84
Microwave Photonics For Space Systems Cours 2 Angélique Rissons [email protected]

S2 Prof Angelique Rissons.pdf

Embed Size (px)

Citation preview

Microwave Photonics For Space Systems Cours 2 Anglique Rissons [email protected] 13/07/15ISAE 20142 I.Introduction: -definition, Chronicle, applications II.Microwave Photonic Space Application & Space Qualification III.Microwave//Opticaltechnology:(reception, amplification, oscillation) III-1 Optical Amplifier III-2 Laser Diode III-3 receiver I.Photonic transmission of microwave signal (optoelectronics terminals optical Fiber-budject link) 13/07/15ISAE 20113 |ectron|quehoton|que|ectron|que opto|ectron|que opto|ectron|que ulodes laser LLu ModulaLeur hoLodlode hoLoLranslsLor llbre Cpuque AmpllcaLeur a bre dopee Muluplexeur... 4 LM ACu 1ransmlLer 8epeaLer or Cpucal ampller llber Cpuc hoLodeLecLor uaLa 13/07/15ISAE 20115 8Load hoLodlode Laser dlode ulrecL Modulauon 8Load hoLodlode Laser dlode LxLernal Modulauon LlecLro-opucmodulaLor 60I IPOL = 7 l Slgnal modulauon Laser dlode CW0 ouL(L) Cpucal modulaLor 13/07/15ISAE 20148 I.Introduction: -definition, Chronicle, applications II.Microwave Photonic Space Application & Space Qualification III.Microwave//Opticaltechnology:(reception, amplification, oscillation) III-1 Optical Amplifier III-2 Laser Diode III-3 receiver I.Photonic transmission of microwave signal (optoelectronics terminals optical Fiber-budject link) In 70th, the Multimode fiber optic utilization involved limitation due to the modal scattering caused by the various propagation velocity of the FO modes. ! A periodically signal regeneration is required, implying a light signal detection, a complete electronic processing including a signal resynchronization and conditioning => The regenerated information is modulated by a new optical carrier..! Single mode FO deployment, no scattering, only the spectral attenuationcontribute to the limitation of the transmission link length ! Regeneration non required but only linear amplification is required.9 Long distanceoptical link70th Corning research and technology works :" Attenuation decrease (from 100dB up to 0.2 dB per km)"repeater per 100kms, utilization of 1550nm band10 Weakness: Electronic amplifier bitrate limited to 500Mbit/s#All optical amplification (Electrons-photons transduction suppressed) # Bit rate increase CpLoelecLronlc repeaLer Photodiode Conditioningelectronic amplifierBias Emitter Modulator 11 !Optical amplification: $ simple and cost effectiveless than optoelectronic repeater-regenerater.NB: the complexity and cost increase considerably with the bitrate/channel. +The optical amplifier allows simultaneously and without distortion the Multiplexing of 100 wavelength. !The optical amplification deployment was achieved during the 90th in the transmission systems for telecom networks (land and submarine) !12 Optical amplifier advantage Two kind of amplifier: - Laser effect amplifier - Raman Effect Amplifier Laser effect amplifier: The active region is constituted by a materials allowing the stimulated emission and place into the core of a single mode waveguide allowing a low consumption and minimizing the losses.13 The amplifier have to: - answer to the wavelength constraints - have a minimized spectral linewidth (30nm, 3600 GHz) - have a high gain (20 30 dB) to satisfy the factor of merit Two kind of laser effect amplifier: - Rare Earth Doped Fiber Amplifier, i.g. EDFA=Erbium Doped FA, YDFA= Ytterbium DFA, PrDFA, PraseodymiumDFA - Semiconductor Optical Amplifier SOA

14 Plgh specLral bandwldLh: 40nm!! 15 High Bandwidth (40Gbit/s)Amplification of several wavelength simultaneously: Wavelength Division Multiplexing (WDM) over the amplification band of the Erbium ion into the silica lattice (1530nm 1560 nm) 16 >Propagation according to Oz Axis >Gain coefficient>Amplifier Gain

dPdz = g(!)! P " P(z) = P(0)egzif P g !( )! G L( ) max for L $ 20 ! 40m17 >Bande passante B = !!g "Ln2Ln G0 2( )#$%%&'((1 2avecGO = eg0L!!g =1"#218 1931/05/2013VCSEL Day 2013, EPFL, Lausanne, Switzerland 2031/05/2013VCSEL Day 2013, EPFL, Lausanne, Switzerland 3 sources d'lnLeracuon avec emlsslon sponLanee ampllee (ASL) Slgnal-ASL ASL-ASL 8ln-ASL Ln prauque : nLulA= nS-ASL + nASL-ASL + n8ln-ASL !"# %&'(&)*+ ,- .(/)&0 12343,54+*456 Ln prauque: 2 mesures de la pulssance de brulL avec (n2) /sans LulA (n1) Z esL l'lmpedance de l'ampllcaLeur elecLrlque du phoLodeLecLeur,

lacLeur de 8rulL: en d8 = nolse llgure Crdres de grandeur Pp=10mW; !p=0.98m; L=30m ! NF=3.2dB Pp=25mW; !p=1.48m; L=60m ! NF=4dB 7" 8&),+ ,+ 9+.-'+ :; 2 Isand S " 0 I " Is and S = 0(Ns = Threshold carrier number andIs = threshold current) if N! Ns

" 0 , $ " 0 lll. Laser ulode: 8aLe equauons, sLeady sLaLe resoluuon60Threshold determination Above threshold(l ls ), N " ns

Current/carrier relationship 0 = ! !"s ns iS NqI# #$Photons/Current for I>Is:lll8aLe equauons, sLeady sLaLe resoluuon61 Optical Power vs current relationship for I>Is Current /Photon number relationship: and lll.8aLe equauons, sLeady sLaLe resoluuon62!resonance n) !S) (Lhrough C) S) ! n. l(L) ! n) Modulauon ! repauuon du phenomenelll.8aLe equauons, dynamlc behavlor 630I IPOL = lll. ulode laser modulauon peuL slgnal 64%I, %N, %S: small signal linearization and lll. Laser ulode: small slgnal modulauon 65 lll. small slgnal modulauon 66lll. small slgnal modulauon 67-> frequencial domain pulsation # !frquency f=#/2n For each X close to X0 " Xm