48
PERFORMANCE COMPARISON AND EVALUATION OF 802.11A AND ITS IMPLEMENTATION IN RECONFIGURABLE ENVIRONMENT SABA ZIA 2007-NUST-MS-PHD-TE-05 Project Advisor: Dr. N. D Gohar (HOD CSE, SEECS, NUST) Committee Members: Mr. Imtiaz Khokhar (Asst. Prof, EE, MCS, NUST) Dr. Adnan Khan (Asst. Prof, EE, MCS, NUST) Mr. Bilal Saqib (lecturer, CSE, SEECS, NUST)

SABA ZIA 2007-NUST-MS-PHD-TE-05

Embed Size (px)

DESCRIPTION

PERFORMANCE COMPARISON AND EVALUATION OF 802.11A AND ITS IMPLEMENTATION IN RECONFIGURABLE ENVIRONMENT. Project Advisor: Dr. N. D Gohar (HOD CSE, SEECS, NUST) Committee Members: Mr. Imtiaz Khokhar (Asst. Prof, EE, MCS, NUST) Dr. Adnan Khan (Asst. Prof, EE, MCS, NUST) - PowerPoint PPT Presentation

Citation preview

Page 1: SABA ZIA 2007-NUST-MS-PHD-TE-05

PERFORMANCE COMPARISON AND EVALUATION OF 802.11A AND ITS IMPLEMENTATION IN

RECONFIGURABLE ENVIRONMENT

SABA ZIA2007-NUST-MS-PHD-TE-05

Project Advisor: Dr. N. D Gohar (HOD CSE, SEECS, NUST)

Committee Members:Mr. Imtiaz Khokhar (Asst. Prof, EE, MCS, NUST)

Dr. Adnan Khan (Asst. Prof, EE, MCS, NUST)Mr. Bilal Saqib (lecturer, CSE, SEECS, NUST)

Page 2: SABA ZIA 2007-NUST-MS-PHD-TE-05

Outline Introduction

SDR, OFDM based standards, WLAN Reconfigurable Environment Performance Evaluation in a Reconfigurable

Environment Reconfigurable Kernels

Implementation Overview Kernel Algorithm Kernel Simulation Results Kernel Synthesis: Max Frequency, Area requirements

Simulated and Synthesized Example WLAN PHY (802.11a)

2

Page 3: SABA ZIA 2007-NUST-MS-PHD-TE-05

Introduction

3

Page 4: SABA ZIA 2007-NUST-MS-PHD-TE-05

Introduction Performance Comparison and Evaluation of 802.11a

and its Implementation in a Reconfigurable Environment

Software Defined Radio Development using a Network-On-Chip based Rapid Prototyping Platform

4

Radio Frequency

(RF)

Analog to Digital

Conversion(A/D)

Baseband Processing

Control (Parameterization)Control (Parameterization)

Transmit

ReceiveRF Front End

Page 5: SABA ZIA 2007-NUST-MS-PHD-TE-05

55

Physical Layer Architecture and Kernel Physical Layer Architecture and Kernel Identification (802.11a)Identification (802.11a)

Ref: IEEE Std 802.11a-1999(R2003)

Page 6: SABA ZIA 2007-NUST-MS-PHD-TE-05

66

Physical Layer Architecture and Kernel Physical Layer Architecture and Kernel IdentificationIdentification

Data Scrambler/ Descrambler

Data Scrambler/ Descrambler

Convolutional Encoder / Viterbi decoder

Convolutional Encoder / Viterbi decoder

Data interleaver/ De-interleaverData interleaver/ De-interleaver

Guard interval insertion/ Removal

Guard interval insertion/ Removal

OFDM modulationIFFT/FFT

OFDM modulationIFFT/FFT

Subcarrier Modulation Mapping/ De-mapping

Subcarrier Modulation Mapping/ De-mapping

Puncturing / De-puncturingPuncturing / De-puncturing

Point ArrangementPoint Arrangement

Bit ReversalBit Reversal

Page 7: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelData Scrambler/DescramblerData Scrambler/Descrambler

77

S (x)=xS (x)=x77 +x +x44 +1 +1

Ref: IEEE Std 802.11a-1999(R2003)

Page 8: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelConvolutional Encoder/ Viterbi DecoderConvolutional Encoder/ Viterbi Decoder

88

R = ½, 2/3 , ¾R = ½, 2/3 , ¾ For R= 1/2, GFor R= 1/2, G00=133=13388 G G11 = 171 = 17188

Decoding by Viterbi AlgorithmDecoding by Viterbi AlgorithmRef: IEEE Std 802.11a-1999(R2003)

Page 9: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelPuncturing/De-puncturing PatternsPuncturing/De-puncturing Patterns

99

Ref: IEEE Std 802.11a-1999(R2003)

Page 10: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelData Interleaver/ De-interleaverData Interleaver/ De-interleaver

Block size corresponding to the number of bits Block size corresponding to the number of bits in a single OFDM symbol, NCBPSin a single OFDM symbol, NCBPS

Two-step permutationTwo-step permutation i = (Ni = (NCBPSCBPS/16) (k mod 16) + floor(k/16) where k = 0,1,…,N/16) (k mod 16) + floor(k/16) where k = 0,1,…,NCBPS CBPS – 1– 1

j = s × floor (i/ s) + (i + Nj = s × floor (i/ s) + (i + NCBPSCBPS – floor(16 × i/N – floor(16 × i/NCBPSCBPS)) mod s where i = )) mod s where i =

0,1,… N0,1,… NCBPSCBPS – 1 – 1

The value of s is determined by the number of coded bits per subcarrier, The value of s is determined by the number of coded bits per subcarrier, NNBPSCBPSC, according to s = max(N, according to s = max(NBPSCBPSC/2,1)/2,1)

1010

Page 11: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelSubcarrier Modulation MappingSubcarrier Modulation Mapping

BPSK,QPSK,16 QAM or 64 QAM depending on BPSK,QPSK,16 QAM or 64 QAM depending on the rate requestedthe rate requested

Gray coded constellation mappingsGray coded constellation mappings Resultant, d = (I + jQ) X KResultant, d = (I + jQ) X KMODMOD

1111

Ref: IEEE Std 802.11a-1999(R2003)

Page 12: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelOFDM modulation (IFFT)OFDM modulation (IFFT)

Divide the complex number string into Divide the complex number string into groups of 48 complex numbers. Each groups of 48 complex numbers. Each such group will be associated with one such group will be associated with one OFDM symbol.OFDM symbol.

Each complex number is mapped into Each complex number is mapped into OFDM subcarriers numbered –26 to –OFDM subcarriers numbered –26 to –22, –20 to –8, –6 to –1, 1 to 6, 8 to 20, 22, –20 to –8, –6 to –1, 1 to 6, 8 to 20, and 22 to 26. and 22 to 26.

The “0” subcarrier, associated with The “0” subcarrier, associated with center frequency, is omitted and filled center frequency, is omitted and filled with zero value. with zero value.

Four subcarriers are inserted as pilots Four subcarriers are inserted as pilots into positions –21, –7, 7, and 21. The into positions –21, –7, 7, and 21. The total number of the subcarriers is 52 total number of the subcarriers is 52 (48 + 4). (48 + 4).

For each group of subcarriers –26 to 26, For each group of subcarriers –26 to 26, convert the subcarriers to time domain convert the subcarriers to time domain using inverse Fourier transformusing inverse Fourier transform

1212

Page 13: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelOFDM modulation (FFT-DIT)OFDM modulation (FFT-DIT)

1313

Ref: IEEE Std 802.11a-1999(R2003)

-1

-1

-1

j

-j

-1

-1

-1

j

-j

W0

W1

W2

W3

W4

W5

W6

W7

TimeDomainSamples

FrequencyDomainOutputs

Page 14: SABA ZIA 2007-NUST-MS-PHD-TE-05

Individual Properties of each KernelIndividual Properties of each KernelGuard Interval InsertionGuard Interval Insertion

Prepend to the Fourier-transformed waveform a circular extension of Prepend to the Fourier-transformed waveform a circular extension of itself thus forming a GI, and truncate the resulting periodic waveform itself thus forming a GI, and truncate the resulting periodic waveform to a single OFDM symbol length by applying time domain windowing. to a single OFDM symbol length by applying time domain windowing.

1414

Ref: IEEE Std 802.11a-1999(R2003)

Page 15: SABA ZIA 2007-NUST-MS-PHD-TE-05

Rate Dependent ParametersRate Dependent Parameters

1515

Ref: IEEE Std 802.11a-1999(R2003)

Page 16: SABA ZIA 2007-NUST-MS-PHD-TE-05

Reconfigurable Environment

16

Page 17: SABA ZIA 2007-NUST-MS-PHD-TE-05

Reconfigurable Environment

17

System on Chip (SoC)

Putting all the functions of a complete system (processor, memory, analog functions, external interfaces, timers, counters, voltage regulators, etc.) all on a single silicon chip, enabling the chip to operate as a standalone system

Page 18: SABA ZIA 2007-NUST-MS-PHD-TE-05

Communication Structures in System-on-Chip

18

Bus based Architecture

µP

Memory

RF

DSPKeyboard

Point to Point Links

µP

Memory

RF

DSPKeyboard

Network based Connections

µP Memory RF

DSP Keyboard

Page 19: SABA ZIA 2007-NUST-MS-PHD-TE-05

Reconfigurable Environment

19

Network on Chip (NOC)

Resource Resource Resource

Resource Resource Resource

Resource Resource Resource

Router or Switch

RNI

Page 20: SABA ZIA 2007-NUST-MS-PHD-TE-05

Reconfigurable Kernels

20

Algorithmic size functionality

Reused across several standards

Combined Spatially or Temporally for bigger dimension

Fulfills overall performance constraints of multiple standards

Page 21: SABA ZIA 2007-NUST-MS-PHD-TE-05

SDR supporting OFDM based wireless Standards

21

Page 22: SABA ZIA 2007-NUST-MS-PHD-TE-05

Role of Kernel and 802.11a in SDR

802.11a is an OFDM based standard Each individual block of the 802.11a at

physical layer will serve the functionality of the basic kernel of OFDM block

Kernel would be expanded spatially or temporally

Implementation allows reconfiguration to meet the constraints of other wireless standards

22

Page 23: SABA ZIA 2007-NUST-MS-PHD-TE-05

Performance Evaluation in Reconfigurable Environment

Size Performance Cost Power

23

Page 24: SABA ZIA 2007-NUST-MS-PHD-TE-05

WLAN TX Controller Initialization signals for datapath

Scrambler Convolutional Encoder Interleaver Modulation Mapper Point Arrange FFT Bit Reversal Guard Insertion

State Machine Short Preamble Long Preamble Header Data Initialization Signals for Controller

WLAN TX CONTROLLER

WLAN TX DATAPATH

24

Page 25: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulated and Synthesized Datapath

IEEE STD 802.11a

25

Page 26: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsScrambler

ScramblerScrambler

startstart

rstrst

dindin

clkclk

doutdout

Kernel SlicesXC4VSX25

Max Frequency (MHz)XC4VSX25

Scrambler 5 505

Page 27: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation ResultsScrambler/ Descrambler

Page 28: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsConvolutional Encoder

clk

Punc_en

rst

start

Start

puncture

Encoding

clk

rst

dout

Encoding

Puncturing

din

clk

rst

out

rate

Start

puncture

dout

Puncturing

Page 29: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsConvolutional Encoder

29

Parameter Xilinx Logic Corev6.0

XCV4-10

Designed Kernel

XCV4-10

Area (slices) 32 14

Maximum Clock Frequency (MHz)

342 384 (512 MHz XC4VSX25)

Page 30: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation ResultsConvolutional Encoder with Puncturing

Page 31: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsInterleaver

Ncbps

Change Ncbps

clk

Serial_in

Start First Permutation

Addrb_0

Addrb_1

Permuted data1_0

Permuted data1_1

Ncbps

Change Ncbps

clk

Permute d data_2

Start Second Permutation

Addra_0

Addra_1

Permuted data1_0

Permuted data1_1

addra

addrb

clk

dinb

douta addra

addrb

clk

dinb

douta

Page 32: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsInterleaver

Kernel SlicesXC4VSX25

Max Frequency (MHz)XC4VSX25

Interleaver 633 188

Page 33: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation Results Interleaver

Page 34: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation ResultsInterleaver

Page 35: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsModulation Mapper

Data_from_mem_bpsk

Data_from_mem_qpsk

Data_from_mem_16QAM

Data_from_mem_64QAM

Modulation

64QAM_input

16QAM_input

Bpsk_input

Qpsk_input

clk

rst

Start

Imaginary_data

Real_data

Mem_addr_bpsk

Mem_addr_qpsk

Mem_addr_16QAM

Mem_addr_64QAM

addr

clk

dout

addr

clk

dout

addr

clk

dout addr

clk

dout

Page 36: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsModulation Mapper

Kernel SlicesXC4VSX25

Max Frequency (MHz)XC4VSX25

Modulation Mapper 65 275

Page 37: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation ResultsModulation Mapper

Page 38: SABA ZIA 2007-NUST-MS-PHD-TE-05

FFT-DIF State Machine

Page 39: SABA ZIA 2007-NUST-MS-PHD-TE-05

Synthesis ResultsFFT-DIF

Wnk Factor LUT

Wnk Factor LUT

Dual Port RAM

Port A

Dual Port RAM

Port A

Stage and Butterfly Controller

+

Data Memory Controller

+

Twiddle Memory Controller

Stage and Butterfly Controller

+

Data Memory Controller

+

Twiddle Memory Controller

Dual Port RAM

Port

B

Dual Port RAM

Port

B

Radix-2 CellRadix-2 Cell

-1

Wnk

Page 40: SABA ZIA 2007-NUST-MS-PHD-TE-05

Comparison of Synthesis ResultsFFT-DIF

Platform

TSMC 90nm standard cell

Areamm2

ClockMHz

PowermW

Morphable Data Unit .5 1001 188

Reconfigurable Kernel 0.62 1100 38

Ref: M. Ali Shami, A Hemani “Morphable datapath Unit: Smart and efficient datapath for Signal Processing Applications”, 2008

Page 41: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation ResultsFFT-DIF

Page 42: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulation ResultsFFT-DIF

Page 43: SABA ZIA 2007-NUST-MS-PHD-TE-05

Simulated and Synthesized Controller

IEEE STD 802.11a

43

Page 44: SABA ZIA 2007-NUST-MS-PHD-TE-05
Page 45: SABA ZIA 2007-NUST-MS-PHD-TE-05

Pipelined Data Flow

Short PreambleShort Preamble Long PreambleLong Preamble HeaderHeader ServiceService DataDataKernel

FFT

Convolutional Encoder

Scrambler

Interleaver

Modulation Mapper

Point arrangement

Bit Reversal

Guard Insertion

128 clocks128 clocks

2 clocks2 clocks

48 clocks48 clocks

172 clocks172 clocks

4 clocks4 clocks

151 clocks151 clocks

66 clocks66 clocks

Page 46: SABA ZIA 2007-NUST-MS-PHD-TE-05

Controller Review

46

Page 47: SABA ZIA 2007-NUST-MS-PHD-TE-05

Conclusion

NOC based radio prototyping platform Flexibility and scalability of FPGAs Performance of ASICs Paper submitted in conference IEEE

INFOCOM, 2010 titled “Reconfigurable FFT Kernel for Network on Chip based Radio System Prototyping Platform ”

47

Page 48: SABA ZIA 2007-NUST-MS-PHD-TE-05

Questions

48