.E. Locascio1, and M. Gaitan1

1National Institute of Standards and Technology (NIST), USA and 2University of Maryland, USA

T6CMEASURING SURFACE STRESS CURVATURE OF INDUCED, LIPID BILAYERS USINGMICROCANTILEVERSK.W. Liu and S.L. BiswalRice University, USA

MaterialsInterface Characterization

T1DA LABEL-FREE BIOSENSOR BASED ON PROTEIN-FORMED DIFFRACTION GRATING ON OPTICALWAVEGUIDEZ. Lai1, Y. Wang2, N. Allbritton2, G.P. Li1, and M. Bachman1

1University of California, Irvine, USA and 2University of North Carolina, Chapel Hill, USA

T2DA PLATFORM FOR IN SITU SENSING OF BIOMOLECULAR REACTION PRODUCTS USING ACHITOSAN MEDIATED SERS SUBSTRATE FABRICATED IN MICROFLUIDICSS. Buckhout-White, X. Luo, D.L. Berlin, and G.W. RubloffUniversity of Maryland, USA

Detection Technologies Optical

T9CCONTACTLESS CONDUCTIVITY DETECTION IN LTCC TECHNOLOGY FOR MICROCHIPELECTROPHORESISG. Fercher1,2, W. Smetana1, and M.J. Vellekoop1

1Technical University Wien, AUSTRIA and 2Integrated Microsystems Austria GmBh, AUSTRIA

T10CPLASTIC-PDMS HYBRID DEVICES FOR HIGH PRESSURE HYDROLYTICALLY STABLE ACTIVEMICROFLUIDICSK.S. Lee and R.J. RamMassachusetts Institute of Technology, USA

T11CSMART GLASS MANUFACTURING: LOW COST / HIGH VOLUME FABRICATION METHOD FOR GLASSMICROFLUIDIC DEVICESE. Brunet1, G. Duisit1, H. Gascon1, and V. Labrot21Saint-Gobain Recherche, FRANCE and 2Lab of the Future, FRANCE

MaterialsInnovative Chip Materials

NanotechnologyNanoassembly

T1CA VERSATILE METHOD FOR THE SURFACE MODIFICATION OF THE MICROCHANNEL IN POLYMERMICROCHIPSY. Okamoto1, Y.-S. Park1, N. Kaji1, M. Tokeshi1, and Y. Baba1,2

1Nagoya University, JAPAN and2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

T2CDEVELOPMENT OF SINGLE-STEP HETEROGENEOUS SANDWICH CAPILLARY IMMUNOSENSOR FORCAPILLARY-ASSEMBLED MICROCHIP (CAs-CHIP) INTEGRATIONT.G. Henares, H. Yoshimura, T. Yao, and H. HisamotoOsaka Prefecture University, JAPAN

T3CELECTRIC DISCHARGE METHOD FOR SELECTIVE SURFACE PATTERNING IN THE FABRICATION OFMICROFLUIDIC STRUCTURESN. Suni1, M. Haapala1, A. Mäkinen2, L. Sainiemi3, S. Franssila3, E. Färm1, E. Puukilainen1, M. Ritala1,and R. Kostiainen1

1University of Helsinki, FINLAND, 2University of Oulu, FINLAND, and3Helsinki University of Technology, FINLAND

T4CSELECTIVE CONTROL OF CELL ATTACHMENT IN MICROCHANNEL USING PHOTOCHEMICALREACTIONK.H. Jang, K. Sato, T. Konno, K. Ishihara, and T. KitamoriUniversity of Tokyo, JAPAN

T5CTARGETED PATTERNING OF NUCLEIC ACID PROBES ON OPTICAL NANOSTRUCTURESJ.M. Goddard, S. Mandal, and D. EricksonCornell University, USA

MaterialsSurface Modification

T15BSIMULATION OF NANOCROWN FOR BIOMOLECULAR PLASMONICSS.G. Hong and L.P. LeeUniversity of California, Berkeley, USA

Nanotechnology

T7CAPPLICATION OF MICRON-SPIKED ELECTRODES PRODUCED BY THE PHASE TRANSFORMATIONPHENOMENON OF STAINLESS STEEL FOR GENE TRANSFER DEVICEN. Miyano1, M. Morieda1, Y. Inoue2, Y. Teramura1, F. Tsumori1, H. Iwata1, and H. Kotera1

1Kyoto University, JAPAN and 2University of Tokyo, JAPAN

T8CGENERATION AND SELF-REPLICATION OF MONOLITHIC, DUAL-SCALE POLYMER STRUCTURES BYTWO-STEP CAPILLARY FORCE LITHOGRAPHYH.E. Jeong, R. Kwak, J.K Kim, and K.Y. SuhSeoul National University, KOREA

MaterialsNanostructured Materials

Page 19: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego18

Tuesday Program µTAS 2008 San Diego

T3DA TUNABLE FLUIDIC MICROLENS WITH FLUORESCENCE ENHANCEMENTL.K. Chin, Y.C. Seow, C.S. Lim, and A.Q. LiuNanyang Technological University, SINGAPORE

T4DDEVELOPMENT AND ANALYSIS OF A MICROFLUIDIC PHOTOTHERMAL ABSORBANCE DETECTORUSING POLYELECTROLYTIC GEL ELECTRODESH. Chun, P.J. Dennis, E.R. Ferguson, J.P. Alarie, J.W. Jorgenson, and J.M. RamseyUniversity of North Carolina, Chapel Hill, USA

T5DPMMA BIOSENSOR FOR NUCLEIC ACIDS WITH INTEGRATED MIXER AND ELECTROCHEMICALDETECTIONS.R. Nugen, P.J. Asiello, J.T. Connelly, and A.J. BaeumnerCornell University, USA

T6DDIGITALLY-MODULATED LIGHT SOURCE UTILIZING A LOW-COST LCD PROJECTOR FOR HIGHTHROUGHPUT CAPILLARY ELECTROPHORESIS DETECTIONS.-W. Lin1, D.-Y. Wu2, L.-M. Fu3, and C.-H. Lin2

1National Cheng Kung University, TAIWAN, 2National Sun Yat-Sen University, TAIWAN, and 3National Pingtung University of Science and Technology, TAIWAN

T7DGENETIC ANALYSIS INSTRUMENT CONSISTING OF A SINGLE MICROELECTRONIC CHIPM. Behnam, G. Kaigala, M. Khorasani, D. Elliott, and C. BackhouseUniversity of Alberta, CANADA

T8DHUMAN IDENTIFICATION USING ALUs ANALYZED VIA AN INTEGRATED MICROFLUIDIC SYSTEMWITH MULTICOLOR FLUORESCENCE AND MICROCHIP FREE SOLUTION CONJUGATEELECTROPHORESISS.K. Njoroge1, M.A. Witek1, M.L. Hupert1, J. Coyne2, A. Barron2, M.A. Batzer1, and S.A. Soper11Louisiana State University, USA and 2Stanford University, USA

T9DINTEGRATED pH AND OXYGEN SENSOR ARRAY PREPARED BY MICROCONTACT DOUBLEPRINTINGM. Suzuki, A. Nomura, M. Yamamoto, and Y. IribeUniversity of Toyama, JAPAN

T10DA LIQUID-WAVEGUIDE-BASED EVANESCENT WAVE SENSOR FOR HIGH SENSITIVITY REAL TIMEDETECTION AND LABEL FREE BIOSENSING APPLICATIONSX.C. Li1,2, Y.C. Seow2, J. Wu1, K. Xu1, J.T. Lin1, and A.Q. Liu2

1Beijing University of Posts and Telecommunications, CHINA and2Nanyang Technological University, SINGAPORE

T11DNANO-LAMP ARRAYS FOR MULTIPLEX MICROFLUIDIC SPR BIOSENSINGA. Lesuffleur, H. Im, N.C. Lindquist, K.S. Lim, and S.-H. OhUniversity of Minnesota, USA

T12DON-CHIP LOCAL PH MEASUREMENT AROUND INDIVIDUAL CELL USING OPTICALLYMANIPULATED GEL-TOOL WITH ADHESIVE-CONTROLLABILITYH. Maruyama1, F. Arai1, and T. Fukuda2

1Tohoku University, JAPAN and 2Nagoya University, JAPAN

T13DPHOTONIC CRYSTAL SENSOR INTEGRATED IN A MICROFLUIDIC SYSTEMP.S. Nunes, N.A. Mortensen, J.P. Kutter, and K.B. MogensenTechnical University of Denmark, DENMARK

T14DSERS SIGNAL AMPLIFICATIONS VIA BIOFLUIDIC-ADSORPTION PRECONCENTRATION IN CDPLATFORMD. Choi, Y. Choi, T. Kang, H. Cho, and L.P. LeeUniversity of California, Berkeley, USA

T15DDEVELOPMENT OF EMBEDDED METAL LINES IN A PLASTIC ELECTROCHEMICAL MICROFLUIDICDEVICE BY BLANKET MOLD IMPRINTINGJ.-H. Seo1, J.-Y Kim1, H.-W. Lim1, J.-G. Park1, P.L. Leow2, B.A. Patel2, and D. O'Hare2

1Hanyang University, KOREA and 2Imperial College London, UK

T16DIMPEDANCE-SENSING ASSAY FOR REAL-TIME MONITORING ONGOING CARDIOMYOCYTEAPOPTOSISY. Qiu1, R. Liao2, and X. Zhang1

1Boston University, USA and 2Brigham and Women’s Hospital, Harvard Medical School, USA

T17DON-CHIP ELECTRICAL IMPEDANCE TOMOGRAPHY FOR MONITORING THE KINETICS IN THE CELLCULTURET. Sun, S. Tsuda, N.G. Green, K.P. Zauner, and H. MorganUniversity of Southampton, UK

Detection Technologies Electrochemical

T1EBLOW MOLDING OF POLYMER FOILS FOR RAPID PROTOTYPING OF MICROFLUIDIC CARTRIDGESM. Focke1, B. Faltin1, T. Hösel1, C. Müller1, J. Ducrèe2, R. Zengerle1,2, and F. von Stetten1,2

1University of Freiburg (IMTEK), GERMANY and2Institute for Micromachining and Information Technologoy (HSG-IMIT), GERMANY

T2EDIFFRACTION MOIRE: DECOUPLING DISTORTIONS IN PERIODIC POLYMERIC POST ARRAYS FORBIOLOGICAL APPLICATIONSX. Zheng and X. ZhangBoston University, USA

T3EFABRICATION OF PDMS MICROLENSES WITH VARIOUS CURVATURES USING A WATER-BASEDMOLDING METHODH.-K. Kim and K.-S. YunSogang University, KOREA

MEMS & NEMS Technologies Micro & Nano-Machining

T18DA MICROFLUIDIC CHIP BASED ELECTROSPRAY INTERFACE FOR MASS SPECTROMETRY WITH ALOW-TEMPERATURE ALLOY MICROELECTRODEY. Zhu, J. Pan, Y. Su, and Q. FangZhejiang University, CHINA

T19DLABEL-FREE ELECTRICAL DETECTION OF PSA BY A NANOGAP FIELD EFFECT TRANSISTORJ.-H. Ahn, M. Im, and Y.-K. ChoiKorea Advanced Institute of Science and Technology (KAIST), KOREA

T20DMEASUREMENT OF PROTEIN CONCENTRATION USING THE BINDING FORCE BETWEEN TWOSURFACESK. Kuwana, K. Matsumoto, and I. ShimoyamaUniversity of Tokyo, JAPAN

T21DON-CHIP IMPEDANCE SPECTROSCOPY OF pH-RESPONSIVE POLYELECTROLYTE MICROCAPSULESC. Bernabini1, D. Holmes1, M. Bedard2, G.B. Sukhorukov2, and H. Morgan1

1University of Southampton, UK and 2Queen Mary University of London, UK

Detection Technologies

Page 20: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 19

Tuesday ProgramSan Diego µTAS 2008

T4EMICROVALVE-ADDRESSABLE PICOLITER CHAMBERS FOR SINGLE-MOLECULE ENZYMOLOGYD. Cate, N. Li, and A. FolchUniversity of Washington, USA

T5EQUICK AND EASY FABRICATION OF MICROFLUIDIC CHANNELS WITH WATER-SOLUBLE MOLDSR. Gojo1, Y. Morimoto1, and S. Takeuchi1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

T17EEXCHANGEABLE, PRE-LOADED “SKIN DEPOT” FOR DIGITAL MICROFLUIDICSH. Yang, V.N. Luk, M. Abdelgawad, I. Barbulovic-Nad, and A.R. WheelerUniversity of Toronto, CANADA

T18EMINIMIZING PARASITIC REACTIONS FOR ENZYME-CONTROLLED METABOLIC PATHWAYSINVESTIGATED IN BIOMEMSX. Luo, D.L. Berlin, S. Buckhout-White, W.E. Bentley, G.F. Payne, R. Ghodssi, and G.W. RubloffUniversity of Maryland, USA

T19ESELF-SEALED VERTICAL NANOPOROUS JUNCTIONS FOR INTEGRATING VARIOUSNANOMATERIALS IN PDMS MICROFLUIDIC SYSTEMS.J. Kim and J. HanMassachusetts Institute of Technology, USA

T16EWORM-ON-CHIP TECHNOLOGY FOR STUDYING AGING OF THE NERVOUS SYSTEM IN c. elegansA. Tripathi, T.V. Chokshi, and N. ChronisUniversity of Michigan, USA

MEMS & NEMS TechnologiesHybrid Devices, Packaging & Components Interfacing

T6EA PDMS PINCH VALVE WITH ZERO DEAD VOLUME AS A VALVING MODULE FOR RIGID POLYMERLAB CHIPS A.W. Browne and C.H. AhnUniversity of Cincinnati, USA

T7EBUBBLE INCLUSION AND REMOVAL USING PDMS MEMBRANE-BASED GAS PERMEATION FORAPPLICATIONS IN PUMPING AND MIXING IN MICROFLUIDIC DEVICESM. Johnson, G. Liddiard, M. Eddings, and B. GaleUniversity of Utah, USA

T8EDEVELOPMENT OF A NOVEL PNEUMATIC DISPENSER USING AN INTEGRATED BACKFLOWSTOPPERS. Lee and J. KimPohang University of Science and Technology (POSTECH), KOREA

T9EPILLAR ARRAY MICRO-TRAPS WITH NEGATIVE DIELECTROPHORESIS H.H. Cui1, J. Voldman1,2, and K.M. Lim1,2

1National University of Singapore, SINGAPORE and 2Massachusetts Institute of Technology, USA

T10EFORMATION OF MONODISPERSE MICROSIZED-EMULSIONS USING AN AXISYMMETRIC FLOW-FOCUSING DEVICE FABRICATED BY PHOTOLITHOGRAPHY AND STEREOLITHOGRAPHYY. Morimoto, K. Kuribayashi, and S. TakeuchiUniversity of Tokyo, JAPAN

T11EMICROFLUIDIC ASSEMBLY BLOCKSM. Rhee and M.A. BurnsUniversity of Michigan, USA

T12EMICROPORE FORMATION USING OVERLAPPED ETCH FRONTS IN INTEGRATED DEVICES FORCELLULAR ANALYSIST.D. Perroud, M. Wu, R.F. Renzi, A.K. Singh, and K.D. PatelSandia National Laboratories, USA

T13EPASSIVE MICROFLUIDIC SORTING OF PARTICLES USING DIFFERENTIAL MIGRATION A.A.S Bhagat, S.S Kuntaegowdanahalli, and I. PapautskyUniversity of Cincinnati, USA

T14EPRINTING OF TEMPERATURE-SENSITIVE HYDROGELS FOR COMPACT MICROFLUIDIC VALVESN.E. Reticker-Flynn, H.W. Lee, and S.-G. KimMassachusetts Institute of Technology, USA

T15ESILICON-BASED MHZ ULTRASONIC NOZZLES C.S. Tsai1, Y.L. Song1,2, C.H. Cheng3, N. Wang1, R.W. Mao1, C.T. Lee2, and S.C. Tsai41University of California, Irvine, USA, 2National Cheng-Kung University, TAIWAN,3National Taiwan Universtiy, TAIWAN, and 4California State University, Long Beach, USA

MEMS & NEMS TechnologiesMicrofluidic Components

T20EANALYSIS OF POLYMER DEGRADATION UNDER HIGH SHEARS IN MICROFLUIDIC CHIPSP. Nghe, P. Tabeling, A. Ajdari, and P. MaryEcole Supérieure de Physique et de Chimie Industrielles (ESPCI), FRANCE

T21EDEVELOPMENT OF A MICROFLUIDIC PLATFORM AND DETECTION SYSTEM FOR PLATELETFUNCTION ANALYSISN.J. Kent1, G. Meade1,2, L. Basabe-Desmonts1, B. Lincoln1, D. Kenny1,3, A.J. Ricco1, B.D. MacCraith1,and B.G. Corcoran2

1Dublin City University, IRELAND and 2Royal College of Surgeons in Ireland, IRELAND

T22EINTEGRATED MICROFLUIDIC SAMPLE PRECONCENTRATOR AND IMPEDANCE DETECTIONPLATFORM FOR PATHOGEN MONITORING P. Sabounchi1, A.M Morales1, B.A. Simmons1, and R.V. Davalos2

1Sandia National Laboratories, USA and 2Virginia Tech-Wake Forest University, USA

T23EMICRO Q-PCR CHIP ON A MINIATURIZED DETECTION SYSTEM FOR DNA DETECTION ANDQUANTIFICATIONJ.-H. Wang1, L.-J. Chien1, T.-M. Hsieh1, C.-H. Luo1, P.-H. Chen2, P.-J. Chen2, D.-S. Lee3,and G.-B. Lee1,4

1National Cheng Kung University, TAIWAN, 2Taiwan University, TAIWAN,3Taipei University of Technology, TAIWAN, and4Industrial Technology Research Institute, TAIWAN

T24EMULTIPURPOSE MICROCHIP SYSTEM FOR PHOTOMETRIC CHEMICAL ANALYSIS INTEGRATEDWITH TEMPERATURE CONTROLLED SOLUTION MIXERT. Noda1, N. Hirokubo1, Y.S. Shin1, K. Miyamura2, K. Matsumoto2, H. Takao1,3, K. Sawada1,3,and M. Ishida1,3

1Toyohashi University of Technology, JAPAN, 2HORIBA, Ltd., JAPAN, and3Japan Science and Technology Agency (JST), JAPAN

T25ETOTAL INTEGRATED IMMUNE ASSAY SYSTEM EMPLOYING SIMPLE AND ACCURATE CHECKVALVE-PUMP FLOW CONTROL WITH NON-LABEL HIGH SENSITIVE ELECTROCHEMICALDETECTION FOR CLINICAL DIAGNOSISY. Takamura1, S. Torai1, M. Chikae1, Y. Tsujita2, K. Maehashi2, K. Matsumoto2, and E. Tamiya2

1Japan Advanced Institute Science Technology (JAIST), JAPAN and 2Osaka University, JAPAN

MEMS & NEMS TechnologiesIntegration "Sample to Result" Systems

Page 21: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego20

Tuesday Program µTAS 2008 San Diego

T12FAUTOMATED CHIP-BASED EXTRACTION OF HPV mRNA FROM CERVICAL SAMPLEST. Baier1, T. Hansen-Hagge1, R. Gransee1, A. Crombé1, S. Schmahl1, K.S. Drese1, P. Grønn2, L. Solli2,I.M. Falang2, C. Martin3, H. Keegan3, and L. Furuberg4

1Institut für Mikrotechnik Mainz GmbH, GERMANY, 2Norchip AS, NORWAY, 3Coombe Womens HospitalDublin, IRELAND, and 4SINTEF Microsystems and Nanotechnology, NORWAY

T13FDENGUE RNA EXTRACTION IN A FULLY-ENCLOSED SELF-CONTAINED LAB-ON-A-CHIP (LOC)CARTRIDGEL. Yobas1, S. Rafeah1, Z. Li1, S.-E. Yong1, K.-Z. Ong1, K. Lau2, V.T.K. Chow2, and C.-K. Heng2

1Institute of Microelectronics, SINGAPORE and 2National University of Singapore, SINGAPORE

T14FINTEGRATED MICROFLUIDIC CYTOMETER FOR THE DIRECT ANALYSIS OF LEUKOCYTES IN WHOLEBLOODJ.K. Herr1, J.P. Alarie1, J. Soohoo2, G.M. Walker1,2, N. Sharpless1, and J.M. Ramsey1,2

1University of North Carolina, Chapel Hill, USA and 2North Carolina State University, USA

T15FMECHANICAL AND THERMAL MODELING OF A PARYLENE ELECTROTHERMAL VALVE FORMAPPING BRAIN FUNCTION IN FREELY MOVING SUBJECTSP.-Y. Li, T.K. Givrad, D.P. Holschneider, J.-M.I. Maarek, and E. MengUniversity of Southern California, USA

T16FMICROFLUIDIC IMAGING CYTOMETRY (MIC) TECHNOLOGY FOR IN VITRO MOLECULARDIAGNOSTICSJ. Sun, M. Ohashi, K.I. Kamei, H. Wang, M. Masterman-Smith, Z.T.-F. Yu, H.I. Kornblum, P.S. Mischel,and H.-R. TsengUniversity of California, Los Angeles, USA

T17FRAPID AND EASY-TO-USE MULTIPLEX IMMUNOASSAY DEVICEM. Ikami1, M. Tokeshi1,2, Y. Okamoto1,2, N. Kaji1,2, and Y. Baba1,2,3

1Nagoya University, JAPAN,2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, and3Institute for Molecualr Science, JAPAN

T18FRAPID, MULTI-STEP BIOASSAYS ON THE SURFACE OF MOBILE MAGNETIC PARTICLES INCONTINUOUS FLOWS.A. Peyman, A. Iles, and N. PammeUniversity of Hull, UK

T10FA HIGH-THROUGHPUT MICROFLUIDIC PLATFORM FOR IN VITRO TOXICITY ASSAYSG.A. Cooksey, J.T. Elliott, and A.L. PlantNational Institute of Standards and Technology (NIST), USA

T11FAN ENZYMATIC MICROREACTOR FOR CONTINUOUS GLUCOSE MONITORINGB.-U. Moon, A.J.M. Schoonen, B.H.C. Westerink, and E. VerpoorteUniversity of Groningen, THE NETHERLANDS

ApplicationsClinical Diagnostics

T1FPHYSICAL TRAPPING AND ELECTRIC LYSIS OF BACTERIAL CELLS IN A MICROFLUIDIC DEVICEN. Bao and C. LuPurdue University, USA

T2FCHEMICAL-MEDIATED MELTING CURVE ANALYSIS FOR GENOTYPING OF SINGLE NUCLEOTIDEPOLYMORPHISMSA. Russom, D. Irimia, W. White, and M. TonerMassachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, USA

T3FDNA EXTRACTION, USING CARRIER RNA, INTEGRATED WITH AGAROSE GEL-BASED POLYMERASECHAIN REACTION IN A MICRO FLUIDIC DEVICEK.J. Shaw, J. Oakley, P.T. Docker, C.E. Dyer, J. Greenman, G.M. Greenway, and S.J. HaswellUniversity of Hull, UK

T4FINTEGRATION OF PROTEIN PROCESSING STEPS ON A DIGITAL MICROFLUIDICS PLATFORM FORANALYSIS BY MALDI-MSD. Chatterjee, A.J. Ytterberg, S.U. Son, J.A. Loo, and R.L. GarrellUniversity of California, Los Angeles, USA

T5FMICROFLUIDIC DEVICE FOR DNA ENRICHMENT AND THE APPLICATION OF “CHROMATINIMMUNOPRECIPITATION”H.J. Oh1, S.E. Park1, B.Y. Lee1, J.S. Park1, H.M. Jung1, T.J. Yoon1, and S.H. Lee2

1Seoulin Bioscience Institute, KOREA and 2Korea University, KOREA

T6FMINIATURIZED SYSTEM FOR REAL-TIME PCR IN LOW-COST DISPOSABLE LTCC CHIP WITHINTEGRATED OPTICAL WAVEGUIDER.W. Walczak1,2, P.B. Bembnowicz1, P.S. Szczepanska1, J.A. Dziuban1,2, L. Golonka1, J. Koszur2,and D.D. Bong3

1Wroclaw University of Technology, POLAND, 2Institute of Electron Technology, POLAND, and3Technical University of Denmark (DTU), DENMARK

T7FON-CHIP DEVICE FOR ISOTHERMAL, CHEMICAL CYCLING POLYMERASE CHAIN REACTIONA. Persat and J.G. SantiagoStanford University, USA

T8FPROCESSING PROTEINS IN SERUM BY DIGITAL MICROFLUIDICS M.J. Jebrail, V.N. Luk, and A.R. WheelerUniversity of Toronto, CANADA

T9FSELEX-ON-A-CHIP: MICROFLUIDIC CHIP INTEGRATION OF THE SOL-GEL DERIVED AFFINITYCOLUMN FOR MONITORING RNA-PROTEIN INTERACTIONS.-M. Park1, J. Ahn1,2, M. Jo2, S. Kim2, J.T. Lis1, and H.G. Craighead1

1Cornell University, USA and 2Dongguk University, KOREA

ApplicationsGenomics & Proteomics

T19FA FULLY-INTEGRATED CMOS MICROSENSOR ARRAY FOR IMAGING THE HYDROGEN ION ACTIVITYOF LIVING CELLSM.J. Milgrew, M.O. Riehle, and D.R.S. CummingUniversity of Glasgow, UK

T20FELECTROFORMATION OF GIANT LIPOSOMES FROM DENSELY MICRO-PATTERNED LIPID FILMSK. Kuribayashi1, A. Utada1, and S. Takeuchi1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

T21FIMAGING OF PHYSIOLOGICAL CELLULAR STIMULATION-RESPONSE PHENOMENA ONTISSUE-REPRODUCING CELL ARRAY DEVICEA. Okonogi1, K. Terao1, T. Okitsu1,2, T. Suzuki1,3, and H. Kotera1,4

1Japan Science and Technolory Agency (JST), 2Kyoto University Hospital, JAPAN,3Kagawa University, JAPAN, and 4Kyoto University, JAPAN

T22FMULTICHANNEL NANOPORE BIOSENSORS FOR HIGH THROUGHPUT SINGLE MOLECULEDETECTIONT. Osaki1,2, H. Suzuki1, B. Le Pioufle2, and S. Takeuchi31University of Tokyo, JAPAN, 2Centre National de la Research Scientifique (CNRS), FRANCE, and3Japan Science and Technology (JST), JAPAN

ApplicationsMicroarrays

Page 22: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 21

Tuesday ProgramSan Diego µTAS 2008

T33FATTACHMENT AND DETACHMENT OF PROSTATE CANCER CELLS IN A MICROFLUIDIC SYSTEML.S.L. Cheung, X.J. Zheng, A. Stopa, J. Schroeder, R.L. Hemark, J.C. Baygents, R. Guzman,and Y. ZoharUniversity of Arizona, USA

T34FBLOOD CELL ANALYSIS USING PORTABLE FLOW CYTOMETER WITH MICROFLUIDIC CHIPS ASCARTRIDGES. Zheng1, H.L. Kasdan2, A. Fridge2, and Y.-C. Tai11California Institute of Technology, USA and 2Iris Diagnostics, USA

T35FCELLULAR MICROTISSUES SPONTANEOUSLY FORMED IN A MICROFABRICATED DEVICE FORANGIOGENESISS. Le Gac1, N. Rivron2, D. Wijnperlé1, C. van Blitterswijk2, and A. van den Berg1

1Universiteit Twente, THE NETHERLANDS and 2BMTI, THE NETHERLANDS

T36FDEVELOPMENT OF A MICROFLUIDIC ON-LINE CULTURE SYSTEM FOR COMBINEDELECTROCHEMICAL AND OPTICAL REAL-TIME DETECTION OF CELLULAR PROCESSESA. Heiskanen1,2, C. Spégel1, J. Tønnesen1, Z. Fohlerova1, L. Goulart2,J. Hansen3, M. Kokaia1, T. Ruzgas4, M. Dufva2, and J. Emnéus2

1Lund University, SWEDEN, 2Technical University of Denmark (DTU), DENMARK,3Aquaporin A/S, DENMARK, and 4Malmö University, SWEDEN

T37FDISCRETE STIMULATION OF SINGLE PROTOPLAST CELLS BY HIGHLY RESOLVED DRUG RELEASEN. Wangler, O. Brett, M. Laufer, M. Straßer, A. Dovzhenko, K. Voigt, K. Palme, M. Daub, R. Zengerle, andJ. SteigertUniversity of Freiburg, GERMANY

T38FDYNAMIC FLOW CYTOMETRY IN AN ACOUSTO-OPTIC MICROFLUIDIC CHIPJ. Svennebring, O. Manneberg, H. Hertz, and M. WiklundRoyal Institute of Technology (KTH), SWEDEN

T39FENUMERATING VIABLE CIRCULATING TUMOR CELLS FOR CANCER DIAGNOSTICSS.J. Tan1,2, L. Yobas2, G.Y.H Lee3, C.N. Ong1, and C.T. Lim1,3

1National University of Singapore, SINGAPORE, 2Institute of Microelectronics, SINGAPORE, and3Singapore MIT-Alliance, SINGAPORE

T40FFORMATION OF SIMPLE THREE-DIMENSIONAL BIOLOGICAL BARRIERS BASED ON MICROFLUIDICDEVICEJ.-B. Shao, Q.-H. Jin, and J.-L. ZhaoShanghai Institute of Microsystem and Information Technology, CHINA

T41FHIGH PERFORMANCE PARALLEL BIOPARTICLE SORTER WITH 3-DIMENSIONAL PDMS CHIPH. Sugino1, Y. Nara2, Y. Shirasaki3, T. Arakawa1,2, S. Shoji2, and T. Funatsu1

1University of Tokyo, JAPAN, 2Waseda University, JAPAN, and 3Kazusa DNA Research Institute, JAPAN

T42FHIGH-THROUGHPUT CELL AND PARTICLE CHARACTERIZATION USING ISO-DIELECTRICSEPARATIONM.D. Vahey and J. VoldmanMassachusetts Institute of Technology, USA

T43FNANOFIBER MATRIX BASED MICROCHIP FOR HUMAN MESENCHYMAL STEM CELL CULTUREK.H. Lee1, S.J. Shin1, Y. Park1, D.K. Han2, J.J. Park1, and S.H Lee1

1Korea University, KOREA and 2Korea Institute of Science & Technology, KOREA

T44FINTEGRATED MICROFLUIDIC SYSTEMS BIOLOGY PLATFORM: CELL CULTURE, DRUG TREATMENT,LYSIS, SEPARATION AND DETECTIONA. Riaz1, I.K. Dimov1, L. Kent1, C.R. Poulsen1, S. O’Toole2, M. Radomski3, J. O’Leary2, A.J. Ricco1,and L.P. Lee1,4

1Dublin City University, IRELAND, 2St. James Hospital, IRELAND, 3Trinity College Dublin, IRELAND, and4University of California, Berkeley, CA, USA

T23FTHREE-DIMENSIONAL (3D) HOLLOW POLYMERIC MICROSTRUCTURES FOR SHEAR-PROTECTINGCELL CONTAINERS WITHIN MICROFLUIDIC CHANNELS.H. Lee, H.S. Cho, C.I. Park, and K.Y. SuhSeoul National University, KOREA

T24FEXTERNAL FORCE RESPONSIBLE NANOGELS FOR MICROCHIP ELECTROPHORESIS OF DNAK. Kondo1, N. Kaji1, S. Toita2, K. Akiyoshi2, M. Tokeshi1, and Y. Baba1,2,3

1Nagoya University, JAPAN, 2Tokyo Medical and Dental University, JAPAN, and 3National Institute ofAdvanced Industrial Science and Technology (AIST), JAPAN

T25FHYBRID CERAMIC-POLYMER MICROFLUIDIC CHIPS FOR BIOMOLECULE SEPARATIONST. Sikanen1, S. Aura2, L. Heikkilä1, S. Franssila2, T. Kotiaho1, and R. Kostiainen1

1University of Helsinki, FINLAND and 2Helsinki University of Technology, FINLAND

T26FONE-STEP PREPARATION OF AMINO-PEG MODIFIED PMMA MICROCHIPS FORELECTROPHORETIC SEPARATION OF BIOGENIC COMPOUNDSF. Kitagawa, K. Kubota, and K. OtsukaKyoto University, JAPAN

T27FRAPID SEPARATION OF PROTEIN DIGESTS ON SU-8 BASED CAPILLARY ELECTROPHORESIS-ELECTROSPRAY IONIZATION MASS SPECTROMETRY MICROCHIPSN. Brenner1, T. Sikanen1, S. Aura2, S. Tuomikoski2, K. Vuorensola1, T. Kotiaho1,2, S. Franssila2,and R. Kostiainen1

1University of Helsinki, FINLAND and 2Helsinki University of Technology, FINLAND

T28FSYSTEMS ANALYSIS FOR POLYMER MATRIX TECHNOLOGY TRANSFER FROM CAPILLARIES TOMICROFLUIDIC CHIPSD.G. Hert1, C.P. Fredlake1, and A.E. Barron2

1Northwestern University, USA and 2Stanford University, USA

ApplicationsSeparation Science

T29FA MICROFLUIDIC PLATFORM FOR INVESTIGATING THE IMPAIRMENT OF MITOCHONDRIALTRANSPORTH.J. Kim1, J.W. Park2, J. Harris1, B. Vahidi1, and N.L. Jeon1

1University of California, Irvine, USA and 2Gwangju Institute of Science and Technology (GIST), KOREA

T30FA NEW DISCRIMINATION METHOD BASED ON BULGE GENERATION BETWEEN CANCEROUS ANDNORMAL CELLSY.C. Kim1,2, S.-J. Park2, and J.-K. Park1

1Korea Advanced Institute of Science and Technology (KAIST), KOREA and2KIMM, KOREA

T31FA VISUAL MICROFLUIDIC DNA DETECTORD.M. Finkler1, C.W. Price1, L.A. Legendre1, G.R.M. Duarte2, J.P. LeDuc1, and J.P. Landers1

1University of Virginia, USA and 2Institute of Chemistry of São Carlos, BRAZIL

T32FIMPROVED ACOUSTIC DIFFERENTIAL EXTRACTION ON A MICRODEVICE FOR SEPARATION OFSPERM CELLS AND EPITHELIAL CELL LYSATEJ.V. Norris1, M. Evander2, K.M. Horsman1, J. Nilsson2, T. Laurell2, and J.P. Landers1

1University of Virginia, USA and 2Lund University, SWEDEN

ApplicationsCell Handling & Analysis

Page 23: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego22

Tuesday Program µTAS 2008 San Diego

T57FTHE DEVELOPMENT OF A PRECISION, REAL-TIME ON-CHIP CELL MIGRATION ASSAY UTILIZINGSELF ASSEMBLED MONOLAYER MODIFICATION OF MICRO-FABRICATED ELECTRODES ANDCELLULAR IMPEDANCE SENSINGL. Wang, J. Zhu, K. Mitchelson, and J. ChengTsinghua University, CHINA

T58FTOWARDS FAST PLASMA AND BLOOD CELL SEPARATION-PATTERN AND ARRANGEMENTINVESTIGATION OF POST ARRAYS USED IN DETERMINISTIC HYDRODYNAMICSJ. Li, S. Le Gac, and A. van den BergMESA+, University of Twente, THE NETHERLANDS

T59FMICROFLUIDIC DEVICE FOR COMBINATORIAL PROTEIN REFOLDINGS. Kondapalli and B.J. KirbyCornell University, USA

T60FNOVEL INORAGANIC POLYMER DERIVED MICROREACTORS FOR THE APPLICATION OF ORGANICMICROCHEMICAL SYNTHESIST.-H. Yoon1, L.-Y. Hong1, S.-H. Park1, K.-I. Min1, S.-J. Park1, and D.-P. Kim1,2

1Chungnam National University, KOREA and2Korea Advanced Institute of Science and Technology (KAIST), KOREA

T61FTOWARDS IMPROVED IN VITRO SYSTEMS FOR ADME-TOX STUDIES: DEVELOPMENT OF ANINTESTINE-LIVER BIOCHIPP.M. van Midwoud, G.M.M. Groothuis, M.T. Merema, and E. VerpoorteUniversity of Groningen, THE NETHERLANDS

T45FLOCAL OXYGEN LEVEL IS DENSITY DEPENDENT IN MICROCHANNEL CULTUREK. Hayashi1,2, E. Berthier1, J. Warrick1, M.J. McShane3, and D.J. Beebe1

1University of Wisconsin, USA, 2NTT Microsystem Integration Laboratories, JAPAN, and3Texas A&M University, USA

T46FMICROFABRICATED SLITS IN SERIES: A SIMPLE PLATFORM TO PROBE DIFFERENCES IN CELLDEFORMABILITYH. Bow1, P. Abgrall1,2, and J. Han1

1Massachusetts Institute of Technology, USA and 2Singapore-MIT Alliance, SINGAPORE/USA

T47FMICROFLUIDIC DEVICE APPLIED TO MULTIPLE FUNCTIONAL ASSAYS FOR ISLETS: NEW METHODFOR PRETRANSPLANT ISLET QUALITY ASSESSMENTJ. Shaikh Mohammed, Y. Wang, T.A. Harvat, J. Oberholzer, and D.T. EddingtonUniversity of Illinois, Chicago, USA

T48FMICROFLUIDIC PATTERNING OF P-SELECTIN FOR CELL SEPARATION THROUGH ROLLINGS. Bose1, S. Hong1, R. Langer1, J.M. Karp2, and R. Karnik1

1Massachusetts Institute of Technology, USA and 2Brigham and Women’s Hospital, USA

T49FMICROPATTERNED CO-CULTURE MODEL OF BACTERIA AND EPITHELIAL CELLS FORINVESTIGATING SIGNAL-MEDIATED HOST-PATHOGEN INTERACTIONSJ.Y. Kim, F. Senocak, M. Hegde, and A. JayaramanTexas A&M University, USA

T50FMICROVORTEX FOCUSING AND SORTING OF PARTICLES IN MICROCHANNELSC.H. Hsu, D. Di Carlo, C. Chen, D. Irimia, and M. TonerMassachusetts General Hospital/Harvard Medical School, USA

T51FON-CHIP DISAGGREGATION OF PRIMARY HUMAN CANCER CELLS FROM SOLID TUMOURBIOPSIES FOR DOWNSTREAM CELLULAR ANALYSIS IN A MICROFLUIDIC DEVICE J. Woods1, S.M. Hattersley1, P.T. Docker1, K. Jiang2, C.E. Dyer1, J. Greenman1, and S.J. Haswell11University of Hull, UK, 2University of Birmingham, UK

T52FPARTITION OF MICROCHANNELS WITH COLLAGEN FOR FABRICATING TUNABLE 3D CELLULARMICROENVIRONMENTS R. Perez-Castillejos1,2, A.P. Wong1, J.C. Love3, and G.M. Whitesides1

1Harvard University, USA, 2New Jersey Institute of Technology, USA, and3Massachusetts Institute of Technology, USA

T53FPCM-PROGRAMMABLE ARBITRARY GRADIENT GENERATOR FOR CELL CHEMOTAXISY. Xie, S. Sarkar, F. Azizi, P.J. Thomas, H. Baskaran, and C.H. MastrangeloCase Western Reserve University, USA

T54FRECEDING MENISCUS INDUCED DOCKING OF YEAST CELLS FOR QUANTITATIVE SINGLE-CELLANALYSISM.C. Park1, J.Y. Hur1, J.-R. Kim2, K.-H. Cho2, K.W. Kwon1, M.K. Kwak1, H.S. Cho1, S.-Y. Hwang1,S.-H. Park1, and K.Y. Suh1

1Seoul National University, KOREA and 2Korea Advanced Institute of Science and Technology, KOREA

T55FSPATIOTEMPORAL ANALYSES OF INNATE IMMUNITY ENABLED BY INTEGRATED MICROFLUIDICSINGLE-CELL PREPARATION, MICROSCOPY AND FLOW CYTOMETRYN. Srivastava, M. Wu, C.S. Branda, J.S. Brennan, A.E. Herr, and A.K SinghSandia National Laboratories, USA

T56FMECHANICAL CONTROL OF STEM CELL DIFFERENTIATION USING MICRO-ENGINEERED MATRIXJ. Fu, Y.-K. Wang, M.T. Yang, T.T. Lee, and C.S. ChenUniversity of Pennsylvania, USA

ApplicationsDrug Discovery

T62FCONTINUOUS ANALYSIS OF ATMOSPHERIC AEROSOLS USING MICROCHIP ELECTROPHORESISS.D. Noblitt1, S.V. Hering2, J.L. Collett1, and C.S. Henry1

1Colorado State University, USA and 2Aerosol Dynamics, Inc., USA

T63FON-SITE HEAVY METAL ANALYZER WITH POLYMER LAB CHIP ARRAY FOR AUTOMATICCONTINUOUS SAMPLING AND MONITORINGZ. Zou, E. MacKnight, A. Jang, P.M. Wu, J. Do, P.L. Bishop, and C.H. AhnUniversity of Cincinnati, USA

ApplicationsEnvironmental

T64FCONTROLLABLE SYNTHESIS OF PEPTIDE POLYMERS IN MICROFLUIDIC REACTORM. Miyazaki1,2, J. Kaneno3, H. Yamaguchi1, T. Honda1, E. Kanaumi3, and H. Maeda1,2

1National Institute of Advanced Industrial Science and Technology (AIST), JAPAN,2Kyushu University, JAPAN, and 3NS Materials Inc., JAPAN

T65FMULTIPHASE PHOTOCATALYTIC REACTIONS IN A MICROREACTION SYSTEMY. Matsushita, Y. Satoh, N. Ohba, N. Usami, T. Suzuki, and T. IchimuraTokyo Institute of Technology, JAPAN

T66FREACTION CALORIMETRY IN MICROREACTORS: FAST REACTION SCREENING AND PROCESSDESIGNJ. Antes, M. Gegenheimer, S. Löbbecke, and H. KrauseFraunhofer Institut für Chemische Technologie, GERMANY

ApplicationsChemical Synthesis

Page 24: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 23

Tuesday ProgramSan Diego µTAS 2008

T67FA POLYMERIC ELECTROPORATION MICRONEEDLE ARRAY FOR ENHANCED INTRACELLULARDELIVERYS.-O. Choi, Y.-C. Kim, J. Hutcheson, J.W. Lee, M.R. Prausnitz, and M.G. AllenGeorgia Institute of Technology, USA

T68FCARDIOMYOCYTE ACTUATOR FOR MICROFLUIDICS PLATFORM NOZZLES-DIFFUSER PUMPM-D.T. Nguyen, G. Giridharan, and P. SethuUniversity of Louisville, USA

T69FDEVELOPMENT OF MICROFLUDIC DEVICES INTEGRATING METAL ELECTRODES FOR ON-LINEPRECONCENTRATION AND A PROTON-SENSITIVE ISFET SENSORK. Takemura, F. Kitagawa, and K. OtsukaKyoto University, JAPAN

T70FLABEL-FREE MICROFLUIDIC CHARACTERIZATION OF TEMPERATURE DEPENDENTBIOMOLECULAR BINDING BY MALDI-TOF MASS SPECTROMETRYT.H. Nguyen, R. Pei, M. Stojanovic, and Q. LinColumbia University, USA

T71FON-CHIP ATP AMPLIFICATIONY. Murakami, Y. Shinoda, T. Satoh, K. Noda, and A. KurodaHiroshima University, JAPAN

T72FRECHARGEABLE 3-D MICROBATTERIES FABRICATED WITH AN EXOTHERMIC NANOPOROUSCASTING PROCESSH. Berry, C. Whitney, and C.G. WilsonLouisiana Tech University, USA

Applications

A “MICROFLUIDIC NOSE”: LARGE-AREA MICROARRAYS OF OLFACTORY SENSORY NEURONS FORDETECTING ODORANT RESPONSESX.A. Figueroa1, G.A. Cooksey1, S.V. Votaw1, L. Horowitz2, and A. Folch1

1University of Washington, USA and 2Fred Hutchinson Cancer Research Center, USA

INERTIAL MICROFLUIDICS: HIGH-THROUGHPUT FOCUSING AND SEPARATION OF CELLS ANDPARTICLESD. Di Carlo, D. Irimia, R.G. Tompkins, and M. TonerHarvard University, USA

15:40 - 16:00

Session 2B3Analyzing Blood Components

Session 2A3Extreme Multiplexed Analysis

MULTIPLEXED “DETECTORLESS” ELECTROPHORESISD. Ross and J.G. KraljNational Institute of Standards and Technology (NIST), USA

ON-CHIP NEUTROPHIL CAPTURE AND MIGRATION ANALYSIS FROM A DROP OF BLOODN. Agrawal, M. Toner, and D. IrimiaMassachusetts General Hospital and Harvard Medical School, USA

16:00 - 16:20

CONCURRENT MULTI-SAMPLE ANALYSIS OF LOW EXPRESSED BIOMARKERS ON SINGLE HUMANCELLS BY ENZYMATICALLY AMPLIFIED IMMUNODETECTION IN DROPLETSH.N. Joensson1, M.L. Samuels2, E.R. Brouzes2, M. Medkova2, M. Uhlén1, H. Andersson Svahn1,and D.R. Link2

1Royal Institute of Technology (KTH), SWEDEN and 2RainDance Technologies, USA

MICROFLUIDIC SYNTHESIS OF SQUISHY BIO-MIMETIC PARTICLES WITH TUNABLEDEFORMABILITYR. Haghgooie1, M. Toner1, and P.S. Doyle3

1Harvard University, USA and 2Massachusetts Institute of Technology, USA

16:20 - 16:40

16:40 Adjourn for the Day

18:00 -22:00 Conference Banquet at the San Diego Zoo

Grand Ballroom A-B Grand Ballroom C

Page 25: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego24

Wednesday Program µTAS 2008 San Diego

HIGH THROUGHPUT, MULTI-TARGET MAGNETOPHORETIC SEPARATIONJ.D. Adams, U. Kim, and H.T. SohUniversity of California, Santa Barbara, USA

STUDY ON VAPOR-LIQUID PHASE TRANSITION PHENOMENA IN EXTENDED-NANO SPACEST. Tsukahara1, T. Maeda1, K. Mawatari2, A. Hibara1, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science and Technology , JAPAN

09:15 - 09:35

MICROFLUIDIC DEVICE FOR CONTINUOUS DIELECTROPHORETIC SEPARATION OF CELLS INDIVISIONN. Demierre, T. Braschler, A. Valero, and P. RenaudEcole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

PARALLEL SCREENING OF IN SITU CLICK CHEMICAL LIBRARIES IN INTEGRATED MICROFLUIDICDEVICESW.-Y. Lin, Y. Wang, R. Lin, M.E. Phelps, C.K.-F. Shen, K. Faull, and H.-R. TsengUniversity of California, Los Angeles, USA

09:35 - 09:55

MEASURING THE IMPACT OF DIELECTROPHORESIS ON CELL PHYSIOLOGY USING A HIGH-CONTENT SCREENING PLATFORMS.P. Desai and J. VoldmanMassachusetts Institute of Technology, USA

LOCAL SURFACE MODIFICATION USING TRAPPING AND MELTING OF POLYMER MICROPARTICLESFOR DIVERSE PATTERNINGS. Fukushima1, M. Yamada2, M. Yamamoto3, and M. Seki11Chiba University, JAPAN, 2Tokyo Women's Medical University, JAPAN, and3Osaka Prefecture University, JAPAN

09:55 - 10:15

ULTRA-RAPID SAMPLE PRECONCENTRATION UNDER SLANT FIELD USING HIGH-ASPECT-RATIONANOPOROUS MEMBRANESY.-C. Wang, A.K. Singh, and A.V. HatchSandia National Laboratories, USA

MICROFLUIDIC CHIPS WITH “AXON DIODES” FOR DIRECTED AXONAL OUTGROWTH ANDRECONSTRUCTION OF COMPLEX LIVE NEURAL NETWORKSJ.M. Peyrin1, L. Saias2, P. Gougis2, S. Magnifico1, S. Betuing1, D. Kilinc1, J.L. Viovy2, and B. Brugg1

1Université Pierre et Marie Curie, FRANCE and 2Institut Curie, FRANCE

10:45 - 11:05

HIGH-THROUGHPUT SAMPLE PREPARATION FOR MASS SPECTROMETRY BY CONTINUOUS-FLOWPI-BASED FRACTIONATION OF PEPTIDES AND PROTEINSY.-A. Song and J. HanMassachusetts Institute of Technology, USA

“MICROFLUIDIC PALETTE”: GENERATION OF STABLE AND PURELY DIFFUSIVE CHEMICAL GRADI-ENTS INSIDE A MICROFLUIDIC CHAMBERJ. Atencia, J. Morrow, and L.E. LocascioNational Institute of Standards and Technology (NIST), USA

11:05 - 11:25

NOVEL TWO-PHASE FLOW CONTROL CONCEPT AND MULTI-STEP EXTRACTION MICROCHIPA. Hibara1,2,3, K. Kasai1, H. Miyaguchi4, and T. Kitamori1,2,3

1University of Tokyo, JAPAN, 2Kanagawa Academy of Science & Technology, JAPAN,3Japan Science and Technology Agency (JST), JAPAN, and4National Research Institute of Police Science, JAPAN

MICROSCALE CONTROL OF MICROPOST STIFFNESS TO INDUCE CELLULAR DUROTAXISR.D. Sochol, A.T. Higa, R.R.R. Janairo, K.G. Shah, T.D. Johnson, S. Li, and L. LinUniversity of California, Berkeley, USA

11:25 - 11:45

Session 3B1Innovative Chemistries for Microfluidics

Session 3A1Cell Sorting

Session 3B2Tools for Controlled Cell Culture I

Session 3A2Sample Preparation

Wednesday, October 15, 2008

08:00 - 08:20 Announcement of the µTAS 2009 Conference

08:20 - 09:00 Plenary VINTEGRATED ELECTROCHEMICAL CELLULAR DEVICES FOR DETECTION OF GENE EXPRESSIONT. MatsueTohoku University, JAPAN

10:15 – 10:45 Break & Exhibit Inspection

Grand Ballroom A-B Grand Ballroom C

Grand Ballroom A-B Grand Ballroom C

Page 26: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 25

Wednesday ProgramSan Diego µTAS 2008

11:45 – 13:00 Lunch & Exhibit Inspection

13:00 - 13:40 Plenary VICREATIVITY IN SCIENCE AND TECHNOLOGY: EXAMPLES FROM FLUIDS, LESSONS FROM ARTJ.M. OttinoNorthwestern University, USA

13:40 - 14:00 Art In Science AWARD sponsored by National Institute of Standards and Technology (NIST), USA

14:00 - 16:20 Poster Session III

W1AA PORTABLE IMAGING DEVICE USING A CMOS DETECTOR AND OLED LIGHT SOURCEN. Misawa, T. Yamamura, and S. TakeuchiUniversity of Tokyo, JAPAN

W2AEXPERIMENTAL AND THEORETICAL MEASUREMENTS OF CONCENTRATION DISTRIBUTIONS INACOUSTIC FOCUSING DEVICESK.A. Rose, K. Fisher, B. Jung, K. Ness, and R.P. Mariella, Jr.Lawrence Livermore National Laboratory, USA

W3AIN-SITU MEASUREMENT OF VISCOUS DRAG BY POLYMERIC MICROFLUIDIC FORCEMETERS.A. Lee, J. Kim, and S. KwonSeoul National University, KOREA

W4AMICRO-FLUIDIC MIXING BY ACTIVE CONTROL OF THE FLOW BIFURCATION IN A T-MIXERR. Lindken, J. Hussong, and J. WesterweelDelft University of Technology, THE NETHERLANDS

W5AMICROFLUIDIC OSCILLATORS: FLUIDIC BAND-PASS FILTERS WITH HIGH Q-FACTORSM.R. Begley and M. UtzUniversity of Virginia, USA

W6APRESSURE CHARACTERISTICS MODELLING FOR THE RAPID DESIGN OF CAPILLARYMICROFLUIDIC SYSTEMST. Metz, L. Riegger, C. Ziegler, R. Zengerle, and P. KoltayUniversity of Freiburg (IMTEK), GERMANY

W7ATHREE-DIMENSIONAL HYDRODYNAMIC FOCUSING OVER A WIDE REYNOLDS NUMBER RANGEUSING A TWO-LAYER MICROFLUIDIC DESIGNG.S. Zhuang, T.G. Jensen, and J.P. KutterTechnical University of Denmark, DENMARK

W8AAN ACTIVE, INTEGRATED BUBBLE TRAP AND DEBUBBLER FOR MICROFLUIDIC APPLICATIONSA.M. Skelley and J. VoldmanMassachusetts Institute of Technology, USA

W9AINTEGRATED PIPETTE COMPATIBLE STERILE INTERFACE TO MICROFLUIDIC CHAMBERSH.L.T. Lee, P. Boccazzi, R.J. Ram, and A.J. SinskeyMassachusetts Institute of Technology, USA

W10AA MILLISECONDS MICROFLUIDIC MIXER BASED ON SINGLE BUBBLE STREAMINGD. Ahmed, X. Mao, B.K. Juluri, J. Shi, and T.J. HuangPennsylvania State University, USA

W11AA VALVE-LESS MICRO PUMP WITH PZT DIAPHRAGMV. Thanh Dau, T. Xuan Dinh, R. Sakamoto, O. Tomonori, K. Tanaka, and S. SugiyamaRitsumeikan University, JAPAN

W12AACTIVE SUPERPARAMAGNETIC BEAD MANIPULATION FOR IMMUNOASSAYS ON-CHIPY. Moser, T. Lehnert, E.P. Dupont, R. Afshar, and M.A.M. GijsEcole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W13ACILIA DEVICE FOR MICROFLUID MANIPULATIONK. Oh1, J.-H. Chung1, S. Devasia1, J.J. Riley1, and K.H. Lee2

1University of Washington, USA and 2NanoFacture, Inc., USA

W14ADISPENSING INDIVIDUAL FLUID PARTICLES ON DEMAND IN A MICROFLUIDIC CHIPJ. Xu and D. AttingerColumbia University, USA

W15AHIGH-PERFORMANCE MICROMIXER FOR FULLY INTEGRATED MICROFLUIDIC SYSTEMSD. Kim1,2, H.S. Rho1, and J.W. Hong1

1Auburn University, USA and 2Korea Institute of Machinery and Materials (KIMM), KOREA

W16ALATERAL CAVITY ACOUSTIC TRANSDUCERA.R. Tovar, R. Madangopal, J. Draper, and A.P. LeeUniversity of California, Irvine, USA

W17ANOVEL MICROMIXER UTILIZING FREQUENCY MODE MODULATION ONMETA-STRUCTUREK. Kanda1, Y. Noda2, T. Suzuki3, I. Kanno3, and H. Kotera3

1Advanced Software Technology and Mechatronics Research Institute of Kyoto, JAPAN,2Arkray Inc., JAPAN, and 3Kyoto University, JAPAN

W18APEN-TYPE 3D PERISTALTIC MICROPUMP FOR PORTABLE APPLICATIONSW. Rhie and T. HiguchiUniversity of Tokyo, JAPAN

W19ASELF-SYNCHRONIZED GENERATION AND CONTROLLED MERGING OF DROPLETSP. Carreras, S. Mohr, P. Fielden, and N. GoddardUniversity of Manchester, UK

W20ATUBELESS MICROFLUIDIC SAMPLING/MIXING DEVICE USING WETTABILITY GRADIENT ANDELECTROWETTINGT. Yasuda and S. HaradaKyushu Institute of Technology, JAPAN

MicrofluidicsFluid Mechanics & Modeling

MicrofluidicsWorld-to-Chip Interfacing

MicrofluidicsAliquoting, Mixing & Pumping

Page 27: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego26

Wednesday Program µTAS 2008 San Diego

W21AUSE OF PHOTOPATTERNED NANOPOROUS POLYMER MONOLITHS AS PASSIVE MIXERS TOENHANCE MIXING EFFICIENCY FOR ON-CHIP LABELING REACTIONSD.A. Mair1, E. Geiger1,2, T. Schwei2,3, T. Dinio2,3, F. Svec2,3, and J. Fréchet2,3

1Fluigence, LLC, USA, 2Lawrence Berkeley National Laboratory, USA, and3University of California, Berkeley, USA

W22AA MICROFLUIDIC DEVICE FOR CONTINUOUS-FLOW LAYER-BY-LAYER ENCAPSULATION OFDROPLETS WITH POLYELECTROLYTESS. Zhang1,2, L. Yobas1, and D. Trau2

1Institute of Microelectronics, SINGAPORE and 2National University of Singapore, SINGAPORE

W23AMICROFLUIDIC EXTRACTION IN DROPLETS AND ITS APPLICATIONS TO BIOLOGY ANDENVIRONMENTAL SCIENCE P. Mary1, V. Studer1, M. Stambouli2, and P. Tabeling1

1Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI), FRANCE and2Ecole Centrale Paris, FRANCE

W24ACHARACTERIZATION OF LAMINAR FLOW-ASSISTED DENDRITIC AMPLIFICATIONK. Hosokawa and M. MaedaRIKEN, JAPAN

W25ADEFORMED DROPLET BREAKUP IN MICROFLUIDIC DEVICE FOR SMALLER PARTICLESGENERATIONT. Moritani1, S. Doi2, and M. Seki11Chiba University, JAPAN and 2Osaka Prefecture University, JAPAN

W26ADIFFERENTIAL INERTIAL FOCUSING IN CURVED HIGH-ASPECT-RATIO CHANNELS FORCONTINUOUS HIGH THROUGHPUT PARTICLE SEPARATIONA. Russom, S. Nagrath, A.K. Gupta, D. DiCarlo, J.F. Edd, and M. TonerHarvard Medical School, USA

W27ADISCRETE AQUEOUS TWO-PHASE MICROEXTRACTION WITH SIMULTANEOUSELECTROHYDRODYNAMIC GENERATION OF A SINGLE DROPLETY.S. Song, Y.H. Choi, G. Park, and D.H. KimKorea Advanced Institute of Science and Technology (KAIST), KOREA

W28AENCAPSULATION OF BIOMOLECULES WITH PROGRAMMABLE CONCENTRATIONS INMICRODROPLETS USING ELECTROKINETIC CONCENTRATORY.-A. Song, A. Sarkar, and J. HanMassachusetts Institute of Technology, USA

W29AGEOMETRICALLY MEDIATED DROPLET MERGING IN MICROCHANNELSX. Niu and J.B. EdelImperial College London, UK

W30ALIPOSOME FORMATION BY COUNTER-CURRENT FLOWS IN MICROCHANNELSM. Shibata1, Y. Okamoto1, N. Kaji1, M. Tokeshi1, and Y. Baba1,2,3

1Nagoya University, JAPAN,2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, and3Institute for Molecular Science, JAPAN

W31AMICRO-CALORIMETER WITH ENCLOSED PARYLENE CHAMBERS FOR BIO/CHEMICALAPPLICATIONSC.H. Lee1,3, G. Walker2, A. O’Neill2, and D.K. Manikkam1

1California State University, Fresno, USA, 2North Carolina State University, USA, and3Marquette University, USA

W32AMICROFLUIDIC METHOD FOR THE PRODUCTION OF MONODISPERSE ALGINATE MICROBEADSAND IN SITU ENCAPSULATION OF CELLS C.-H. Choi, J.-H. Jung, and C.-S. LeeChungnam National University, KOREA

W33ARAPID FABRICATION OF 3-D BRANCHED MICROVASCULAR FLOW NETWORKSJ.-H. Huang, J. Kim, A. Jayaraman, and V.-M. UgazTexas A&M University, USA

W34ASELF-SYNCHRONIZING DROPLETS WITH DOUBLE STEP-EMULSIFICATION DEVICESV. Chokkalingam1, S. Herminghaus1, and R. Seemann1,2

1Max Planck Institute for Dynamics and Self-Organization, GERMANY and2Saarland University, GERMANY

W35AFAST MICROFLUIDIC PARTICLE FILTERING BY DEAN SPREADINGZ. Wu and K. HjortUppsala University, SWEDEN

W36AA CHANNEL-FREE SEPARATION SYSTEM BASED ON CIRCULAR SHEAR DRIVEN FLOWY. Cai, D. Janasek, J. Franzke, and A. ManzInstitute for Analytical Sciences (ISAS), GERMANY

W37ADIELECTROPHORETIC SEPARATION OF COLLOIDAL PARTICLES USING ANGLED ELECTRODEARRAYN.A. Md Yunus and N.G. GreenUniversity of Southampton, UK

W38AENHANCED MICROFLUIDIC SYSTEMATIC EVOLUTION OF LIGANDS BY EXPONENTIALENRICHMENT (EM-SELEX)J.K. Qian1, X. Lou1, Y. Zhang2, Y. Xiao1, A. Gerdon1, and H.T. Soh1

1University of California, Santa Barbara, USA and 2Cynvenio Biosystems, USA

W39AHIGH-DYNAMIC RANGE PARTICLE SEPARATION VIA INSULATING DIELECTROPHORESISB.G. Hawkins and B.J. KirbyCornell University, USA

W40AINKJET-BASED DNA INJECTOR FOR MICROCHIP ELECTROPHORESISY. Inoue1, N. Kaji1, Y. Okamoto1, M. Tokeshi1, and Y. Baba1,2,3

1Nagoya University, JAPAN,2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, and3Institute for Molecular Science, JAPAN

W41AMICROFLUIDIC CARTRIDGE FOR (BIO)CHEMICAL FUNCTIONALIZATION OFPT MICROELECTRODES INTEGRATED ON SILICON MICROPROBESO. Frey, B. Guélat, N.F. de Rooij, and M. Koudelka-HepUniversity of Neuchâtel, SWITZERLAND

W42AMICROFLUIDIC SUPERPARAMAGNETIC BEAD-BASED MULTIPLEX DETECTION SYSTEMJ. Nambi Krishnan, T.S. Kim, and S.K. KimKorea Institute of Science and Technology (KIST), KOREA

W43AON-CHIP SEPARATION AND DETECTION OF NON-FLUORESCENT TOXINS IN WATER USINGFLUORESCENT MOBILITY MARKERST. Khurana and J.G. SantiagoStanford University, USA

MicrofluidicsMulti-Phase Microfluidics

MicrofluidicsSeparation Methods

Page 28: San Diego µTAS 2008 - University at Buffalo

μTAS 2008 • San Diego 27

Wednesday ProgramSan Diego μTAS 2008

W44APYKLINOPHORESIS: A NEW PARTICLE MIGRATION PRINCIPLE DRIVEN BY DENSITY GRADIENTAND APPLICATION TO ANALYSIS OF SOLUTION DENSITY IN A MICROFLUIDIC DEVICEJ.H. Kang, B. Kim, and J.-K. ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

W45ASEPARATION AND COLLECTION OF MICROPARTICLES USING OSCILLATING BUBBLESK. Ryu, S.K. Chung, and S.K. ChoUniversity of Pittsburgh, USA

W46ASORTING CONCENTRATED SUSPENSIONS: PARTICLE INTERACTIONS, EMERGENT BEHAVIOR, ANDIMPLICATIONS FOR MICROFLUIDIC SEPARATIONSM.D. Vahey and J. VoldmanMassachusetts Institute of Technology, USA

W1BDEVELOPMENT OF PRESSURE-DRIVEN SEPARATION IN EXTENDED-NANO SPACESM. Inaba1, M. Kato1, T. Tsukahara1, K. Mawatari2, A. Hibara1, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science and Technology, JAPAN

W2BEVALUATION OF WATER PROPERTY IN EXTENDED-NANO SPACE USING STREAMING CURRENTMEASUREMENTK. Morikawa1, M. Kato1, T. Tsukahara1, K. Mawatari2, A. Hibara1, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science and Technology, JAPAN

W3BFORMATION OF LIQUID MENISCI IN FLEXIBLE NANOCHANNELSJ.W. van Honschoten, N.R. Tas, V.B. Svetovoy, M. Escalante, and M. ElwenspoekUniversity of Twente, THE NETHERLANDS

W4BMULTIPLE MEASUREMENTS ON THE SAME MOLECULE IN A NANOPORE SYSTEM WITH FEED-BACK CONTROLY.H. Sen and R. KarnikMassachusetts Institute of Technology, USA

W5BSINGLE MOLECULE ANALYSIS OF ELECTRODYNAMICALLY STRETCHED DNA IN NANOCHANNELSS.M. Stavis1,2, C.H. Reccius1,3, J.T. Mannion1, L.P. Walker1, and H.G. Craighead1

1Cornell University, USA, 2National Institute of Standards & Technology (NIST), USA, and 3PhillipsResearch, UK

W47AA NOVEL MICROFLUIDIC DEVICE FOR IMMOBILIZING AND IMAGING DROSOPHILAEMBRYOS H.N. Cartwright1, S.M. Abmayr1,2, and J.W. Schwartz1,3

1Stowers Institute for Medical Research, USA, 2University of Kansas Medical Center, USA, and3University of Kansas, USA

W48ADNA DIFFUSION CONTROLJ. Regtmeier1, R. Eichhorn1, P. Reimann1, A. Ros2, and D. Anselmetti11Bielefeld University, GERMANY and 2Arizona State University, USA

W49AFABRICATION OF PDMS MEMBRANES WITH AQUEOUS MOLDS FOR MICROFLUIDIC SYSTEMSK. Bilotkach and A.P. LeeUniversity of California, Irvine, USA

W50AON-CHIP LIQUID TUNABLE GRATING USING LAMINAR MICROFLUIDIC CONTROL SYSTEMZ.G. Li, L.K. Chin, H.J. Huang, H.N. Unni, and A.Q. LiuNanyang Technological University, SINGAPORE

W51AEXPANSION CHANNELS FOR LOW-PASS FILTERING OF AXIAL CONCENTRATION GRADIENTS INMICROFLUIDIC SYSTEMSD.M. Hartmann, D. Wyrick, J.T. Nevill, G. Votaw, and H.C. CrenshawGlaxoSmithKline, USA

W52ATHROUGHPUT THROUGH THIN-FILM FLUIDICSJ.P. Beech1, T. Mäkelä2, P. Majander2, and J.O. Tegenfeldt11Lund University, SWEDEN and 2VTT, FINLAND

W53AULTRASONIC MICRO-CAGES: A NEW APPROACH FOR MANIPULATION AND MONITORING OFINDIVIDUAL CELLS AND FOR FLUID MIXINGO. Manneberg, J. Svennebring, H.M. Hertz, and M. WiklundRoyal Institute of Technology (KTH), SWEDEN

Microfluidics

NanotechnologyNanofluidics

W6BNOVEL SYNTHESIS OF POLYMERIC NANOPARTICLES FOR DRUG DELIVERY APPLICATIONS USINGMICROFLUIDIC RAPID MIXINGP. Valencia1, P. Basto1, F. Gu1, L. Zhang1, C. Cannizzaro1, R. Langer1, O. Farokhzad2, and R. Karnik1

1Massachusetts Institute of Technology, USA and2Brigham and Women's Hospital, Harvard Medical School, USA

NanotechnologyNanoengineering

W7BMAPPING IN NANOCHANNELSW.W. Reisner1,2, H. Flyvbjerg2, and J. O. Tegenfeldt11Lund University, SWEDEN and 2Technical University of Denmark (DTU), DENMARK

W8BHIGH-THROUGHPUT GENE ANALYSIS USING SUSPENDING DNA FIBERS (SDFs) ON A MICROGLASS-PHONORECORDA. Fuke1, T. Suzuki2, K. Nakama3, H. Kabata4, and H. Kotera1

1Kyoto University, JAPAN, 2Kagawa University, JAPAN, 3Nippon Glass Sheet, JAPAN, and4Sysmex Corporation, JAPAN

W9BMAGNETOPHORETIC POSITION DETECTION FOR MULTIPLEXED IMMUNOASSAYS USING COLOREDMICROSPHERESY.K. Hahn, Z. Jin, J.-B. Chang, H.-S. Kim, and J.-K. ParkKorea Advanced Institute of Science and Technology (KAIST), KOREA

W10BMOLECULAR DELIVERY INTO LIVE CELLS WITH LIGHT IMAGE PATTERNS AND A GOLD PARTICLECOATED SUBSTRATES. Kalim, T.-H. Wu, C. Callahan, E.P.Y. Chiou, and M. TeitellUniversity of California, Los Angeles, USA

NanotechnologyNanobiotechnology

Page 29: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego28

Wednesday Program µTAS 2008 San Diego

W11BUV-MEDIATED LIGAND IMMOBILIZATION FOR MULTIPLEXED ANALYSIS IN EXTENDEDNANOSPACE CHANNELSB. Renberg1, K. Mawatari2, T. Tsukahara1, N. Idota1, K. Sato1, and T. Kitamori11University of Tokyo, JAPAN and 2Kanagawa Academy of Science and Technology, JAPAN

W12BPROTON TRANSPORT THROUGH SELF-ASSEMBLED FUNCTIONALIZED NANOPOROUS SILICONS. Moghaddam, E. Pengwang, R. Masel, and M. ShannonUniversity of Illinois, Urbana-Champaign, USA

W13BSELF ASSEMBLY OF HIGHLY ORDERED NANO-COLLOID ARRAY ON PATTERNED PEG HYDROGELH. Cong, A. Revzin, and T. PanUniversity of California, Davis, USA

NanotechnologyNanoassembly

W14BDEUTERIUM SUBSTITUTION AND SOLVENT EFFECTS ON REACTION DYNAMICS IN EXTENDED-NANO SPACES ON A CHIPT. Tsukahara1, K. Nagaoka1, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science & Technology, JAPAN

Nanotechnology

W1CA SIMPLE AND VERSATILE METHOD FOR SINGLE CELL PATTERNINGA. Azioune1, M. Théry2, M. Bornens1, and M. Piel11Institut Curie, FRANCE, 2Commissariat à l’Energie Atomique (CEA), FRANCE

W2CAC-ELECTROOSMOSIS-ASSISTED LOCALISATION AND ENHANCED BIOCONCENTRATION ONELECTROCHEMICALLY BIOFUNCTIONALIZED MICRODEVICESL. Tanguy1, S. Salomon1, P. Mailley2, and L. Nicu1

1LAAS-CNRS, FRANCE and 2Commissariat à l’Energie Atomique (CEA), FRANCE

W3CDEVELOPMENT OF TUNABLE SUPERHYDROPHOBIC SURFACES BY DUAL-SCALE SURFACEMODIFICATION USING SIMPLE SILICON WET ETCHING AND ZnO NANORODS FORMATIONH. Kim and J. KimPohang University of Science and Technology (POSTECH), KOREA

W4CMICROFLUIDICS-GENERATED IMMOBILIZED BIOMOLECULE GRADIENTS ON HYDROGELSS.A. Kobel, S. Cosson, and M.P. LutolfEcole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5CSURFACE MODIFICATION AND PATTERNING OF BIOMOLECULES AND CELLS, USING A POLYMERLIFT-OFF TEMPLATEC.P. Tan, J.M. Moran-Mirabal, D.J. Brooks, B.R. Ilic, C. Fischbach-Teschl, and H.G. CraigheadCornell University, USA

MaterialsSurface Modification

W6CAN INTEGRATED CRACK-OPENING METHOD FOR DETERMINING THE WORK OF FRACTURE OFBONDED POLYMER INTERFACESH. Taylor and D. BoningMassachusetts Institute of Technology, USA

W7CTRANSIENT ELECTROKINETIC PHENOMENA IN HYDROPHOBIC MICROFLUIDIC DEVICESV. Tandon, S.K. Bhagavatula, and B.J. KirbyCornell University, USA

MaterialsInterface Characterization

W1DA DISPOSABLE MICRO-ELECTRO-OPTICAL INTERFACE FOR FLOW MONITORING INBIO-MICROFLUIDICSM. Bucolo1, V.J. Cadarso2, J. Esteve2, L. Fortuna1, A. Llobera2, F. Sapuppo1, and F. Schembri11Università degli Studi di Catania, ITALY and 2Centro Nacional de Microelectrónica, SPAIN

Detection TechnologiesOptical

W11CPDMS BASED NEGATIVE PHOTORESIST FOR MICROFLUIDIC APPLICATIONSS. Suhard1, G. Ardila1, D. Collin2, M.-F. Guimon3, A. Martinez Rivas1, P. Martinoty2, M. Mauzac1,A.-F. Mingotaud1, C. Rossi1, and C. Séverac1

1Université de Toulouse, FRANCE, 2Institut Charles Sadron, FRANCE, and3Ecole Centrale Paris, FRANCE

W12CRAPID PROTOTYPING AND NON-PLANAR PATTERNING USING PHOTODEFINABLE PDMSP. Jothimuthu, A.A.S. Bhagat, and I. PapautskyUniversity of Cincinnati, USA

W13CTHERMOPLASTIC ELASTOMERS (TPE) BLOCK COPOLYMERS, A NEW MATERIAL PLATFORM FORMICROFLUIDICS: PROOF OF CONCEPT FOR COMPLEX SIPHON VALVING ON CDE. Roy1, J. Siegrist2, R. Peytavi3, G.A. Diaz-Quijada1, H. Roberge1, F. Normandin1, G. Jia2, J. Zoval2,M. Madou2, M.G. Bergeron3, M.M. Dumoulin1, and T. Veres1

1National Research Council, CANADA, 2University of California, Irvine, USA, and3Laval University, CANADA

MaterialsInnovative Chip Materials

W8CDROPLET EVAPORATION ON NANOSTRUCTURED SUPERHYDROPHOBIC SURFACESC.-H. Choi1 and C.-J. Kim2

1Stevens Institute of Technology, USA and 2University of California, Los Angeles, USA

W9CMETAL-SEMICONDUCTOR TRANSITION OF ssDNA DECORATED SINGLE-WALLED CARBONNANOTUBESM. Cha, S. Jung, J. Hwang, and J. LeeSeoul National University, KOREA

W10CQUANTITATIVE END-GRAFTING OF DNA ONTO FLAT AND NANOPOROUS GOLD SURFACESL. Huang, E. Seker, M. Utz, M.R. Begley, and J.P. LandersUniversity of Virginia, USA

MaterialsNanostructured Materials

Page 30: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 29

Wednesday ProgramSan Diego µTAS 2008

W2DA LIQUID WAVEGUIDE BASED TWIN MACH-ZEHNDER INTERFEROMETER FOR REAL TIMEPARTICLE SORTING X.C. Li1,2, Z.G. Li2, H.J. Huang2, J. Wu1, K. Xu1, J.T. Lin1, and A.Q. Liu2

1Beijing University of Posts and Telecommunications, CHINA and2Nanyang Technological University, SINGAPORE

W3DA SIGNIFICANTLY IMPROVED LIMIT OF DETECTION OF AN INTEGRATED FLUORESCENCEDETECTOR FOR MICROFLUIDIC DEVICEST. Kamei, K. Matsuhiro, and A. ShikanaiNational Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W4DAN EFFICIENT SEMICONTINUOUS BEAD TRAPPING METHOD FOR THE APPLICATION OFµ-IMMUNOASSAY PLATFORMSS.K. Yoo, Y.M. Kim, J.H. Lee, and S. YangGwangju Institute of Science and Technology (GIST), KOREA

W5DDEVELOPMENT OF DIFFERENTIAL INTERFERENCE CONTRAST THERMAL LENS MICROSCOPE FORCOUNTING INDIVIDUAL NON-FLUORESCENT MOLECULESH. Shimizu1, K. Mawatari2, and T. Kitamori1,2,3

1University of Tokyo, JAPAN, 2Kanagawa Academy of Science and Technology, JAPAN, and3Japan Science and Technology Agency (JST), JAPAN

W6DHIGH SENSITIVITY PROTEIN DETECTION USING MICRO-MAGNETIC APTAMER PCR (MAP)TECHNOLOGYA.E. Gerdon1, J. Qian1, Y. Zhang2, J.D. Adams1, S.S. Oh1, A. Csordas1, and H.T. Soh1

1University of California, Santa Barbara, USA and 2CytomX, LLC, USA

W7DIN VIVO-LIKE MICROSYSTEM FOR HIGH CONTENTS ANTI-INFLAMMATORY DRUG SCREENINGK. Lee and H. JungYonsei University, KOREA

W8DINEXPENSIVE INTEGRATED CELL IMAGING DEVICEM. Gabriel1, V. Haguet1, N. Picollet-D’hahan1, M. Block2, B. Fouqué1, and F. Chatelain1

1Commissariat à l’Energie Atomique (CEA), FRANCE and 2IAB, FRANCE

W9DINTEGRATION OF EVANESCENT EXCITATION (EE)-BASED CHIP WITH MICROFLUIDIC CHANNELSFOR UPRIGHT AND INVERTED MICROSCOPE OBSERVATIONSN.C.H. Le1, R. Yokokawa1,2, D.V. Dao1, T.D. Nguyen1, J. Wells1, and S. Sugiyama1

1Ritsumeikan University, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

W10DMEASUREMENT OF THREE-DIMENSIONAL TEMPERATURE DISTRIBUTION IN MICROELECTROPHORESIS USING CONFOCAL TWO-COLOR LASER-INDUCED FLUORESCENCES. Saeki, J. Funakoshi, T. Saito, and K. NakamuraYamaguchi University, JAPAN

W11DNOVEL, COST-EFFECTIVE, HIGH-QUALITY SURFACE PLASMON RESONANCE AND FLUORESCENCEMICROSCOPER. Thariani and P. YagerUniversity of Washington, USA

W12DON-CHIP SANDWICH IMMUNOASSAY IN AN INTEGRATED MAGNETO-OPTICAL CMOSMICROSYSTEME.P. Dupont, U. Lehmann, M. Lombardini, E. Charbon, and M.A.M. GijsEcole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W13DPHOTOTHERMAL IMAGING OF ABSORBANCE DISTRIBUTION WITH SYNCHRONOUS CCDDETECTION METHODA. Hibara1, K. Oikawa1, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science & Technology, JAPAN

W18DCONTACTLESS DIFFERENTIAL CONDUCTIVITY DETECTIONG.A. Shaw, D. Ross, S.E. Fick, and W.N. VreelandNational Institute of Standards and Technology (NIST), USA

W19DELECTRICAL IMMUNOASSAY USING PROTEIN FUNCTIONALIZED MICROFLUIDIC CHANNELSM. Javanmard, A.H. Talasaz, M. Nemat-Gorgani, F. Pease, M. Ronaghi, and R.W. DavisStanford University, USA

W20DSPLIT RING RESONATOR TECHNIQUE FOR COMPOSITIONAL ANALYSIS OF SOLVENTS INMICROCAPILLARY SYSTEMSA. Masood, O. Castell, D.A. Barrow, C. Allender, and A. PorchCardiff University, UNITED KINGDOM

W21DPOLYSACCHARIDE TEMPLATED SILVER NANOWIRE FOR ULTRASENSITIVE ELECTRICALDETECTION OF NUCLEIC ACIDS ON NANOGAPPED BIOSENSORJ.M. Kong1, A.R. Ferhan2, X.T. Chen1, L. Zhang1, and N. Balasubramanian1

1Institute of Microelectronics, SINGAPORE and 2Nanyang Technological University, SINGAPORE

W22DTHE RELATION BETWEEN BIOMOLECULAR INTERACTION AND RESONANCE BEHAVIOR OFMICROCANTILEVERK.S. Hwang, H.K. Jeon, S.-M. Lee, S.K. Kim, and T.S. KimKorea Institute of Science and Technology (KIST), KOREA

Detection Technologies

W15D2D-SPR DETECTION OF INTERLEUKIN-2 IN SINGLE CELL BASED MICROWELL ARRAYM. Suzuki, S. Hane, and Y. IribeUniversity of Toyama, JAPAN

W16DIN SITU MONITORING OF THE ANTICANCER DRUG EFFLUX FROM DRUG RESISTANT LUNGCANCER CELLSY. Chen1, H. Li2, Y. Wang1, L. Zhang1, R. Julien1, and K. Tang1

1Institute of Microelectronics, SINGAPORE and 2Nanyang Technological University, SINGAPORE

W17DPDMS-BASED MICROFLUIDIC PLATFORM WITH AN ION-SELECTIVE MICROELECTRODE FORQUANTIFYING K+ EFFLUX FROM CELLSC. Miville-Godin, L. MacQueen, S. Bychkov, M.R. Wertheimer, and O.T. GuenatÉcole Polytechnique de Montréal , CANADA

W14DSIMULTANEOUS NATIVE UV FLUORESCENCE AND ABSORBANCE DETECTION FOR MICROCHIPELECTROPHORESIS USING INTEGRATED WAVEGUIDESP.D. Ohlsson, O. Ordeig, K.B. Mogensen, and J.P. KutterTechnical University of Denmark (DTU), DENMARK

Detection TechnologiesElectrochemical

Page 31: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego30

Wednesday Program µTAS 2008 San Diego

W1ECONDUCTIVE AND FLEXIBLE NANOCOMPOSITE PATTERNS EMBEDDED IN ELASTOMER USINGMICROCONTACT PRINTING AND CAST MOLDINGC.-X. Liu and J.-W. ChoiLouisiana State University, USA

W2EFABRICATION OF HOURGLASS-SHAPED MICROAPERTURE VIA TWO-STAGE LASER PULSES ANDITS APPLICATIONC.-Y. Chen, T.-Y. Tu, D.-S. Jong, and A.M. WoNational Taiwan University, TAIWAN

W3EIN-SITU FABRICATION OF THREE-DIMENSIONAL POLYMERIC MICROSTRUCTURES USING SOFTMEMBRANE DEFORMATION AND OPTOFLUIDIC MASKLESS LITHOGRAPHYS.A. Lee, S.E. Chung, and S. KwonSeoul National University, KOREA

W4EMONOLITHIC FABRICATION OF NOVEL MICROFLUIDIC COMPONENTS WITH FIXED ASPECT RATIOROUND MICROFLUIDIC CHANNELS USING NOVEL RAPID MOLDINGA.W. Browne, W. Jung, M.J. Rust, S. Lee, and C.H. AhnUniversity of Cincinnati, USA

MEMS & NEMS TechnologiesMicro & Nano-Machining

W5EA MICROFLUIDIC DEVICE FOR PARTICLE SEPARATION UTILIZING EAVES STRUCTURESH.-W. Wu1, C.-W. Huang1, and G.-B. Lee1,2

1National Cheng Kung University, TAIWAN and 2Industrial Technology Research Institute, TAIWAN

W6EARBITRARY SERIAL DILUTION MICROFLUIDIC NETWORK COMPOSED OF MICROCHANNELS WITHHIGH CROSS-SECTION AREA RATIOK. Hattori, S. Sugiura, and T. KanamoriNational Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W7EDESIGN AND FABRICATION OF A PDMS MICROFLUIDIC CHAMBER FOR MICROFLUIDIC EXPERI-MENTS WITH ORGANOTYPIC BRAIN SLICES A. Queval, C.M. Perrault, M.A. Qasaimeh, R.A. McKinney, and D. JunckerMcGill University, CANADA

W8EDEVELOPMENT OF A VASCULAR SMOOTH MUSCLE CELL-BASED BIO-MICROACTUATORY. Tanaka1, K. Sato1, T. Shimizu2, M. Yamato2, T. Okano2, I. Manabe2, R. Nagai1, and T. Kitamori11University of Tokyo, JAPAN and 2Tokyo Women's Medical University, JAPAN

W9EFABRICATION AND EVALUATION OF TEMPERATURE-TOLERANT BIOACTUATOR DRIVEN BY INSECTHEART CELLSY. Akiyama, K. Iwabuchi, Y. Furukawa, and K. MorishimaTokyo University of Agriculture and Technology, JAPAN

W10ELEIDENFROST LIQUID DROPLETS ON MICRO/NANO RATCHETSJ.T. Ok, E. Lopez-Oña, H. Wong, and S. ParkLouisiana State University, USA

W11EMICROFLUIDIC CHIP OF FAST DNA HYBRIDIZATION USING DENATURE AND MOTION OF NUCLEICACIDSY.-C. Chung1, Y.-C. Lin2, C.-D. Chueh1, C.-Y. Ye1, and L.-W. Lai11Ming Chi University of Technology, TAIWAN and 2National Cheng Kung University, TAIWAN

MEMS & NEMS TechnologiesMicrofluidic Components

W15EA FLEXIBLE PARYLENE NEURAL PROBE COMBINED WITH A MICRODIALYSIS MEMBRANEN. Kotake1, T. Suzuki1, K. Mabuchi1, and S. Takeuchi1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

W16EMETAL-ORGANIC THIN-FILM ENCAPSULATION FOR GRAVIMETRIC GAS MICROSENSORSJ. Fang, J. Fu, and F. AyaziGeorgia Institute of Technology, USA

W17EOPTOFLUIDIC MANIPULATION AND PACKAGING OF SILICON MICROCHIPS USING RAILEDMICROFLUIDICSS.E. Chung, S.A. Lee, J. Kim, and S. KwonSeoul National University, KOREA

W18ETOWARDS AN INDUSTRIAL FABRICATION PROCESS FOR ELECTROWETTING CHIP USINGSTANDARD MEMS TECHNOLOGYC. Delattre, R. Blanc, G. Castellan, C. Chabrol, N. David, E. Dubard, O. Constantin, Y. Fouillet, D. Jary, A.Rival, and P. CaillatCEA-LETI-MINATEC, FRANCE

MEMS & NEMS TechnologiesHybrid Devices, Packaging & Components Interfacing

W19EAUTOMATED MICROFLUIDIC IMMUNOASSAY (AMI) SYSTEM UTILIZING A POLYMER CHIPEQUIPPED WITH A BLOOD FILTER AND REAGENT STORAGE CHAMBERSK.H. Chung, H.W. Song, Y.H. Choi, and D. LeeElectronics and Telecommunications Research Institute (ETRI), KOREA

W20EDEVELOPMENT OF PORTABLE AND RAPID HUMAN DNA ANALYSIS SYSTEM AIMING ON-SITESCREENINGM. Asogawa1, M. Sugisawa1, K. Aoki1, H. Hagiwara2, and Y. Mishina2

1NEC Corporation, JAPAN and 2Arbiotec Corporation, JAPAN

W21ELAB-ON-GLASS: INTEGRATED ELECTRONIC DISPOSABLES FOR RAPID MOLECULARDIAGNOSTICSM.W.G. Ponjée1, A.A.M. Hoevenaars1, D.A. Fish2, N.N. Kahya1, C.J.M. Lasance1, W.H.M. van Beek1,P. Collins2, and J.M.J. den Toonder11Philips Research Europe, THE NETHERLANDS and 2Philips Research Europe, UK

MEMS & NEMS TechnologiesIntegration "Sample to Result" Systems

W12EON-CHIP ACTUATION OF A THERMALLY SENSITIVE HYDROGEL VALVEE.J. Geiger1,2, D.A. Mair2, A.P. Pisano1, and F. Svec3

1University of California, Berkeley, USA, 2Fluigence, LLC, USA, and3Lawrence Berkeley National Laboratory, USA

W13EPOLYDIMETHYLSILOXANE (PDMS) PERISTALTIC PUMP CHARACTERIZATION FORPROGRAMMABLE LAB-ON-A-CHIP APPLICATIONSH.-S. Chuang1, A.M. Amin1, S.T. Wereley1, M. Thottethodi1, T.N. Vijaykumar1, and S.C. Jacobson2

1Purdue University, USA and 2Indiana University, USA

W14ESIMULATION AND EXPERIMENTAL VERIFICATION OF A QUASI DIGITAL MICROFLOW REGULATORJ. Casals-Terré1, M. Duch2, J.A. Plaza2, J. Esteve2, R. Pérez-Castillejos3, E. Vallés4, and E. Gómez4

1Technical University of Catalonia, SPAIN, 2Centro Nacional de Microelectrònica, SPAIN,3Harvard University, USA, and 4University of Barcelona, SPAIN

Page 32: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 31

Wednesday ProgramSan Diego µTAS 2008

W22EBEAD BASED TEMPERATURE CONTROLLABLE MICROCHIP FOR CANCER DIAGNOSISM.-S. Kim, T.S. Sim, B.-R. Lee, H.-J. Yoon, B.-G. Kim, Y.-S. Lee, and Y.-K. KimSeoul National University, KOREA

W23ERAPID DETECTION OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) USINGDIGITAL MICROFLUIDICSZ. Hua, D.J. Allen, P. Thwar, A.E. Eckhardt, V.K. Pamula, and M.G. PollackAdvanced Liquid Logic Inc., USA

W9FSIMPLE METHOD FOR QUANTITATIVE PCR USING FLOW-THROUGH PCR DEVICET. Fukuba1, M. Hiraga2, A. Takamatsu2, C. Provin1, T. Yamamoto1, and T. Fujii11University of Tokyo, JAPAN and 2Waseda University, JAPAN

W18FACCURATE WHOLE GENOME ANALYSIS FROM 150 CELLS SAMPLESD. Irimia1, M. Mindrions2, A. Russom1, W. Xiao2, R.W. Davis2, and M. Toner11Harvard University, USA and 2Stanford University, USA

W24EHIGH-FIDELITY FABRICATION OF MICROFLUIDIC CHANNELS SHAPED FOR ON-CHIP SELF-ACCUMULATION OF MICROTUBULESC.-T. Lin1,2, M.-T. Kao2, K. Kurabayashi2, and E. Meyhöfer21National Taiwan University, TAIWAN and 2University of Michigan, USA

W1FA PARRALLEL FERROFLUID-DRIVEN MICROCHIP FOR HIGH-THROUGHPUT POLYMERASECHAIN REACTIONY. Sun, N.T. Nguyen, and Y.C. KwokNanyang Technological University, SINGAPORE

W2FDEVELOPMENT OF A MICROFLUIDIC DEVICE FOR COMBINED RNA EXTRACTION ANDREAL-TIME, REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION E.M Hughes, K.J. Shaw, P.T. Docker, C.E. Dyer, J. Greenman, and S.J. HaswellUniversity of Hull, UNITED KINGDOM

W3FIN VITRO SYNTHESIS OF PROTEIN IN THREE PHASE FLOW VIA MERGING OF DROPLETS OF PCRAND TRANSLATIONAL MACHINERYA. Asthana, K.O. Kim, J. Perumal, D.M. Kim, and D.P. KimChungnam National University, KOREA

W4FMICRO TOTAL ANALYSIS ASSEMBLY FOR BACTERIAL TOTAL NUCLEIC ACID ANALYSISI.K. Lao1, C.-K. Yong2, and N. Thepsuparungsikul21A*Star (Agency for Science, Technology and Research), SINGAPORE and 2National University ofSingapore, SINGAPORE

W5FMICROFLUIDIC HUMAN GENETIC PROFILING USING FULLY NON-CONTACT TEMPERATURECONTROLD.C. Leslie, L.A. Legendre, E. Seker, B.C. Strachan, and J.P. LandersUniversity of Virginia, USA

W6FMULTIPLEXED NONCOMPETITIVE AFFINITY ASSAYS FOR PROTEIN QUANTIFICATION USINGTEMPERATURE GRADIENT FOCUSING OF APTAMERS FOLLOWED BY END-POINT PCRM.S. Munson, J.H. McDaniel, D. Ross, M. Salit, and L.E. LocascioNational Institute of Standards and Technology (NIST), USA

W7FON-CHIP INTEGRATION OF SAMPLE PRETREATMENT AND MULTIPLEX POLYMERASE CHAINREACTION (PCR) FOR DNA ANALYSISM. Brivio1, D. Snakenborg1, E. Søgaard1, A. Ahlford2, A.-C. Syvänen2, J.P. Kutter1, and A. Wolff11Technical University of Denmark (DTU), DENMARK and 2Uppsala University Hospital, SWEDEN

W8FPROTEIN EXPRESSION IN ARRAY DEVICES WITH PASSIVE PUMPINGR. Khnouf1, D.J. Beebe2, and Z.H. Fan1

1University of Florida, USA and 2University of Wisconsin, Madison, USA

MEMS & NEMS Technologies

ApplicationsGenomics & Proteomics

W10FA ONE-TOUCH TYPE HAND-OPERATED LOC FOR THE BIOELECTROCATALYTIC IMMUNOASSAYUSING BACKFILLING METHOD S.W. Park, K.-I. Kim, J.H. Lee, H.C. Yoon, and S.S. YangAjou University, KOREA

W11FAN OPTO-FLUIDIC SENSOR FOR MONITORING INTRACRANIAL PRESSURES.B. Kodandaramaiah and N. ChronisUniversity of Michigan, USA

W12FAUTOMATIC MICRO-ELISA SYSTEM AND APPLICATION TO RAPID hsCRP DIAGNOSIST. Ohashi1, K. Mawatari2, and T. Kitamori2,3

1Institute of Micro Chemical Technology, JAPAN, 2Kanagawa Academy of Science and Technology,JAPAN, and 3University of Tokyo, JAPAN

W13FPALM-SIZED REAL-TIME RT-PCR SYSTEMP. Neuzil1, L. Novak2, J. Pipper3, S. Lee4, L.F.P. Ng5, and C. Zhang3

1Institute of Microelectronics, SINGAPORE, 2Czech Technical University, CZECH REPUBLIC,3Institute of Bioengineering and Nanotechnology, SINGAPORE, 4Nanyang Polytechnic, SINGAPORE, and5Genome Institute of Singapore, SINGAPORE

W14FLAB-ON-A-CHIP CARTRIDGE FOR PROCESSING OF IMMUNOASSAYS WITH INTEGRATED SAMPLEPREPARATION S. Lutz1, P. Lang2, I. Malki1, D. Mark1, J. Ducree1, R. Zergerle1,2, and F. von Stetten1,2

1Institute for Micromachining and Information Technology (HSG-IMIT), GERMANY and2University of Freiburg (IMTEK), GERMANY

W15FMICROFLUIDIC CD-BASED SOMATIC CELL COUNTER FOR THE EARLY DETECTION OF BOVINEMASTITISJ.L. Garcia-Cordero1, L. Kent1, I.K. Dimov1, C. Viguier2, L.P. Lee1,3, and A.J. Ricco1

1Dublin City University, IRELAND, 2Enfer Diagnostics, IRELAND, and3University of California, Berkeley, IRELAND

W16FMULTIMODAL PARTICLES FOR BIOLOGICAL DETECTION AND THERAPYK. Hettiarachchi1, P.A. Dayton2, and A.P. Lee1

1University of California, Irvine, USA and 2University of North Carolina, Chapel Hill, USA

W17FRAPID AND QUANTITATIVE DETECTION OF MALARIAL ANTIGEN FOR MICROFLUIDICPOINT-OF-CARE DIAGNOSIS IN THE DEVELOPING WORLDD.Y. Stevens1, C.R. Petri2, J.L. Osborn1, P. Spicar-Mihalic1, K.G. McKenzie1, and P. Yager11University of Washington, USA and 2Boston College, USA

ApplicationsClinical Diagnostics

ApplicationsMicroarrays

Page 33: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego32

Wednesday Program µTAS 2008 San Diego

W19FHIGH PERFORMANCE MICROFLUIDIC DEVICE FOR SEQUENTIAL TRAPPING, LABELING ANDCONTENT EXTRACTION OF SINGLE CELLSY. Murakami1, T. Arakawa1,2, S. Nomura1, Y. Yamaguchi1, and S. Shoji11Waseda University, JAPAN and 2University of Tokyo, JAPAN

W20FINTRACELLULAR POTENTIAL MEASUREMENTS OF ADHERENTLY GROWING CELLS USINGMICRO-NEEDLE ARRAYSC. Tautorat1, P.J. Koester1, J. Held2, J. Gaspar2, P. Ruther2, O. Paul2, A. Cismak3, A. Heilmann3,J. Gimsa1, H. Beikirch1, L. Jonas1, and W. Baumann1

1University of Rostock, GERMANY, 2University of Freiburg (IMTEK), GERMANY, and3Fraunhofer Institute for Mechanics of Materials Halle, GERMANY

W21FONE-TO-ONE GENE-ENCODED FUNCTIONAL PROTEIN MICROARRAYM. Biyani1, T. Osawa1, N. Nemoto2, and T. Ichiki11University of Tokyo, JAPAN and 2Saitama University, JAPAN

W27F3D CELL CULTURE USING MONODISPERSE PEPTIDE HYDROGEL BEADSY. Tsuda1, Y. Morimoto1 and S. Takeuchi1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

W28FA CARDIOMYOCYTE-BASED BIOSENSOR FOR THE STUDY ON HYPERTROPHY INDUCED BYTUMOR NECROSIS FACTOR ALPLAY. Qiu1, R. Liao2, and X. Zhang1

1Boston University, USA and 2Harvard Medical School, USA

W29FA CONTINUOUS-FLOW CELL CULTURE ARRAY WITH CHAOTIC MIXERS FOR IDENTIFICATION OFTHE OPTIMUM GROWTH FACTORS COMBINATIONS FOR MOUSE EMBRYONIC STEM CELLSDIFFERENTIATION Y.-H. Hsiao, K.-Y. Lee, Y.-T. Lin, I-D. Yang, H.-Y. Chang, C.-C. Chieng, and L.-S. FanNational Tsing Hua University, TAIWAN

W30FA MICROFLUIDIC PLATFORM OPTIMIZING BEAD-BASED ELISA FOR THE DETECTION OF CELLSECRETIONB. Lincoln1, J. Garcia Cordero1, C.R. Poulsen1, and L.P. Lee1,2

1Dublin City University, IRELAND and 2University of California, Berkeley, USA

W31FA NOVEL MICROFLUIDIC DEVICE COMBINING DIELECTROPHORESIS-BASED CELL PATTERNINGAND 3D BIOMATERIALSJ.T. Lu, C.P. Huang, G. Lull, N.L. Jeon, E.S. Monuki, L.A. Flanagan, and A.P. LeeUniversity of California, Irvine, USA

W32FAN INTEGRATED MICROFLUIDIC PLATFORM FOR SYSTEMS-LEVEL INTERROGATION OFSIGNALING PATHWAYS INVOLVED IN INNATE IMMUNITYA.K. Singh, C.S. Branda, S.B. Branda, B. Carson, J. Brennan, C.D. James, J.N. Kaiser, T.W. Lane,R.P. Manginell, A. Martino, M.W. Moorman, J. Poschet, K.D. Patel, T.D. Perroud, R.F. Renzi,N.S. Srivastava, and M. WuSandia National Laboratories, USA

W33FATTACHMENT AND GROWTH BEHAVIOR OF METASTATIC BREAST CANCER CELLS INMEMS-BASED SILICON MICROENVIRONMENTSM. Nikkhah1, J.S. Strobl2, A. Omotosho1, and M. Agah1

1Virginia Polytechnic Institute and State University, USA and2Edward via Virginia College of Osteopathic Medicine, USA

W34FCELL MOTILITY ASSAY USING IMAGE-CONTROLLED OPTOELECTRONIC TRAPW. Choi1, S-W. Nam2, H. Hwang1, S. Park2, and J-K. Park1

1Korea Advanced Institute of Science and Technology (KAIST), KOREA and2Ewha Womans University, KOREA

W35FCONTINUOUS-FLOW CELL TRAPPING AND HYBRIDOMA-CELL PRODUCTION ON CHIP USINGLIQUID ELECTRODESA. Valero, R. Tornay, A. de Pablo, N. Demierre, and P. RenaudEcole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W36FCONTROLLED ENCAPSULATION OF SINGLE-CELLS INTO MONODISPERSE PICOLITER DROPSJ.F. Edd1, D. Di Carlo1, K.J. Humphry2, S. Köster2, D. Irimia1, D.A. Weitz2, and M. Toner11Massachusetts General Hospital, USA and 2Harvard University, USA

W37FDIFFERENTIAL OPTICAL FLOW FOR AUTOMATED CELL MOTILITYE.G.R. Kim, P. Sivasubramaniam, J.P. Wikswo, and K.T. SealeVanderbilt University, USA

W38FDISPOSABLE MICROFLUIDIC TEMPERATURE CONTROL ON CHIP CELL STUDIES G. Velve Casquillas1, M. Le berre2, C.R. Terrena4, C. Fu4,A.M. Haghiri-Gosnet1, J.J. Greffet3, P.T. Tran4,5, and Y. Chen2

1Centre National de la Recherche Scientifique (CNRS), FRANCE, 2Ecole Normale Supérieure, FRANCE,3Ecole Centrale Paris Scientifique, FRANCE, 4University of Pennsylvania, USA, and5Institut Curie, FRANCE

W39FMICROFLUIDIC ELECTROPORATIVE FLOW CYTOMETRY FOR STUDY OF CELL MECHANICSN. Bao, Y. Zhan, and C. LuPurdue University, USA

W22FAN ON-CHIP WHOLE BLOOD/PLASMA SEPARATOR WITH COLLOIDAL SILICA BEAD-PACKEDMICROCHANNEL ON COC POLYMERJ.S. Shim, A.W. Browne, S.H. Lee, and C.H. AhnUniversity of Cincinnati, USA

W23FHIGH EFFICIENT SPERM MOTILITY SORTING BASED ON ENCOUNTERED CURVE-STRAIGHT MICROSTREAMING FLOWT.-L. Wu1, D.-J. Yao1, F.-G. Tseng1,2, and L.-C. Pan3

1National Tsing Hua University, TAIWAN, 2Academia Sinica, TAIWAN, and3Taipei Medical University, TAIWAN

W24FMICROFABRICATED SEMI-PACKED GAS CHROMATOGRAPHY COLUMN WITH FUNCTIONALIZEDPARYLENE AS THE STATIONARY PHASET. Nakai1, S. Nishiyama1, M. Shuzo1,2, J.-J. Delaunay1,2, and I. Yamada1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

W25FPRECISE MICROSCALE POLYMER GRADIENTS APPLIED TO ISOELECTRIC FOCUSING AND PORELIMIT ELECTROPHORESISG.J. Sommer, A.K. Singh, and A.V. HatchSandia National Laboratories, USA

W26FSELECTIVE TWO-PHASE MINERAL SEPARATION ON A MICROFLUIDIC CHIPS. Klink1, C. Priest1, J. Ralston1, R. Sedev1, K. Mawatari2, and T. Kitamori2,3

1University of South Australia, AUSTRALIA, 2Kanagawa Academy of Science and Technology, JAPAN,and 3University of Tokyo, JAPAN

ApplicationsSeparation Science

ApplicationsCell Handling & Analysis

Page 34: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego 33

Wednesday ProgramSan Diego µTAS 2008

W40FEXAMINING THE ROLE OF NEUREGULIN-1 IN SYNAPTOGENESIS USING MICROFLUIDICSA. Wu1, S. Koirala2, G. Corfas2, and A. Folch1

1University of Washington, USA and 2Harvard University, USA

W41FGUIDING OF PHOTOSENSITIVE CELLS BY MULTIPLE POINT ORGANIC LEDSH. Nakamura1, N. Misawa1, T. Yamamura1, and S. Takeuchi1,2

1University of Tokyo, JAPAN and 2Japan Science and Technology Agency (JST), JAPAN

W42FINDEPENDENT CONTROL OF OXYGEN CONCENTRATION FOR CELL CULTURE IN AN ADD-ONPLATFORM FOR MULTI-WELL PLATESS.C. Oppegard, K. Nam, and D.T. EddingtonUniversity of Illinois, Chicago, USA

W43FCELLULAR MICROPATTERNS WITH BUILT-IN BIOSENSORS FOR DETECTION OF EXTRACELLULARMETABOLITES J. Yan, J.Y. Lee, S. Shah, and A. RevzinUniversity of California, Davis, USA

W44FLONG-TERM STORAGE OF LIVING CELLS ON CHIP FOR CELL-BASED ASSAYSY. Xu, T. Konno, K. Sato, K. Ishihara, and T. KitamoriUniversity of Tokyo, JAPAN

W45FMICROFLUIDIC ALIGNMENT SYSTEM FOR SINGLE CELL MANIPULATION AND CULTURET. Arakawa1,2, N. Takeda1, Y. Edagawa1, Y. Yamaguchi1, and S. Shoji11Waseda University, JAPAN and 2University of Tokyo, JAPAN

W46FMICROFLUIDIC SYSTEM FOR THE STUDY OF MECHANICAL AND BIOCHEMICAL RESPONSE OFENDOTHELIAL CELLS TO FLOW-INDUCED MECHANICAL STIMULIM. Rossi1, R. Lindken1, B.P. Hierck2, and J. Westerweel1Delft University of Technology, THE NETHERLANDS and2Leiden University Medical Center, THE NETHERLANDS

W47FMICROPATTERNING OF HYDROGEL AND ON-CHIP LONG TIME MONITORING OF INDIVIDUALCELLS IN A CAGEF. Arai, H. Matsumoto, T. Shijuku, and N. UozumiTohoku University, JAPAN

W48FAPOPTOTIC RESPONSE OF OVARIAN CANCER CELLS IN HYPOXIC CONDITIONSC.R. Poulsen1, B. Lincoln1, I. Dimov1, J.L. Garcia-Cordero1, S. O’Toole2,M. Radomski3, J. O’Leary2, and L.P. Lee1,4

1Dublin City University, IRELAND, 2St. James’ Hospital, IRELAND,3Trinity College Dublin, IRELAND and 4University of California, Berkeley, USA

W49FON-CHIP FLOW CYTOMETRY AND SINGLE-CELL IMAGING IN TANDEM: INTEGRATION OF A µFACSWITH A SINGLE-CELL ARRAYK.D. Patel, T.D. Perroud, C.S. Branda, T.W. Lane, and A.K. SinghSandia National Laboratories, USA

W50FPARALLEL MULTI-TIME POINT CELL STIMULUS AND LYSIS IN A MICROFLUIDIC DEVICE USINGCHAOTIC MIXING AND PRESSURE RESISTANCEA. Hirsch, C. Rivet, B. Zhang, M. Kemp, and H. LuGeorgia Institute of Technology, USA

W51FREAL-TIME MEASUREMENT OF CELLULAR REFRACTIVE INDEX AND THICKNESS USING CELLCULTURE CHIPJ.J. Gu1, Y.F. Yu1, E.P. Li2, S.H. Ng3, P.H. Yap3, X.Q. Zhou4, T.H. Cheng1, and A.Q. Liu1

1Nanyang Technological University, SINGAPORE, 2Institute of High Performance Computing, SINGA-PORE, 3DSO National Laboratories, SINGAPORE, and 4Institute for Infocomm Research, SINGAPORE

W52FRECONSTRUCTION OF VASCULAR TISSUE USING A SEPARABLE MICROCHIPT. Yamashita1, N. Idota2, and T. Kitamori1,2

1University of Tokyo, JAPAN and 2Kanagawa Academy of Science & Technology, JAPAN

W53FSMALL MOLECULE GRADIENT GENERATOR FOR MICROFLUIDIC VISCOUS SHEAR-FREE CELLCULTURET. Kim1, M. Pinelis2, and M.M. Maharbiz1

1University of California, Berkeley, USA and 2University of Michigan, USA

W54FSTUDY OF SINGLE CELL KINASE ACTIVITY USING AN AUTOMATED MICROFLUIDIC DEVICEA.D. Hargis, C. Sims, N.L. Allbritton, and J.M. RamseyUniversity of North Carolina, Chapel Hill, USA

W55FTHE MICROFLUIDIC SAME-SINGLE-CELL ANALYSIS (SASCA) FOR MEDICAL DIAGNOSIS OFMULTI-DRUG RESISTANCE AND ITS INHIBITION X. Li, Y. Chen, and P.C.H. LiSimon Fraser University, CANADA

W56FYEAST CELLS DETECTION IN A VERY FAST AND HIGHLY VERSATILE MICROFABRICATEDCYTOMETERR. Rodriguez-Trujillo1,2, O. Castillo-Fernandez1,2, M. Arundell1,2,3, J. Samitier1,3, and G. Gomila1,3

1Institute for Bioengineering of Catalonia (IBEC), SPAIN, 2University of Barcelona, SPAIN, and3Centro de Investigación Biomédica en Red en Bioingenieria, Biomateriales y Nanomedicina(CIBER-BBN), SPAIN

W57FMICROFLUIDIC DEVICE TO CONSTRUCT MULTIFUNCTIONAL ENVELOPE-TYPE NANODEVICE FORGENE THERAPYK. Kitazoe1, N. Kaji1, Y. Okamoto1, M. Tokeshi1, K. Kogure2, H. Harashima3, and Y. Baba1,4

1Nagoya University, JAPAN, 2Kyoto Pharmaceutical University, JAPAN, 3Hokkaido University, JAPAN,and 4National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W58FMICROFLUIDIC BASED STRIP ASSAY FOR SURFACE BOUND INHIBITORS IN SPINAL CORD INJURYB. Vahidi, J.W. Park, H.J. Kim, and N.L. JeonUniversity of California, Irvine, USA

W59FVLSI MICROFLUIDIC WELL PLATES FOR COMBINATORIAL CHEMISTRYB.R. Schudel, C.J. Choi, B.T. Cunningham, and P.J.A. KenisUniversity of Illinois, Urbana-Champaign, USA

W60FMINIATURIZING THE WHOLE DEVICE: MICRO-TOTAL-ANALYSIS SYSTEM FOR IN-SITUCOLORIMETRIC WATER QUALITY MONITORINGC.R. Koch, J.D. Ingle, and V.T. RemchoOregon State University, USA

ApplicationsDrug Discovery

ApplicationsEnvironmental

W61FA COMBINATORIAL MULTICOMPONENT PLUG MIXER FOR SYSTEMS CHEMISTRYF. Azizi, Q. Wan, T. Radivoyevitch, C. Dealwis, and C.H. MastrangeloCase Western Reserve University, USA

ApplicationsChemical Synthesis

Page 35: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego34

Wednesday Program µTAS 2008 San Diego

W62FAN INTELLIGENT MICROREACTOR SYSTEM FOR REAL-TIME OPTIMIZATION OF A CHEMICALREACTIONJ.P. McMullen and K.F. JensenMassachusetts Institute of Technology, USA

W63FDEVELOPMENT OF A MICROFLUIDIC INSTRUMENT FOR PERFORMING ENZYME KINETICS ASSAYSM. Patel, J.T. Nevill, D.M. Hartmann, D. Tew, S. Thrall, G. Votaw, and H.C. CrenshawGlaxoSmithKline, USA

W64FIN SITU RAMAN SPECTROSCOPY OF SOLID CATALYZED REACTIONS IN SUPERCRITICAL CO2WITHIN A SI/GLASS MICROREACTORF. Trachsel, A. Urakawa, A. Baiker, and P. Rudolf von RohrETH Zurich, SWITZERLAND

W66FCONTINUOUS MEDIUM FLOW BASED PHOTOSYNTHETIC BACTERIA FUEL CELL USINGWATER-ABSORBING POLYMERT. Moriuchi, A. Furuya, K. Morishima, and Y. FurukawaTokyo University of Agriculture and Technology, JAPAN

W67FINSECT FLIGHT CONTROL BY NEURAL STIMULATION OF PUPAE-IMPLANTED FLEXIBLE MULTISITEELECTRODESW.M. Tsang1, Z. Aldworth2, A. Stone3, A. Permar3, R. Levine3, J.G. Hildebrand3, T. Daniel2,A.I. Akinwande1, and J. Voldman1

1Massachusetts Institute of Technology, USA, 2University of Washington, USA, and3University of Arizona, USA

W68FLIPOSOME FORMATION ON A MICRO-PATTERNED PHOSPHOLIPID FILM T. Shiomitsu and T. ToriiUniversity of Tokyo, JAPAN

W69FPROTEIN REFOLDING PROMOTED BY MULTI-DILUTION MICROCHIPH. Yamaguchi1, M. Miyazaki1,2, and H. Maeda1,2

1National Institute of Advanced Industrial Science and Technology (AIST), JAPAN and2 Kyushu University, JAPAN

W70FSPATIALLY TARGETED STIMULATION OF CELLS FOR QUANTITATIVE GAP JUNCTION ANALYSISS. Chen and L.P. LeeUniversity of California, Berkeley, USA

W65FA SMART POLYMER LAB-ON-A-TUBE (LOT) WITH SPIRALLY-ROLLED MICROCHANNELS FORIN-SITU DRUG DELIVERY AND BRAIN TUMOR MONITORINGC. Li, W. Jung, A. Browne, R.K. Narayan, and C.H. AhnUniversity of Cincinnati, USA

Applications

AUTOMATED HIGH-THROUGHPUT STRUCTURAL PROTEIN ANALYSIS USING SMALL ANGLE X-RAYSCATTERING COMBINED WITH A MICROFLUIDIC APPROACHS.S. Nielsen1, D. Snakenborg1,2, K.N. Toft2, M.G. Jeppesen2, J.K. Jacobsen3, B. Vestergaard2,L. Arleth2, and J.P. Kutter11Technical University of Denmark (DTU), DENMARK and 2Copenhagen University, DENMARK,3Novo Nordisk A/S, DENMARK

ENZYME KINETICS BY DIRECTLY IMAGING A POROUS SILICON MICROREACTOR USING DIOSMASS SPECTROMETRYK.P. Nichols and H.J.G.E. GardeniersMESA+, University of Twente, THE NETHERLANDS

16:20 - 16:40

Session 3B3Clinical and Biomolecular Analysis

Session 3A3Protein Expression and Characterization

A MICROFABRICATED DEVICE FOR PERFORMING COMPREHENSIVE ONLINE LC-CE-MS FORPROTEOMICS APPLICATIONSJ.S. Mellors, A.G. Chambers, W.H. Henley, and J.M. RamseyUniversity of North Carolina, Chapel Hill, USA

A FIELD-DEPLOYABLE SYSTEM FOR AUTOMATED MOLECULAR TESTING USING MODULARMICROFLUIDICSM.L. Hupert1, H. Wang1, H.-W. Chen1, W. Stryjewski2, D. Patterson1,2, M.A. Witek1, P. Datta1, J.Goettert1, M.C. Murphy1, and S.A. Soper1,2

1Louisiana State University, USA and 2BioFluidica Microtechnologies , USA

16:40 - 17:00

KINETICS OF PROTEIN EXPRESSION IN SINGLE CELLS USING MICROFLUIDICSJ.-U. Shim, L. Olguin, G. Whyte, D. Bratton, F. Hollfelder, C. Abell, and W. HuckUniversity of Cambridge, UK

ONE-STEP IMMUNOASSAY ON CAPILLARY DRIVEN MICROFLUIDICSL. Gervais1,2, M. Zimmermann1,2, P. Hunziker2, and E. Delamarche1

1IBM Zürich Research Laboratory, SWITZERLAND and 2University Hospital Basel, SWITZERLAND

17:00 - 17:20

17:20 Adjourn for the Day

Grand Ballroom A-B Grand Ballroom C

Page 36: San Diego µTAS 2008 - University at Buffalo

μTAS 2008 • San Diego 35

Thursday ProgramSan Diego μTAS 2008

A PLASMONIC LIQUID WAVEGUIDE SENSOR USING NANOPARTICLES FOR LABEL-FREEMEASUREMENT APPLICATIONSH.J. Huang1, D.P. Tsai2, and A.Q. Liu1

1Nanyang Technological University, SINGAPORE and 2National Taiwan University, TAIWAN

DROPLET-BASED MICROFLUIDIC PLATFORMS FOR SELECTING INHIBITORS OF VIRAL CELL-ENTRYC.A. MertenUniversite Louis Pasteur and CNRS UMR 7006, FRANCE

09:00 - 09:20

A NEW MICRO FLOW CYTOMETER USING OPTICALLY-INDUCED DIELECTROPHORETIC FORCESFOR CONTINUOUS MICROPARTICLE COUNTING AND SORTINGY.-H. Lin1 and G.-B. Lee1,2

1National Cheng Kung University, TAIWAN and 2Industrial Technology Research Institute, TAIWAN

ON-CHIP SUB-CELLULAR RESOLUTION WHOLE-ANIMAL MANIPULATION FOR HIGH-THROUGHPUTIN VIVO DRUG/GENETIC SCREENINGC.B. Rohde, F. Zeng, and M.F. YanikMassachusetts Institute of Technology, USA

09:20 - 09:40

A MULTI-COLOR MICROFLUIDIC COLLOIDAL LASERS.K.Y. Tang and G.M. WhitesidesHarvard University, USA

CROSSING STREAMLINES TO LYSE CELLS AND SIMULTANEOUSLY SEPARATE GENOMIC CONTENTSK.J. Morton, K. Loutherback, D.W. Inglis, J.C. Sturm, R.H. Austin, and S.Y. ChouPrinceton University, USA

09:40 - 10:00

Session 4B1In Vivo and Cellular Screening

Session 4A1Microfluidic Integrated Optics

FABRICATION OF THREE-DIMENSIONAL STRUCTURE BY SELF-FORMING MENISCUS ANDITS APPLICATION TO ON-CHIP CELL FUSIONM. Gel1, Y. Kimura1, B. Techaumnat1, O. Kurosawa2, and M. Washizu1

1University of Tokyo, JAPAN and 2ASTEM Research Inst Kyoto, JAPAN

MICROCHIP-BASED POLYMERIC MULTIFUNCTIONAL MICROBOTSG.-H. Kwon1, J.-Y. Park1, E.-J. Lee1, M.L. Frisk2, D.J. Beebe2, and S.-H. Lee1

1Korea University, KOREA and 2University of Wisconsin , USA

10:30 - 10:50

SINGLE CELL MICROINJECTION USING COMPLIANT FLUIDIC CHANNELSA. Noori and P.R. SelvaganapathyMcMaster University, CANADA

MEMS-BASED MILLIMETER-SCALE POWER SOURCE WITH ON-BOARD FUELAND PASSIVE CONTROL SYSTEMS. Moghaddam, E. Pengwang, K. Lin, R. Masel, and M. ShannonUniversity of Illinois, Urbana-Champaign, USA

10:50 - 11:10

A MICROFLUIDIC CULTURE SYSTEM FOR SCREENING OF CHEMICAL DEFINED CONDITIONSFOR HUMAN EMBRYONIC STEM CELLS (hESC)K. Kamei1, S. Guo1, M. Ohashi1, Z.T.F. Yu1, E. Gschweng1, J. Tang1, J. McLaughlin1, K.-B. Lee2,O.N. Witte1, and H.R. Tseng1

1University of California, Los Angeles, USA and 2Rutgers University, USA

DEVELOPMENT AND FIELD EVALUATION OF ISFET PH SENSOR INTEGRATED WITHSELF-CALIBRATION DEVICE FOR DEEP-SEA OCEANOGRAPHY APPLICATIONST. Fukuba1, Y. Tamai1, M. Kyo2, K. Shitashima3, Y. Koike4, and T. Fujii11University of Tokyo, JAPAN,2Japan Agency for Marine-Earth Science and Technology (JAMSTEC), JAPAN,3Central Research Institute of Electric Power Industry (CRIEPI), JAPAN and4Civil Engineering Research and Environmental Studies, JAPAN

11:10 - 11:30

Session 4B2Innovative Microfluidic Applications

Session 4A2Tools for Controlled Cell Culture II

Thursday, October 16, 2008

08:00 - 08:40 Poster Awards Ceremony

Monday, Tuesday and Wednesday Poster AwardsWidmer Poster Award

10:00 – 10:30 Break & Exhibit Inspection

11:30 Conference Adjourns

Grand Ballroom A-B Grand Ballroom C

Grand Ballroom A-B Grand Ballroom C

Page 37: San Diego µTAS 2008 - University at Buffalo

µTAS 2008 • San Diego36

Notes µTAS 2008 San Diego

Notes

Page 38: San Diego µTAS 2008 - University at Buffalo