22
1 Modeling of heat transfer in an accelerator superconducting coil with a ceramic insulation in supercritical helium S. Pietrowicz, B. Baudouy, CEA Saclay/ Irfu, SACM 91191 Gif-sur-Yvette Cedex, France N. Kimura, A. Yamamoto KEK, Tsukuba, Japan [email protected] CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

S. Pietrowicz, B. Baudouy , CEA Saclay / Irfu , SACM 91191 Gif- sur -Yvette Cedex , France

Embed Size (px)

DESCRIPTION

Modeling of heat transfer in an accelerator superconducting coil with a ceramic insulation in supercritical helium. S. Pietrowicz, B. Baudouy , CEA Saclay / Irfu , SACM 91191 Gif- sur -Yvette Cedex , France N. Kimura, A. Yamamoto KEK, Tsukuba , Japan s [email protected]. - PowerPoint PPT Presentation

Citation preview

Page 1: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

1

Modeling of heat transfer in an accelerator superconducting coil with a ceramic

insulation in supercritical helium

S. Pietrowicz, B. Baudouy,CEA Saclay/ Irfu, SACM

91191 Gif-sur-Yvette Cedex, France

N. Kimura, A. YamamotoKEK, Tsukuba, Japan

[email protected]

CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Page 2: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 2

Outline

▫Motivation

▫Description of ceramic insulation

Experiment

◦Stack of conductors

◦Set-up

◦Experimental Results

Thermal ModelingFull model

−Geometry and mesh

−Domains, boundary conditions

−Numerical Results

„Conduction” model

◦Geometry

◦Domains, boundary conditions

◦Numerical Results

▫Conclusions

Page 3: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 3

Outline

▫Motivation

▫Description of ceramic insulation

Experiment

◦Stack of conductors

◦Set-up

◦Experimental Results

Thermal ModelingFull model

−Geometry and mesh

−Domains, boundary conditions

−Numerical Results

„Conduction” model

◦Geometry

◦Domains, boundary conditions

◦Numerical Results

▫Conclusions

Page 4: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Motivation

▫Decreasing of temperature rise in superconducting cables;

▫From our experimental results the heat transfer of the dissipated heat from the cables to the cold mass in pressurized superfluid helium improves about 30 times,

▫Some magnets are operated in supercritical helium - J-PARC

4

Page 5: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 5

Outline

▫Motivation

▫Description of ceramic insulation

Experiment

◦Stack of conductors

◦Set-up

◦Experimental Results

Thermal ModelingFull model

−Geometry and mesh

−Domains, boundary conditions

−Numerical Results

„Conduction” model

◦Geometry

◦Domains, boundary conditions

◦Numerical Results

▫Conclusions

Page 6: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Description of ceramic insulation

66

Ceramic (S2 -glass) Classic (Polyimide) Full impregnation

Pore size d~70 µm (peak) 10 to 100 µm -Porosity ε 4.5 to 29 % (~ 19%) ~1 % -Conductivity k≈4 10-2 W/Km (??) kkapton≈10-2 W/Km @ 2 K - kepoxy≈10-2 W/Km

The comparison of insulation materials

100 10 1 0,1 0,010

0,05

0,10

0,15

Pore diameter ( m)m

Volu

me fr

act

ion

of p

orosi

ty s

ize (m

l/g)

The pore diameter vs. volume fraction of porosity size, the data obtained using mercury injection technique

S2 glass tape + porous media

x50 S2 glass tape

Porous media

Page 7: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Stack of conductors

Ceramic insulation◦Two wrapping layers, with an overlap of 50% each other

◦S2 glass tape + porous media - 0.1 mm thick and 15 mm wide

◦Heat treatment about 100 hours at 660 °C

Compressive load◦10 MPa and 20 MPa

7

NiCu Cable with insulation Stack of conductors Stack in the mold

Page 8: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Stack of conductors

8

• 5 pseudo-conductors stack (made of CuNi)• All conductors connected in series: 9 mW• Supplied current range: 0 – 25 A• Dissipated heat load: 0 – 5 W/m• Installed two temperature sensors at

conductor III (at the center)

thermometerstack of NiCu conductors

Micartacap

wires

Page 9: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Experimental set-up

9

P – pressure transducer

V – pressure control valve

Electrical circuit for Joule Heating

Measured parameters:1. Current on power supply;2. Voltage on stack of conductors;3. Voltage on temperature sensors

(CERNOXTM );

R3

R4

R5

Vsamples

PSTI I

+

-

T - thermometerPS - power supply

I =0 Asupp 2̧3

R1

TI

R2

R =

+

TO

TAL

1R

RR

RR

23

45

++

+

P1 V1

LHe bath

SHe bath 0.26 0.45 MPa¸

GH

e

N2

DC power supply

dummy cable stack leads

bolts

thermometers

Page 10: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Experiment at supercritical helium

▫Two stacks of samples were tested in supercritical helium (T=4,23K and p varying from 2,25 to 3,75 bar with a 0,25 bars step);

▫Heat was dissipated in 27 steps in range from 0 to 5 W/m;

▫The steady state condition was obtained after 240 sec.

10

Page 11: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Experimental results in supercritical helium

11

Evolution of temperature difference for the 10 MPa and 20 MPa experimental molds with ceramic insulation in saturated and supercritical helium (dotted lines show the results obtained for the highest value of 3.75 bar absolute pressure, solid lines

concern the lowest value of 2.25 bar absolute pressure, bold solid line depicts the results obtained for all-polyimide insulation at supercritical helium of 3.75 bar)

0 1 2 3 4 50

1

2

3

4

5

62.25 bar - 10 MPaPolynomial (2.25 bar - 10 MPa)2.25 bar - 20 MPaPolynomial (2.25 bar - 20 MPa)3.00 bar - 10 MPa3.00 bar - 20 Mpa3.50 bar - 10 MPa3.50 bar - 20 MPa3.75 bar - 10 MPaPolynomial (3.75 bar - 10 MPa)

Heat Load (W/m)

Tem

pera

ture

dif

fere

nce

(K)

Tb = 4.23 K

Page 12: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 12

Outline

▫Motivation

▫Description of ceramic insulation

Experiment

◦Stack of conductors

◦Set-up

◦Experimental Results

Thermal ModelingFull model

−Geometry and mesh

−Domains, boundary conditions

−Numerical Results

„Conduction” model

◦Geometry

◦Domains, boundary conditions

◦Numerical Results

▫Conclusions

Page 13: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Numerical modeling – full model

▫Geometry and boundary conditions

13

Supercritical helium region: - properties of the fluid (k, cp, viscosity, entropy, enthalpy, etc… ) are taken from Hepack (*.rgp file)

- full model of the flow (continuity, momentum and energy equations),

Solid region:

- thermal properties (k) are a function of the temperature.

Porous region:

- the porosity of the cable – 0,08

- the porosity of the insulation – 0,12 for 10 MPa and 0,10 for 20 MPa of compressive load;

- the heat transfer coefficient between solid and fluid in the insulation region – 250 W/m2 K in cable – 200 W/ m2 K;

Supercritical helium region

Solid region

Porous region

Appiled geometry with the details of mock-up

Page 14: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Mesh

14

1,5 mln of nodes1,8 mln of elements

The combination of structural (solid elements) and unstructural (fluids) meshes

General view of fluid and experimental mold

The details of applied mesh

Page 15: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Numerical results for full model

15

The streamlines of supercritical helium at 3.0 bars and 4.955 W/m heat load

Temperature distribution on the walls and

symmetry sides

Detail of the streamlines

around experimental

mock-up

Page 16: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Full Model – numerical results at 3.0 bar

16

Conclusion:

1. Good agreement between experimental and numerical results (especially for 20 MPa);2. Long computational time – about 1 day for one point,

Page 17: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 17

Outline

▫Motivation

▫Description of ceramic insulation

Experiment

◦Stack of conductors

◦Set-up

◦Experimental Results

Thermal ModelingFull model

−Geometry and mesh

−Domains, boundary conditions

−Numerical Results

„Conduction” model

◦Geometry

◦Domains, boundary conditions

◦Numerical Results

▫Conclusions

Page 18: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Simplified model – „conduction” model

18

The „conduction” model used during calculation and detail of the mesh

Assumptions:

- all elements are treated as the solid domain;

- thermal conductivity of the insulation and conductor are calculated according formula:

𝑘𝑡𝑜𝑡𝑎𝑙=𝑘𝑠𝑜𝑙𝑖𝑑 (1−𝜀 )+𝑘𝑆𝐻𝑒𝜀

Where:ksolid – thermal conductivity of solid

kSHe – thermal conductivity of supercritical helium

e – porosity.

The time of calculation about 15 min.

Page 19: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Numerical results – „conduction” model

19

The distribution of the temperature for the heat load - a) 0.198803 W/m b) 2.4865 W/m and c) 4.9559 W/m (the thermal conductivity of the SHe is taken for 3.0 bar of absolute pressure)

q = 0.198803 W/m q = 2.4865 W/m q = 4.9559 W/m

Page 20: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 20

The comparison between full model, conduction model and experimental data for 3.0 bar of absolute pressure

Page 21: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN 21

Outline

▫Motivation

▫Description of ceramic insulation

Experiment

◦Stack of conductors

◦Set-up

◦Experimental Results

Thermal ModelingFull model

−Geometry and mesh

−Domains, boundary conditions

−Numerical Results

„Conduction” model

◦Geometry

◦Domains, boundary conditions

◦Numerical Results

▫Conclusions

Page 22: S. Pietrowicz, B.  Baudouy , CEA  Saclay /  Irfu , SACM 91191 Gif- sur -Yvette  Cedex , France

S. Pietrowicz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Conclusions

▫The measurements of the temperature rise in the cable with ceramics insulation have been performed in the range up to 5 W/m of heat load.

▫The full model (with flow in the porous media) gives very good agreement with experimental data but consumes a lot of calculating times.

▫The good approximation of the thermal – flow process in the porous insulation is model based on the assumption that dominated mechanism of the heat transfers is conduction. The thermal conductivity of insulation materials can be changed by the simple formula

22

𝑘𝑡𝑜𝑡𝑎𝑙=𝑘𝑠𝑜𝑙𝑖𝑑 (1−𝜀 )+𝑘𝑆𝐻𝑒𝜀