sampling_distributions_and_point_estimation_of_parameters.pdf

Embed Size (px)

Citation preview

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    1/48

    1

    CH.7 Sampling Distributions and

    Point Estimation of Parameters• Introduction

     – Parameter estimation, sampling distribution, statistic, point estimator, point estimate

    • Sampling distribution and the Central Limit Theorem

    • General Concepts of Point Estimation

     – Unbiased estimators

     – Variance of a point estimator 

     – Standard error of an estimator 

     – Mean squared error of an estimator 

    • Methods of point estimation

     – Method of moments

     – Method of maximum likelihood

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    2/48

    2

    7-1 Introduction

    •The field of statistical inference consists of those

    methods used to make decisions or to draw conclusionsabout a population.

    • These methods utilize the information contained in a

    sample from the population in drawing conclusions.

    • Statistical inference may be divided into two major

    areas:

    • Parameter estimation

    • Hypothesis testing

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    3/48

    3

    7-1 Introduction

    Parameter estimation examples

    •Estimate the mean fill volume of soft drink cans: Soft drink cans

    are filled by automated filling machines. The fill volume may

    vary because of differences in soft drinks, automated machines,and measurement procedures.

    • Estimate the mean diameter of bottle openings of a specific bottle manufactured in a plant: The diameter of bottle openings

    may vary because of machines, molds and measurements.

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    4/48

    4

    7-1 Introduction

    Hypothesis testing example

    •2 machine types are used for filling soft drink cans: m1 and m2

    • You have a hypothesis that m1 results in larger fill volume of

    soft drink cans than does m2.

    •Construct the statistical hypothesis as follows:

    • the mean fill volume using machime m1 is larger than the

    mean fill volume using machine m2.

    • Try to draw conclusions about a stated hypothesis.

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    5/48

    5

    Definition

    7-1 Introduction

    • Since a statistic is a random variable, it has a probability distribution.

    • The probability distribution of a statistic is called a sampling distribution

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    6/48

    6

    7-1 Introduction

     xμ 

     X x1=25, x2=30, x3=29, x4=31

    25 30 29 3128.75

    4

     x  + + +

    = = Point estimate of μ 

     point

    estimate

     point

    estimator 

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    7/48

    7

    7-1 Introduction

    2s2σ 

    2S 

    x1=25, x2=30, x3=29, x4=31

    2

    2 1

    ( )

    6.91

    n

    i

    i

     x x

    s n

    =

    = =−

    ∑ Point estimate of 2σ 

     point

    estimate

     point

    estimator 

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    8/48

    8

    7-1 Introduction

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    9/48

    9

    7-1 Introduction

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    10/48

    10

    7.2 Sampling Distributions and the

    Central Limit TheoremStatistical inference is concerned with making decisions about a

     population based on the information contained in a random

    sample from that population.

    Definitions:

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    11/48

    11

    7.2 Sampling Distributions and the

    Central Limit Theorem• The probability distribution of is called the sampling distribution of mean.

    • Suppose that a random sample of size n is taken from a normal population with mean andvariance .

    • Each observation X1, X2,…,Xn is normally and independently distributed with mean andvariance

    • Linear functions of independent normally distributed random variables are also normallydistributed. (Reproductive property of Normal Distr.)

    • The sample mean has a normal distribution

    • with mean

    • and variance

     X 

    2σ 

    μ 2σ 

    1 2 ... n X X X  X n

    + + +=

    ... x

    n

    μ μ μ μ μ 

    + + += =

    2 2 2 22

    2

    ... X 

    n n

    σ σ σ σ  σ 

      + + += =

    2

    , X N n

    σ μ ⎛ ⎞⎜ ⎟

    ⎝ ⎠∼

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    12/48

    12

    7.2 Sampling Distributions and the

    Central Limit Theorem

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    13/48

    13

    7.2 Sampling Distributions and the

    Central Limit TheoremDistributions of average scores

    from throwing dice.

    Practically

    if n ≥30, the normal approximation

    will be satisfactory regardless of theshape of the population.

    İf n

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    14/48

    14

    7.2 Sampling Distributions and the

    Central Limit TheoremExample 7-1

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    15/48

    15

    7.2 Sampling Distributions and the

    Central Limit Theorem

    Figure 7-2 Probability for Example 7-1

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    16/48

    16

    7.2 Sampling Distributions and the

    Central Limit Theorem

    X has a continuous distribution:Find the distributon of the sample

    mean of a random sample of size

    n=40?

    Example 7-2

    1/ 2, 4 6( )0,

     x f xotherwise

    ≤ ≤⎧= ⎨⎩

    5μ  = 2 2(6 4) /12 1/3σ    = − =

    By C.L.T, is approximately normally

    distributed with

     X 

    25 1/[3(40)] 1/120 X X 

    μ σ = = =

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    17/48

    17

    7.2 Sampling Distributions and the

    Central Limit Theorem• Two independent populations

     – 1st population has mean and variance

     – 2nd population has mean and variance

    • The statistic has the following mean and variance :

    • mean

    • and variance

    1 2 X X −

    1 2 1 21 2 X X X X 

    μ μ μ μ μ  −

      = − = −

    1 2 1 2

    2 22 2 2 1 2

    1 2

     X X X X n n

    σ σ σ σ σ 

    −  = + = +

    1μ 

    2μ 

    2

    1σ 

    22σ 

    7 2 S li Di ib i d h

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    18/48

    18

    7.2 Sampling Distributions and the

    Central Limit TheoremApproximate Sampling Distribution of a

    Difference in Sample Means

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    19/48

    19

    7.2 Sampling Distributions and the

    Central Limit Theorem  Ex.7-3

    • Two independent and approximately normal populations

     – X1: life of a component with old process =5000 =40

     – X2: life of a component with improved process =5050 =30• n1=16 , n2=25

    • What is the probability that the difference in the two sample means

    is at least 25 hours?2 1 X X −

    2 1 2 150 X X X X μ μ μ −   = − =

    2 1 2 1

    2 2 2 136 X X X X 

    σ σ σ −

      = + =

    1μ 

    2μ 

    1σ 

    2σ 

    1 1

    2 2

    2 11

    1

    405000 10016

     X X n

    σ μ μ σ = = = = =

    2 2

    2 22 2

    2

    2

    305050 36

    25 X X 

    n

    σ μ μ σ = = = = =

    ( )2 1

    2 1

    2 1

    25 25 50( 25) 2.14 0.9838

    136

     X X 

     X X 

    P X X P Z P Z P Z  μ 

    σ 

    ⎛ ⎞−   −⎛ ⎞− ≥ = ≥ = ≥ = ≥ − =⎜ ⎟   ⎜ ⎟⎜ ⎟ ⎝ ⎠

    ⎝ ⎠

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    20/48

    20

    7-3 General Concepts of Point Estimation

    • We may have several different choices for the point

    estimator of a parameter. Ex: to estimate the mean of a

     population – Sample mean

     – Sample median

     – The average of the smallest and largest observations in the sample• Which point estimator is the best one?

    • Need to examine their statistical properties and develop

    some criteria for comparing estimators• For instance, an estimator should be close to the true value

    of the unknown parameter 

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    21/48

    21

    7-3 General Concepts of Point Estimation

    7-3.1 Unbiased Estimators

    Definition

    When an estimator is unbiased, the bias is zero.

    bias =

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    22/48

    22

    7-3 General Concepts of Point Estimation

    1 2

    1 1 1 1( ) ... n E X E X X X n

    n n n n

    μ μ ⎛ ⎞

    = + + + = =⎜ ⎟

    ⎝ ⎠

    2 2

    Are and unbiased estimators of and ? X S    μ σ 

      Unbiased !

    ( )

    ( )

    ( )

    ( ) ( )

    2

    22 1

    1

    2 2 2 2

    1 1 1 1

    2 2 2 2 2

    1 1

    2 2

    1

    1

    ( ) 1 1

    1 12 2

    1 1

    1 12

    1 1

    1

    1

    n

    i   ni

    ii

    n n n n

    i i i ii i i i

    n n

    i i

    i i

    n

    i

    i

     X X 

     E S E E X X n n

     E X XX X E X XX X n n

     E X nX nX E X nX n n

     E X nE X n

    =

    =

    = = = =

    = =

    =

    ⎛ ⎞−⎜ ⎟ ⎛ ⎞

    ⎜ ⎟= = −⎜ ⎟− −⎜ ⎟   ⎝ ⎠

    ⎜ ⎟⎝ ⎠

    ⎛ ⎞ ⎛ ⎞= − + = − +

    ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞

    = − + = −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

    ⎛ ⎞= −⎜ ⎟−   ⎝ ⎠

    ∑ ∑ ∑ ∑∑ ∑

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    23/48

    23

    7-3 General Concepts of Point Estimation

    2 2 2 2 2 2 2( ) ( ) ( )i i i

    V X E X E X  σ μ σ μ  = = − ⇒ = +

    Example 7-1 (continued)

    ( )2 2

    22 2 2 2 2( ) ( ) ( ) ( ) ( )V X E X E X E X E X  n n

    σ σ μ μ = = − = − ⇒ = +

    Unbiased !

     

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    24/48

    24

    7-3 General Concepts of Point Estimation

    • There is not a unique unbiased estimator.

    • n=10 data 12.8 9.4 8.7 11.6 13.1 9.8 14.1 8.5 12.1 10.3

    • There are several unbiased estimators of µ – Sample mean (11.04)

     – Sample median (10.95) – The average of the smallest and largest observations in the sample (11.3)

     – A single observation from the population (12.8)

    • Cannot rely on the property of unbiasedness alone to select the

    estimator.

    • Need a method to select among unbiased estimators.

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    25/48

    25

    7-3 General Concepts of Point Estimation

    7-3.2 Variance of a Point Estimator

    Definition

    The sampling distributions of two

    unbiased estimators

    .ˆˆ 21   ΘΘ and

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    26/48

    26

    7-3 General Concepts of Point Estimation

    7-3.2 Variance of a Point Estimator

    2

    2

    ( )

    ( )

    ( ) ( ) 2

    i

    i

    V X 

    V X 

    nV X V X for n

    σ 

    σ 

    =

    =

    < ≥

    The sample mean is better estimator of µ than a single observation Xi

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    27/48

    27

    7-3 General Concepts of Point Estimation

    7-3.3 Standard Error: Reporting a Point Estimate

    Definition

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    28/48

    28

    7-3 General Concepts of Point Estimation

    7-3.3 Standard Error: Reporting a Point Estimate

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    29/48

    29

    7-3 General Concepts of Point Estimation

    Example 7-5

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    30/48

    30

    7-3 General Concepts of Point Estimation

    Example 7-5 (continued)

    ˆ2  X  X    σ ±Probability that true mean is within is 0.9545

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    31/48

    31

    7-3 General Concepts of Point Estimation

    7-3.4 Mean Square Error of an Estimator

    There may be cases where we may need to use a biased estimator.

    So we need another comparison measure:

    Definition

    7 3 G l C f P i E i i

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    32/48

    32

    7-3 General Concepts of Point Estimation

    Θ̂

    The MSE of is equal to the variance of the estimator plus the squared bias.

    If is an unbiased estimator of θ, MSE of is equal to the variance of

    2

    2 2

    2

    ˆ ˆ( ) ( )

    ˆ ˆ ˆ( ) ( )

    ˆ( ) ( )

     MSE E 

     E E E 

    V bias

    θ 

    θ Θ = Θ −

    ⎡ ⎤ ⎡ ⎤= Θ − Θ + − Θ⎣ ⎦ ⎣ ⎦

    = Θ +

    Θ̂

    Θ̂ ˆ

    7-3.4 Mean Square Error of an Estimator

    Θ

    7 3 G l C t f P i t E ti ti

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    33/48

    33

    7-3 General Concepts of Point Estimation

    2ˆ( ) ( )V biasΘ +2 2

    2 2 2 2

    2 2 2 2

    2 2 2 2

    2 2

    2

    ˆ ˆ ˆ( ) ( )

    ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) 2 ( ) ( )

    ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) ( ) 2 ( ) ( )

    ˆ ˆ ˆ ˆ( ) ( ) 2 ( ) ( )

    ˆ ˆ( ) 2 ( )ˆ( )

     E E E 

     E E E E E 

     E E E E E E 

     E E E E 

     E E 

     E 

    θ 

    θ θ 

    θ θ 

    θ θ 

    θ θ 

    θ 

    ⎡ ⎤ ⎡ ⎤Θ − Θ + − Θ⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤= Θ − Θ Θ + Θ + − Θ + Θ⎣ ⎦ ⎣ ⎦

    = Θ − Θ Θ + Θ + − Θ + Θ

    = Θ − Θ + − Θ + Θ

    = Θ + − Θ= Θ −

    7-3.4 Mean Square Error of an Estimator

    ˆ( ) MSE  Θ

     

    7 3 G l C f P i E i i

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    34/48

    34

    7-3 General Concepts of Point Estimation

    7-3.4 Mean Square Error of an Estimator

    7 3 G l C t f P i t E ti ti

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    35/48

    35

    7-3 General Concepts of Point Estimation

    1Θ̂

    .ˆ 2Θ

    1Θ̂

    7-3.4 Mean Square Error of an Estimator

    1Θ̂

     An estimate based on would more likely be close to the true value of

    than would an estimate based on ..ˆ2

    Θ

    biased but has

    small variance

    2Θ̂unbiased but has

    large variance

    θ 

    7 3 General Concepts of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    36/48

    36

    7-3 General Concepts of Point Estimation

    7-3.4 Mean Square Error of an Estimator

    Exercise: Calculate the MSE of the following estimators.

    1

    2

    ˆ

    ˆ

     X 

     X 

    Θ =

    Θ =  

    7 4 M th d f P i t E ti ti

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    37/48

    37

    7-4 Methods of Point Estimation

    How can good estimators be obtained?

    7-4.1 Method of Moments

    7 4 M th d f P i t E ti ti

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    38/48

    38

    7-4 Methods of Point Estimation

    Example 7-7

    n

    E(X)=

    7 4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    39/48

    39

    7-4 Methods of Point Estimation

    7-4.2 Method of Maximum Likelihood

    7 4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    40/48

    40

    7-4 Methods of Point Estimation

    Example 7-9

    7 4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    41/48

    41

    7-4 Methods of Point Estimation

    Example 7-9 (continued)

    ln ( )

    ( )

    ( )

     y f x

    dy f x

    dx f x

    =′

    =

    7 4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    42/48

    42

    7-4 Methods of Point Estimation

    Example 7-12

    1

    ( )

    ( )

    m

    m

     y ax b

    dyma ax b

    dx

    = +

    = +

    7 4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    43/48

    43

    7-4 Methods of Point Estimation

    Example 7-12 (continued)

    7-4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    44/48

    44

    7-4 Methods of Point Estimation

    Properties of the Maximum Likelihood Estimator 

    7 4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    45/48

    45

    7-4 Methods of Point Estimation

    2σ 

    Properties of the Maximum Likelihood Estimator 2

    2 2

    1

    2 2

    22 2

    1ˆ ( )

    1ˆ( )

    ˆ( )

    n

    i

    i

     MLE of is

     X X n

    n E  n

    bias E  

    n

    σ 

    σ 

    σ σ 

    σ σ σ 

    =

    = −

    =

    −= − =

     bias is negative. MLE for tends to underestimate

    The bias approaches zero as n increases.

    MLE for is an asymptotically unbiased estimator for 

    2σ 

    2σ 

    2σ 

    7-4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    46/48

    46

    7-4 Methods of Point Estimation

    The Invariance Property

    7-4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    47/48

    47

    7 4 Methods of Point Estimation

    Example 7-13

    7-4 Methods of Point Estimation

  • 8/18/2019 sampling_distributions_and_point_estimation_of_parameters.pdf

    48/48

    48

    7 4 Methods of Point Estimation

    Complications in Using Maximum Likelihood Estimation

    • It is not always easy to maximize the likelihood

    function because the equation(s) obtained from

    d L(θ)/d θ = 0 may be difficult to solve.

    • It may not always be possible to use calculus

    methods directly to determine the maximum of L(θ).