36
SafeOperating Areas (SOAs) for Reliable HighVoltage Analog Devices J.W. McPherson , Ph.D. IEEE Fellow Texas Instruments Senior Fellow Emeritus McPherson Reliability Consulting, LLC

Safe Operating Areas (SOAs) for High Voltage Analog … · Safe‐Operating Areas (SOAs) for Reliable High‐Voltage Analog Devices J.W. McPherson , Ph.D. IEEE Fellow Texas Instruments

Embed Size (px)

Citation preview

Safe‐Operating Areas (SOAs) forReliable High‐Voltage Analog Devices

J.W. McPherson , Ph.D.

IEEE FellowTexas Instruments Senior Fellow Emeritus

McPherson Reliability Consulting, LLC

Many Uses For High‐Voltage Analog

Battery  ChargingPotable ProductsMicroprocessors ConvertersControllersEtc

1 – 20 V

AutomotivePrintersAudioConvertersControllersEtc

ConsumerPower SuppliesAutomotiveConvertersControllers   Etc

IndustrialMedical DisplaysConvertersControllersEtc

20 – 80 V

80 – 120 V

> 120 V

How to Safely Integrate with

Low‐Voltage CMOS ?

Escalating Need

2

Fundamental  Reliability Physics LimitationsFundamental Device Operational Issues at t=0 

Silicon Avalanche Breakdown Field :  0.2‐0.8 MV/cmSiO2 Breakdown Field: 10‐15 MV/cm  Melting Temperature of Metals:  Al(660oC) , Cu(1083oC)Fusing Current Density for Metals: ~ 2x107A/cm2

BVdss and BVii  Limitations Latch‐Up /ESD

Fundamental Device Reliability Issues for TF=10yrs@105oCElectromigration (EM)Stress Migration (SM)Time‐Dependent Dielectric Breakdown (TDDB)Hot Carrier Injection(HCI)Negative‐Bias Temperature Instability (NBTI)Power Density and Power Dissipation IssuesSingle‐Event Upsets

3

Safe‐Operating Areas (SOAs)

Electrical SOA (e‐SOA) ‐ Short Term Issues: BVdss, BVii, Latch‐up, ESD

Thermal SOA (T‐SOA)‐Medium Term Issues: Power Density and Dissipation

Reliability SOA (R‐SOA)‐ Long Term Issues: TDDB, HCI, NBTI, EM, SM, SEU

4

0

2

4

6

8

10

12

14

16

18

20

1.0E+14 1.0E+15 1.0E+16 1.0E+17 1.0E+18 1.0E+19

Na(d) Density

TunnelingRegion

Avalanche Region

⎥⎦

⎤⎢⎣

⎡ +⎟⎟⎠

⎞⎜⎜⎝

⎛=

DA

DAcritSibd NN

NNq

V

SiliconinBreakdownJunction

2

2ξε

Critical/Breakdo

wn Field ξ c

ritin Silicon

(105

V/cm

e‐SOA

Critical field (~0.2‐0.8MV/cm) for avalanching  must be avoided !

Critical Electric Field for Avalanching in Silicon

5

0

10

20

30

40

50

60

70

80

‐5.0 ‐4.0 ‐3.0 ‐2.0 ‐1.0 0.0 1.0 2.0 3.0 4.0 5.0

N+

ND = NA =

Distance from Metallurgical Junction (μm)

Pote

ntia

l (V)

(5x1015/cm3) (5x1015/cm3)

N-TypeP-Type + + + ++ + + +

+ + + ++ + + +

- - - -- - - -

- - - -- - - -

- -- -

++

WVbd=120V

e‐SOA

Can  safely drop  large  voltages across junction depletion‐regions 

Voltage Drop Across Junction Depletion‐Region 

80 Volts

0 Volts

6

0

10

20

30

40

50

60

70

80

‐5.0 ‐4.0 ‐3.0 ‐2.0 ‐1.0 0.0 1.0 2.0 3.0 4.0 5.0

N+

N‐TypeP‐Type

Distance from Metallurgical Junction (μm)

Potential (V) 

(5x1015/cm3) (5x1015/cm3)

Poly

N+ N+

FOX

5V

80V0V

Drift Region

ChannelRegion

Gate Ox

e‐SOA

80 Volts

0 Volts

5V‐CMOS with 80V Drain Extension

7Note: Most voltage dropped before reaching gate 

Vds0V

e‐SOA

LDMOS Device

Full Simulation of Voltage Drop

Note: Voltage drop from drain to source8

e‐SOA

(Snapback/Breakdown) Performance 

Parasitic Bipolar

Note: Parasitic Bipolar Turn On

BVii

9

e‐SOA

Improving BVii Performance

0

0.4

0.8

1.2Ids/W    (m

A/μm)    

Vgs

10

SourceDrain Drain

Fully Integrated LDMOS Devicee‐SOA

11

Now  that we know how to build H‐V devices in low‐voltage CMOS that work safely at time zero (e‐SOA) ‐‐‐will they last for 10 yrs at 105oC? 

What About Long‐Term Reliability?

Thermal SOA (T‐SOA)Reliability SOA (R‐SOA)

Other Considerations:

12

Electron Fow

MET3

MET2

MET1

0

5

10

15

20

25

30

0 200 400 600 800 1000

Time (ns)

Current Waveform

Cur

rent

: I (

mA

)

Iave=15mA

Iave

Electromigration-Induced Voiding

2/1)5.0)(0.3(

15

cmMAmm

mAJAve

=

=μμ

CTemp o179=

hrsTF 400=

3um wide conductor with 9 vias

Electromigation in a Power InterconnectsT‐SOA

13

1.0E‐011.0E+001.0E+011.0E+021.0E+031.0E+041.0E+051.0E+061.0E+071.0E+081.0E+091.0E+10

0 100 200 300 400 500 600 700

Time‐To‐Failure  (second

s)

Temperature (oC)

10 yrs @ 105oC

100 sec @ 450oC

Note: Metal migration (normally  requiring 10yrs at 105oC) occurs within ~100sec at 450oC or  ~10sec at 550oC.   

Metal Electromigration Lifetime Versus TemperatureT‐SOA

Electron Fow

MET3

MET2

MET1

Electromigration-Induced Voiding

10 sec @ 550oC

14

44

Remember ---- for Joule heating analysis, the MOSFET is simply a Gate-Controlled Resistor

Source DrainGate

Silicon Substrate

Heat Sink at To

Heat PowerGenerationRegion: Ids * Vds

Thermal Resistance = θ

In Steady State: )( dsdsVIPowerT •=•=Δ θθThermal resistance θ is normally expressed in oC/Watt

Resistor at T

Steady State Heat FlowT‐SOA

Thermal resistance θ is normally expressed in oC/Watt15

Transient Heat FlowT‐SOA

g

JH

Conservation of Energy:Power Density Input = Power Density Absorbed + Power Density Transferred

HJtTctg

rr•∇+

∂∂

= ρ)(

g = generation of heatper unit volume

= JQE

JH = flux of heat out of unit volume

Heat Generation = Heat Absorbed + Heat Transferred

densitymassheatspecificctyconductivithermalkTkJ

where

H ===∇−= ρ,,,

:rr

kgCWxc

mkgx

mCWk SiSioSi 0

23

3 sec1078.6;1033.2;7.83 === ρ

JH

JH

JH

16

Temperature Rise/Fall Times for  Resistors in SiliconT‐SOA

Note:  1ms pulses should reach ~ thermal equilibrium  

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

ΔT(t)

τ/t

)( dsdsVI•θ

0

ΔT(t)max

Tsink

sec~ μτ

kxcsΔ

=ρτ

Thermal Time Constant

s = Si Generation-ThicknessΔx = Si Wafer-Thickness

17

T‐SOA

Transient Thermal Modeling

Heat Sink

Δ

k = 0.84 W/cmoC α = k/(ρc)

= 0.5 cm2/s

Most of Thermal‐Gradient/Heat‐Flow is in Vertical Direction

Heat

18

Modeled Thermal Resistance With 1ms Power PulseT‐SOA

1

10

100

1.E‐04 1.E‐03 1.E‐02

L x W (cm2)

Ther

mal

Res

ista

nce

: θ(o C

/W)

1:12:15:110:120:1

W:L

Heat Generation

LW

L:W

Modeling of thermal resistance in agreement  with experiment Modeling is slightly conservative, which is good!Thermal resistance θ defines allowed power density (T-SOA)19

0

50

100

150

200

250

300

350

0 10 20 30 40 50

Power  (W)

Temp Rise: Δ

T  (oC)

Heat Generation

LW

L:W20:110:15:12:1

Area = 0.001cm2

Thermal SOA (T‐SOA)

Notes:   (1) 40W/0.001cm2 = 40kW/cm2

(2) LDMOS devices can have ~ MW/cm2 capability !! (3) Tmetal =  TJ  +  ΔT  =  100oC  +  350oC  =  450oC(4) Metal lifetime at 450oC is only ~100sec !   

1ms Pulses

20

R‐SOA

We have learned how to generate:  electrical safe operating areas (e‐SOAs)

We have learned how to generate:Thermal safe operating areas: T‐SOAs 

What About Long‐Term Reliability?

Hot Carrier Injection (HCI)Biased Temperature Instability (BTI)Time‐Dependent Dielectric Breakdown (TDDB)

Remaining ‐‐‐ Long  Term (10yr/105oC) Reliability  Safe Operating  Areas:  R‐SOAs

Thus far ‐‐‐‐

Examples:

21

R‐SOA

Standard CMOS Hot Carrier Injection (HCI)

22Note: Substrate current is a good proxy for HCI stress

23

to

Δt

dcyc=Δt/to

HCI During Digital Circuit OperationR‐SOA

Note: Duty‐cycle for HCI can be quite low  23

Isub current is generated primarily during device switching

n ~ 3

nsubodc wIATF −= )/(

CHC Lifetime Versus Substrate Current

Isub  (μA/μm)

R‐SOA

Problem: DEMOS/LDMOS --- difficult/impossible to measuresubstrate current. Must take empirical stress data.

Isub,Stress

24

0.600 0.200 0.040 5.0

0.030 0.007 0.001 4.0

0.500 0.100 0.030 2.5

1.500 0.500 0.100 1.0

3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Vgs

Vds

Measured/Extrapolated DC HCI 10% Degradation Lifetime (yrs)

VwhereVVAF dsVds

/43.0:)]36(exp[

=−=

ββ

Other Voltage Conditions can be Modeled:

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

≤=

−−=

4/4.3

4/5.1:

])4(exp[

2

2

2

gs

gs

gsVgs

VforV

VforVwhere

VVAF

α

α

> 10 yrs 1 yr 0.1 yr

10yr 1 yr

0.1 yr 0.01 yr

0.01 yr 0.001 yr

Example:Generation of HCI‐SOA for 30V LDMOSR‐SOA

25

Vgs (V) Vgs (V)5.0 5.04.0 4.02.5 2.51.0 1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 # 27 28 29 30 31 32 33 34 35 36

Vds (V)

Example:Generation of HCI‐SOA for 30V LDMOS

Note:  Keep‐out regions (or  very low‐duty cycle regions) are clearly highlighted in the  HCI‐SOA

R‐SOA

26

Time‐Dependent Dielectric BreakdownR‐SOA

Note: All dielectrics will eventually breakdown  27

R‐SOATime‐Dependent Dielectric Breakdown Models

1.0E‐011.0E+011.0E+031.0E+051.0E+071.0E+091.0E+111.0E+131.0E+151.0E+171.0E+19

0 5 10 15

TF  (Arbitrary Units)

Electric Field :  E (MV/cm)

E – Model(E)1/2 - ModelV – Model1/E - Model

E-Model is mostconservative

28

TDDB=10yrs @ 105oC

Ebd

TDDB Data for Silica‐Based DielectricsR‐SOA

Breakdown Strength Ebd changes but not slope γ29

(k=2.2)

HV TDDB Data for Silica‐Based DielectricsHV Isolation Capacitors

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0.0 2.0 4.0 6.0 8.0 10.0

E (MV/cm)

TF (

sec)

)8(/22.3)150( StackumforMVcmCo −=γ

Silica (TEOS) Thickness = 8μmStress Voltages: 2500-4000VTemperature = 150oC

Observed:

γ

HV TDDB Data  (γ) Consistent with LV TDDB.No change in TDDB physics at high voltage.

E (MV/cm)

TF (a

.u.)

30

Gate Oxide Thickness (Angstrom)

Reference Area     

(cm2)

Reference Temp    

(oC)

Reference Lifetime (Hr)

Reference Average 

Failure Rate (Fit)

Reference Field 

(MV/cm)

Reference Weibull Slope: β

Reference Field 

Acceleration Parameter: γ (cm/MV)

130 ‐ 200 0.1 105 1.0E+05 10 4 3.0 4.050 ‐ 129 0.1 105 1.0E+05 10 5 2.2 4.030 ‐ 49 0.1 105 1.0E+05 10 6 2.0 3.620 ‐ 29 0.1 105 1.0E+05 10 7 1.5 3.612 ‐ 19 0.1 105 1.0E+05 10 7 1.2 3.3

TDDB‐SOA for Gate Oxides

Note: Assumes Good Quality Gate Oxide 

R‐SOA

31

)])((exp[)()(

/1

refoxoxrefref

EEAreaArea

dcycdcycAF −•

⎥⎥⎦

⎢⎢⎣

⎡•

⎥⎥⎦

⎢⎢⎣

⎡= γ

β

80V 0V

0V

0V

0V

Low‐k Dielectrics

Low‐k DielectricsIncreasedSpacing 

Metal

Metal

Metal

DEMOS/LDMOS Interconnect TDDB‐SOA R‐SOA

TDDB‐SOA (Interconnect Spacing): (Space)min = 80V/(Ebd ‐ 5MV/cm) 32

E‐fieldE‐field

Silicon Silicon

SiO2 SiO2

Poly Gate (-V)

P-MOSFET ISSUE

Primarily a PMOS Issue !

NMOS

PMOS

Silicon

Hydrogen

Bond

NBTI‐SOA

Negative Bias Temperature Instability 

Si‐H Bond Breakage will occur causing interface state generation ‐‐‐ Vtp shift

NBTI‐induced Vtp shift caused by Si‐H bond breakage 33

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

0 2 4 6 8 10

Parameter Degrada

tion (%)

Time (yr)

25.0),()(

tTVBV

Vo

otp

tp •=Δ

V1

V2

V3

(V3 > V2 > V1)

NBTI‐Induced Vtp DegradationVtpDegrada

tion

 (%)   

NBTI‐SOA

Most of shift occurs within 1st year of  normal product useCan be accelerated to a few hours during HTOL for quick evaluationNBTI‐SOA is presently handled by guard‐banding at  product level

34

Alpha‐Particles Thermal Neutrons High‐Energy Neutrons

Single Event Upset (SEU)

Important Reliability Considerations for SEU:Materials selection which are low in   radioactive impuritiesRemoval of 10B from BPSG process SER calculator/simulatorError correctionLayouts to reduce multiple‐bit errorsSEU Induced Latch‐up 

SEU Impact on HV Devices:‐‐‐Hard failures due to

SEU induced latch‐up‐‐‐ Hard Failures due to  

TDDB in High‐VoltageCapacitors

35

Conclusions

The business demand for HV components is great

HV components, such as DEMOS and LDMOS   devices, can be safely integrated with LV CMOS when careful attention is given to Safe Operating Areas: 

‐‐‐ e‐SOA‐‐‐ T‐SOA‐‐‐ R‐SOA

SEU‐induced hard failures will need to be investigated  more closely for HV devices

36