45
1 2.0 DESIGN INFORMATION Client Pharmaceuticals Limited. Relevant Building. Regulations & Design Codes BS 8110: Structural Use of Concrete. Part 1, 1997 BS 6399 : Loading for Buildings Part 1, 1996 Intended Use of Structure Shops Fire Resistance Requirement 1.5 hours for all elements General Loading Conditions Roof : = 1.0 kN/m 2 Partitions : = 1.0 kN/m 2 Finishes : = 1.0 kN/m 2 Walls : = 6.3 kN/m Floors : = 4.0 kN/m 2 Railings : = 2.1 kN/m Stairs : = 4.0 kN/m 2 Subsoil Conditions Allowable Bearing Pressure at 2.5 m = 200 kN/m 2 Foundation Type RC. Footings to Columns Material Data Concrete Grade 25 with 20mm maximum aggregates Characteristic Strength of reinforcement fy = 250 N/mm 2 Other Relevant Information Self weight of Concrete = 23.6 kN/m 3 All dimensions shown on drawings are in millimeters (mm) 3.0 STRUCTURAL SUMMARY SHEET FOR FLOOR PLANS

Sample Design of a Structure

Embed Size (px)

DESCRIPTION

Analysis and design of a structure

Citation preview

Page 1: Sample Design of a Structure

1

2.0 DESIGN INFORMATION

Client Pharmaceuticals Limited.

Relevant Building. Regulations & Design Codes

BS 8110: Structural Use of Concrete. Part 1, 1997 BS 6399 : Loading for Buildings Part 1, 1996

Intended Use of Structure

Shops

Fire Resistance Requirement

1.5 hours for all elements

General Loading Conditions

Roof : = 1.0 kN/m2 Partitions : = 1.0 kN/m2 Finishes : = 1.0 kN/m2 Walls : = 6.3 kN/m Floors : = 4.0 kN/m2 Railings : = 2.1 kN/m Stairs : = 4.0 kN/m2

Subsoil Conditions Allowable Bearing Pressure at 2.5 m = 200 kN/m2

Foundation Type RC. Footings to Columns

Material Data Concrete Grade 25 with 20mm maximum aggregates Characteristic Strength of reinforcement fy = 250 N/mm2

Other Relevant Information

Self weight of Concrete = 23.6 kN/m3 All dimensions shown on drawings are in millimeters (mm)

3.0 STRUCTURAL SUMMARY SHEET FOR FLOOR PLANS

Page 2: Sample Design of a Structure

2

1. General Arrangement of Ground Floor

2. General Arrangement of First Floor

3. General Arrangement of Second Floor

4. General Arrangement of Third Floor

5. General Arrangement of Fourth Floor

3.1 SLAB LOADINGS

Design load, η = 1.6qk + 1.4gk

Where qk = total imposed load

gk = total dead load

Considering 150mm thick slab for all floors.

msqkN ./ 14.156

)0.10.16.2315.0(4.10.46.1

Stair loading.

2/06.16

)0.16.2325.0(4.10.46.1

mkN

3.2 SLAB DESIGN

Page 3: Sample Design of a Structure

3

GROUND FLOOR SLAB

S1- Design

Slab thickness = 150mm, from

msqkN ./ 14.156

)0.10.16.2315.0(4.10.46.1

By considering the ratio of ly/lx,

Where ly = long span and lx = short span, the slab is designed as two-way.

Detailed calculations can be seen on the slab design sheet.

S2- Design

Slab thickness = 150mm, from

msqkN ./ 14.156

)0.10.16.2315.0(4.10.46.1

Detailed calculations can be seen on the slab design sheet.

FIRST, SECOND, THIRD & FOURTH FLOORS SLAB

S3- Design

Slab thickness = 150mm, from

msqkN ./14.156

)0.10.16.2315.0(4.10.46.1

Detailed calculations can be seen on the slab design sheet.

3.3 FLOORS BEAM LOADINGS AND DESIGNS

Page 4: Sample Design of a Structure

4

BEAMS SUPPORTING RECTANGULAR PANELS

- Short Span Beam

xU lW 3

1

- Long Span Beam

km

mlx

klxWU

1 where,

2

3

3

1

3

11

2

1 2

2

Where,

kk qg 6.14.1 is the intensity of total uniformly distributed load and

panelspan short , panelspan long , xy

x

yll

l

lk

3.3.1 GROUND FLOOR BEAMS LOADING

GB - 1

Spans 1, 2, 3 & 4

mkN

WU

/ 52.49

3.672.325.4156.143

1

GB – 2A

Spans 1

mkN

WU

/28.14

3.672.32

44.030.3156.14

3

1

Spans 2

Page 5: Sample Design of a Structure

5

mkN

WU

/23.35

3.672.33.1156.143

1525.1156.14

3

1

63.270.342.182

11 kNPu

40.2913.104.522

12 kNPu

GB – 2B

Span 2

mkN

WU

/49.37

3.672.35.4156.143

1

2

44.030.3156.14

3

1

Span 3

mkN

WU

/ 38.45

3.672.3525.1156.143

15.4156.14

3

1

63.270.342.182

1kNPu

GB – 2C

Span 1

/51.413.672.3156.14725.05.4156.143

1mKNWU

Span 2

Page 6: Sample Design of a Structure

6

/25.313.672.35.4156.143

1mKNWu

GB - 3

Span 1, 2

/49.523.672.325.4156.143

1mKNWU

GB-4

Span 1

/49.523.672.325.4156.143

1mkNWU

Span 2

43.40kN/m

3.672.3575.2156.143

15.4156.14

3

1

UW

34.975.426.432

1kNPu

Span 3

10.02kN/m

3.672.3

UW

69.215.464.92

1kNPu

GB-5

Page 7: Sample Design of a Structure

7

Span 1

/49.523.672.325.4156.143

1mkNWU

Span 2

43.40kN/m

3.672.3575.2156.143

15.4156.14

3

1

UW

34.975.426.432

1kNPu

Span 3

mkN

WU

/34.07

3.672.30.3156.143

1

2

25.03525.1156.14

3

1

GEB-1

mkN

WU

/18.42

3.623.22

25.03525.1156.14

3

1

GEB-2 (max.)

7.90kN/m

1.223.275.0156.143

1

UW

69.215.464.92

1kNPu

GEB-3

Page 8: Sample Design of a Structure

8

9.64kN/m

1.223.275.0156.143

1

UW

SB-1

/16.473.62

146.4925.406.16

2

1mKNwu

SB-2

/26.4372.3925.406.162

1mKNwu

SB-3

/04.5235.313.1156.143

14.506.16

2

1mkNwu

3.3.2 GROUND FLOOR BEAMS DESIGN

Detailed calculations can be seen on the beams design sheet.

3.3.3 FIRST AND SECOND FLOORS BEAMS LOADING

Page 9: Sample Design of a Structure

9

B - 1

mkN

WU

/ 15.15

3.6956.4825.0156.143

1

2.68375.342.402

1kNPu

B-1A

mkN

WU

/29.09

3.695.4825.0156.143

1

2

22.03125.2156.14

3

1

2.68375.342.402

1kNPu

B – 2

Spans 1, 2 & 3

/49.323.6956.45.4156.143

1mkNWu

B-3

Spans 1, 2 & 3

/72.533.6956.425.4156.143

1mkNWU

Span 4

mkN

WU

/46.43

3.6956.45.4156.143

1

2

22.03125.2156.14

3

1

B-4

Page 10: Sample Design of a Structure

10

Spans 1, 2, 3 & 4

/72.533.6956.425.4156.143

1mkNWU

B – 5

Span 1

mkN

WU

/50.61

3.6956.45.4156.143

1

2

44.030.3156.14

3

1

Span 2

mkN

WU

/39.69

3.6956.4525.1156.143

15.4156.14

3

1

kN

PU

28.70

0.3132.192

11

Span 3

mkN

WU

/43.11

3.6956.4156.1475.05.4156.142

1

Span 4

mkN

WU

/32.49

3.6956.45.4156.143

1

B – 6

Page 11: Sample Design of a Structure

11

Span 1

mkN

WU

/29.38

3.6956.42

44.030.3156.14

3

1

Span 2

,/18.45

3.6956.4525.1156.142

1

mkN

WU

kN

PU

28.70

0.313.192

1

B – 7

Span 2

mkN

WU

/21.28

3.6956.4125.2156.143

1

kN

PU

99.55

2.682

15.409.29

2

1

Spans 3 & 4

mkN

WU

/32.49

3.6956.45.4156.143

1

B-8

Page 12: Sample Design of a Structure

12

Span 2

mkN

WU

/42.52

3.6956.4125.2156.143

15.4156.14

3

1

kN

PU

99.55

2.682

15.409.29

2

1

Spans 3 & 4

/72.533.6956.425.4156.143

1mkNWU

B-9A

Spans 1 & 2

/72.533.6956.425.4156.143

1mkNWU

Span 3

mkN

WU

/44.64

3.6956.4575.2156.143

15.4156.14

3

1

kNPU 100.13 5.45.442

1

Span 4

mkN

WU

/14.8

3.6956.475.0156.143

1

kNPU 17.7 5.487.72

1

B-9

Page 13: Sample Design of a Structure

13

Spans 1 & 2

/72.533.6956.425.4156.143

1mkNWU

Span 3

mkN

WU

/44.64

3.6956.4575.2156.143

15.4156.14

3

1

kNPU 100.13 5.45.442

1

Span 4

mkN

WU

/35.3

3.6956.40.3156.143

1

2

25.03525.1156.14

3

1

B-10

Span 1

mkN

WU

/ 32.49

3.6956.45.4156.142

1

Span 2

mkN

WU

/42.05

3.6956.4675.0156.145.4156.143

1

B – 10A

Page 14: Sample Design of a Structure

14

mkN

WU

/ 25.41

3.6956.40.3156.142

1

FEB – 1

mkN

WU

/19.13

3.6974.22

25.03525.1156.14

3

1

FEB-2 (max.)

7.90kN/m

1.223.275.0156.143

1

UW

68.215.464.92

1kNPu

FEB-3 (max)

9.64kN/m

1.223.275.0156.142

1

UW

SB-2

Page 15: Sample Design of a Structure

15

/50.44956.4925.406.162

1mKNwu

SB-6

/42.401.2974.2825.0156.143

1675.306.16

2

1mkNwu

3.3.4 FIRST AND SECOND FLOORS BEAMS DESIGN

Detailed calculations can be seen on the beams design sheet.

3.3.5 THIRD FLOOR BEAMS LOADING

Page 16: Sample Design of a Structure

16

3B - 1

mkN

WU

/ 15.15

3.6956.4825.0156.143

1

2.68375.342.402

1kNPu

3B – 2

Spans 1, 2 & 3

/14.553.6956.4156.146.15.4156.143

1mkNWu

3B-3

mkN

WU

/29.09

3.695.4825.0156.143

1

2

22.03125.2156.14

3

1

2.68375.342.402

1kNPu

3B-4

Spans 1, 2 & 3

/72.533.6956.425.4156.143

1mkNWU

Span 4

mkN

WU

/46.43

3.6956.45.4156.143

1

2

22.03125.2156.14

3

1

3B-5

Page 17: Sample Design of a Structure

17

Spans 1, 2, 3 & 4

/72.533.6956.425.4156.143

1mkNWU

3B – 6

Span 1

mkN

WU

/50.61

3.6956.45.4156.143

1

2

44.030.3156.14

3

1

Span 2

mkN

WU

/39.69

3.6956.4525.1156.143

15.4156.14

3

1

kN

PU

28.70

0.3132.192

11

Span 3

mkN

WU

/43.64

3.6956.4575.1156.142

15.4156.14

3

1

Span 4

mkN

WU

/32.49

3.6956.45.4156.143

1

3B – 7

Page 18: Sample Design of a Structure

18

Span 1

mkN

WU

/29.38

3.6956.42

44.030.3156.14

3

1

Span 2

,/18.45

3.6956.4525.1156.142

1

mkN

WU

kN

PU

28.70

0.313.192

1

3B – 8

Span 2

mkN

WU

/21.28

3.6956.4125.2156.143

1

kN

PU

99.55

2.682

15.409.29

2

1

Spans 3 & 4

mkN

WU

/32.49

3.6956.45.4156.143

1

3B-9

Page 19: Sample Design of a Structure

19

Span 2

mkN

WU

/42.52

3.6956.4125.2156.143

15.4156.14

3

1

kN

PU

99.55

2.682

15.409.29

2

1

Spans 3 & 4

/72.533.6956.425.4156.143

1mkNWU

3B-10A

Spans 1 & 2

/72.533.6956.425.4156.143

1mkNWU

Span 3

mkN

WU

/44.64

3.6956.4575.2156.143

15.4156.14

3

1

kNPU 100.13 5.45.442

1

Span 4

mkN

WU

/18.69

3.6956.4575.1156.143

1

kNPU 34.83 5.448.152

1

3B-10

Page 20: Sample Design of a Structure

20

Spans 1 & 2

/72.533.6956.425.4156.143

1mkNWU

Span 3

mkN

WU

/44.64

3.6956.4575.2156.143

15.4156.14

3

1

kNPU 100.13 5.45.442

1

Span 4

mkN

WU

/35.3

3.6956.40.3156.143

1

2

25.03525.1156.14

3

1

3B-11

Span 1

mkN

WU

/ 32.49

3.6956.45.4156.142

1

Span 2

mkN

WU

/43.28

3.6956.4525.1156.142

15.4156.14

3

1

3B – 11A

Page 21: Sample Design of a Structure

21

mkN

WU

/ 25.41

3.6956.40.3156.142

1

3EB – 1

mkN

WU

/19.13

3.6974.22

25.03525.1156.14

3

1

3EB-2 (max.)

11.76kN/m

1.223.2575.1156.143

1

UW

83.345.448.152

1kNPu

3EB-3 (max)

15.48kN/m

1.223.2575.1156.142

1

UW

3.3.6 THIRD FLOOR BEAMS DESIGN

Detailed calculations can be seen on the beams design sheet.

3.3.7 FOURTH FLOOR BEAMS LOADING

Page 22: Sample Design of a Structure

22

4B - 1

mkN

WU

/ 15.15

3.6956.4825.0156.143

1

2.68375.342.402

1kNPu

4B – 2

Spans 1, 2 & 3

/11.433.6956.45.1156.142

15.4156.14

3

1mkNWu

4B-3

mkN

WU

/29.09

3.695.4825.0156.143

1

2

22.03125.2156.14

3

1

2.68375.342.402

1kNPu

4B-4

Spans 1, 2 & 3

/72.533.6956.425.4156.143

1mkNWU

Span 4

mkN

WU

/46.43

3.6956.45.4156.143

1

2

22.03125.2156.14

3

1

4B-5

Page 23: Sample Design of a Structure

23

Spans 1, 2, 3 & 4

/72.533.6956.425.4156.143

1mkNWU

4B – 6

Span 1

mkN

WU

/50.61

3.6956.45.4156.143

1

2

44.030.3156.14

3

1

Span 2

mkN

WU

/39.69

3.6956.4525.1156.143

15.4156.14

3

1

kN

PU

28.70

0.3132.192

11

Span 3

mkN

WU

/43.64

3.6956.4575.1156.142

15.4156.14

3

1

Span 4

mkN

WU

/32.49

3.6956.45.4156.143

1

4B – 7

Page 24: Sample Design of a Structure

24

Span 1

mkN

WU

/29.38

3.6956.42

44.030.3156.14

3

1

Span 2

,/18.45

3.6956.4525.1156.142

1

mkN

WU

kN

PU

28.70

0.313.192

1

4B – 8

Span 2

mkN

WU

/21.28

3.6956.4125.2156.143

1

kN

PU

99.55

2.682

15.409.29

2

1

Spans 3 & 4

mkN

WU

/32.49

3.6956.45.4156.143

1

4B-9

Page 25: Sample Design of a Structure

25

Span 3

mkN

WU

/42.52

3.6956.4125.2156.143

15.4156.14

3

1

kN

PU

99.55

2.682

15.409.29

2

1

Spans 4 & 5

/72.533.6956.425.4156.143

1mkNWU

4B-10A

Span 1

/412.253.6956.425.1156.143

1mkNWU

/505.8925.489.192

1mkNPU

Spans 2 & 3

/72.533.6956.425.4156.143

1mkNWU

Span 4

mkN

WU

/44.64

3.6956.4575.2156.143

15.4156.14

3

1

kNPU 100.13 5.45.442

1

Page 26: Sample Design of a Structure

26

Span 5

mkN

WU

/14.8

3.6956.475.0156.143

1

kNPU 17.7 5.487.72

1

4B-10

Span 1

/412.253.6956.425.1156.143

1mkNWU

/505.8925.489.192

1mkNPU

Spans 2 & 3

/72.533.6956.425.4156.143

1mkNWU

Span 4

mkN

WU

/44.64

3.6956.4575.2156.143

15.4156.14

3

1

kNPU 100.13 5.45.442

1

Span 5

Page 27: Sample Design of a Structure

27

mkN

WU

/35.3

3.6956.40.3156.143

1

2

25.03525.1156.14

3

1

4B-11A

mkN

WU

/16.35

3.6973.25.1156.143

1

kNPU 44.75 5.489.192

1

4B – 11

Span 1

mkN

WU

/ 32.49

3.6956.45.4156.142

1

Span 2

mkN

WU

/43.28

3.6956.4525.1156.142

15.4156.14

3

1

4B-12

mkN

WU

/ 25.41

3.6956.40.3156.142

1

4EB – 1

Page 28: Sample Design of a Structure

28

mkN

WU

/19.13

3.6974.22

25.03525.1156.14

3

1

4EB-2 (max.)

11.76kN/m

1.223.2575.1156.143

1

UW

83.345.448.152

1kNPu

4EB-3 (max)

15.48kN/m

1.223.2575.1156.142

1

UW

4EB-4 (max)

Spans 1, 2 & 3

19.89kN/m

3.697.25.1156.142

1

UW

3.3.8 FOURTH FLOOR BEAMS DESIGN

Detailed calculations can be seen on the beams design sheet.

4.0 STRUCTRAL SUMMARY SHEET FOR ROOF PLAN

Page 29: Sample Design of a Structure

29

1. General Arrangement of Roof Plan

2. General Arrangement of Pent. Roof Plan

4.1 ROOF LOADING

Design load, η = 1.6qk + 1.4gk

Where qk = total imposed load

gk = total dead load

Roof Slab Loading

msqkN ./7.956

0.16.2315.04.10.16.1

Stair loading

msqkN ./11.26

0.16.2325.04.10.16.1

4.2 ROOF BEAMS LOADING

RB-1

Spans 1, 2, 3 & 4

mkN

WU

/ 22.86

4.9565.1956.72

15.4956.7

3

1

RB-1A

mkN

WU

/ 11.91

4.956974.20.1956.73

1

RB – 2

Page 30: Sample Design of a Structure

30

Span 1, 2, 3 & 4

/82.28956.425.4956.73

1mkNWU

RB – 3

Spans 1 & 2

/12.353.6956.425.4956.73

1mkNWU

Spans 3 & 4

/82.28956.425.4956.73

1mkNWU

RB- 4

Span 1

mkN

WU

/ 33.37

3.6956.42

44.033956.7

3

15.4956.7

3

1

Span 2

mkN

WU

/ 33.78

956.4326.112

15.4956.7

3

1

22.220.381.142

1kNPu

Span 3 & 4

mkN

WU

/21.85

6.232.1125.04.1956.45.4956.73

1

RB - 5

Page 31: Sample Design of a Structure

31

Span1

mkN

WU

/ 23.19

3.6956.45.4956.73

1

Span2

mkN

WU

/15.3

3.6956.4525.1956.73

1

22.220.381.142

1kNPu

RB- 6

Span 2

mkN

WU

/31.043

956.4956.4956.7156.15.4956.73

1

Spans 3 & 4

mkN

WU

/21.85

956.4956.45.4956.73

1

RB- 7

Span 3, 4 & 5

/82.28956.425.4956.73

1mkNWU

RB- 8

Page 32: Sample Design of a Structure

32

Span 1

/912.12956.425.1956.73

1mkNWU

55.6225.490.132

1kNPU

Span 2 & 3

/82.28956.425.4956.73

1mkNWU

Span 4

/12.353.6956.425.4956.73

1mkNWU

Span 5

/26.113.6956.4 mkNWU

RB- 8A

Span 1

/912.12956.425.1956.73

1mkNWU

55.6225.490.132

1kNPU

Span 2 & 3

Page 33: Sample Design of a Structure

33

/82.28956.425.4956.73

1mkNWU

Span 4

/12.353.6956.425.4956.73

1mkNWU

Span 5

mkN

WU

/ 24.77

3.6956.42

25.03525.1956.7

3

10.3956.7

3

1

RB- 9A

Span 1

mkN

WU

/ 13.89

956.4956.45.1956.73

1

28.315.49.132

1kNPu

RB- 9

Span 1 & 2

mkN

WU

/21.85

956.4956.45.4956.73

1

RB- 10

Page 34: Sample Design of a Structure

34

mkN

WU

/19.21

3.6956.40.3956.73

1

REB-1

Span 1, 2 & 3

mkN

WU

/13.90

956.49736.25.1956.73

1

REB- 2

mkN

WU

/14.81

3.697.22

25.03525.1956.7

3

1

4.3 ROOF BEAMS DESIGN

Detailed calculations can be seen on the beams design sheet.

4.4 PENT. ROOF BEAMS LOADING

Page 35: Sample Design of a Structure

35

Roof Slab Loading

msqkN ./7.956

0.16.2315.04.10.16.1

PRB-1

Spans 2 & 3

mkN

WU

/14.825

89.25.4956.73

1

PRB-2

Spans 2 & 3

mkN

WU

/ 25.01

89.22

44.033956.7

3

15.4956.7

3

1

PRB-3

Span 1 & 2

mkN

WU

/ 13.07

89.22

44.033956.7

3

1

PRB-4

mkN

WU

/ 10.85

89.20.3956.73

1

PRB-5

Page 36: Sample Design of a Structure

36

Span 1

/76.2689.225.4956.73

1mkNWU

Span 2

/80.1889.220.3956.73

1mkNWU

PRB-6

Span 1

mkN

WU

/14.825

89.25.4956.73

1

Span 2

mkN

WU

/10.85

89.20.3956.73

1

4.5 PENT. ROOF BEAMS DESIGN

Detailed calculations can be seen on the beams design sheet.

5.0 STAIR LOADINGS AND DESIGNS

Page 37: Sample Design of a Structure

37

Stair loading.

2/06.16

)0.16.2325.0(4.10.46.1

mkN

STAIR I DESIGN

Moment, Mu = 0.125 × 16.06 × (5.2)2

= 58.54 kNm

Considering per unit width of stairs

77.3)120(1000

1028.542

6

2

bd

MuK

ρ = 0.0217

As = 0.0217×1000×120 = 2604mm2

Use minimum reinforcement of R16@75 c/c as main reinforcement.

STAIR II (FLIGHT I) DESIGN

Moment, Mu = 0.125 × 16.06 × (3.325)2

= 22.19 kNm

Considering per unit width of stairs

54.1)120(1000

1019.222

6

2

bd

MuK

ρ = 0.0076

As = 0.0076×1000×120 = 912mm2

Use minimum reinforcement of R12@100 c/c as main reinforcement.

STAIR III (FLIGHT I) DESIGN

Page 38: Sample Design of a Structure

38

Moment, Mu = 0.125 × 16.06 × (5.1)2

= 52.21 kNm

Considering per unit width of stairs

63.3)120(1000

1021.522

6

2

bd

MuK

ρ = 0.0208

As = 0.0208×1000×120 = 2496mm2

Use minimum reinforcement of R16@100 c/c as main reinforcement.

All the other stairs were designed using the above procedure.

6.0 COLUMN LOADINGS AND DESIGNS

Page 39: Sample Design of a Structure

39

6.1 COLUMNS LOADNG

C1

kN

Wu

35.93363.15434.16534.16534.16534.16536.117

6.2365.24.04.04.1 5.425.312

15.425.31

2

1

6.236.34.04.04.1 5.449.322

15.449.32

2

1

6.236.34.04.04.1 5.449.322

15.449.32

2

1

6.236.34.04.04.1 5.449.322

15.449.32

2

1

6.236.34.04.04.1 5.449.322

15.449.32

2

1

6.236.34.04.04.15.485.212

15.485.21

2

1

C2

kN

Wu

02.277537.48655.50255.50255.50255.50245.278

6.2365.24.04.04.12 5.4485.522

125.4485.52

2

1

6.236.34.04.04.12 5.4724.532

125.4724.53

2

1

6.236.34.04.04.12 5.4724.532

125.4724.53

2

1

6.236.34.04.04.12 5.4724.532

125.4724.53

2

1

6.236.34.04.04.12 5.4724.532

125.4724.53

2

1

6.236.34.04.04.125.4824.282

125.4824.28

2

1

C3

Page 40: Sample Design of a Structure

40

kN

Wu

32.190921.3234.3374.33755.36455.36421.182

6.2365.24.04.04.169.21869.7725.05.449.522

1 5.425.31

2

15.451.41

2

1

6.236.34.04.04.169.21869.7725.05.472.532

1 5.449.32

2

15.411.43

2

1

6.236.34.04.04.169.21869.7725.05.472.532

1 5.449.32

2

15.411.43

2

1

6.236.34.04.04.183.3476.11575.15.472.532

1 5.449.32

2

15.464.43

2

1

6.236.34.04.04.183.3476.11575.15.472.532

1 5.449.32

2

15.464.43

2

1

6.236.34.04.04.15.4824.282

125.485.21

2

1

All the other columns loading were calculated using the above procedure.

6.2 COLUMNS DESIGN

Page 41: Sample Design of a Structure

41

C1- (max)

Column is considered to be subject to Axial Loads and Bending moments. The

equivalent direct Load system is used to convert the approximate column moments to

direct Loads.

ROOF LEVEL TO FOUR FLOOR LEVEL

Axial Load = kN36.117

Equivalent Direct Load = kN36.1173.2

kN928.269

From

Load axial Total N

entreinforcem verticalof areaA

area sectional-crossnet A Where

1Equation ----- 75.04.0

sc

c

yscccu fAAfN

From Equation 1

ntreinforcee noorminal Use,36.7493

5.1771330072

5.18710160000010928.269

25075.0400400254.010928.269

3

3

sc

sc

scsc

scsc

A

A

AA

AA

FOUR FLOOR TO THIRD FLOOR LEVEL.

Total Axial Load = kN7.282

Equivalent Direct Load = 7.2823.2

= kN21.650

From Equation 1

Page 42: Sample Design of a Structure

42

entreinforcem norminal Use,93.5350

5.177949790

5.1871016000001021.650

25075.0400400254.01021.650

3

3

sc

sc

sc

scsc

A

A

AscA

AA

THIRD FLOOR TO SECOND FLOOR LEVEL.

Total Axial Load =448.04kN

Equivalent Direct Load = kN49.103004.4483.2

From Equation 1

entreinforcem norminal Use,50.3208

5.177569510

5.1871016000001049.1030

25075.0400400254.01049.1030

3

3

sc

sc

scsc

scsc

A

A

AA

AA

SECOND FLOOR TO FIRST FLOOR LEVEL.

Total Axial Load =613.38kN

Equivalent Direct Load = 38.6133.2

= kN774.1410

From Equation 1

entreinforcem norminal Use,06.1066

5.177189226

5.1871016000001077.1410

25075.0400400254.01077.1410

3

3

sc

sc

scsc

scsc

A

A

AA

AA

FIRST FLOOR TO GROUND FLOOR LEVEL

Page 43: Sample Design of a Structure

43

Total Axial Load = kN72.778

Equivalent Direct Load = 72.7783.2

= kN056.1791

From Equation 1

entreinforcem 6R16 Use,37.1076

5.177191056

5.1871016000001006.1791

25075.0900300254.01006.1791

3

3

sc

sc

sc

scsc

A

A

AscA

AA

GROUND FLOOR LEVEL TO BASEMENT FLOOR LEVEL

Axial Load = kN35.933

Equivalent Direct Load = KN35.9338.1

kN03.1680

From Equation 1

ntreinforcee noorminal Use,87.450

5.17780030

5.1871016000001003.1680

25075.0400400254.01003.1680

3

3

sc

sc

scsc

scsc

A

A

AA

AA

All the other columns were designed using the above procedure.

7.0 FOOTINGS DESIGN

Page 44: Sample Design of a Structure

44

Detailed calculations can be seen from the footings design sheet.

REFERENCES

Page 45: Sample Design of a Structure

45

1. BS 8110-1, Structural Use of Concrete: Code of Practice for Design and

Construction.

2. BS 6399-1, Loadings for Buildings: Code of Practice for Dead and Imposed loads.

3. Reinforced Concrete Designer’s Handbook, Tenth Edition

By Charles E. Reynolds and James C. Steed man