29
1 S. OLADYSHKIN, M. PANFILOV S. OLADYSHKIN, M. PANFILOV Laboratoire d'Énergétique et de Mécanique Théorique et Appliquée Ecole Nationale Supérieure de Géologie Institut National Polytechnique de Lorraine STREAMLINE SPLITTING THE STREAMLINE SPLITTING THE THERMO- AND HYDRODYNAMICS IN COMPOSITIONAL THERMO- AND HYDRODYNAMICS IN COMPOSITIONAL FLOW THROUGH POROUS MEDIA FLOW THROUGH POROUS MEDIA APPLICATION TO H APPLICATION TO H 2 -WATER IN RADIOACTIVE WASTE DEPOSITS -WATER IN RADIOACTIVE WASTE DEPOSITS

S. OLADYSHKIN, M. PANFILOV

  • Upload
    karli

  • View
    31

  • Download
    2

Embed Size (px)

DESCRIPTION

Laboratoire d'Énergétique et de Mécanique Théorique et Appliquée Ecole Nationale Supérieure de Géologie Institut National Polytechnique de Lorraine. - PowerPoint PPT Presentation

Citation preview

Page 1: S. OLADYSHKIN, M. PANFILOV

1

S. OLADYSHKIN, M. PANFILOVS. OLADYSHKIN, M. PANFILOV

Laboratoire d'Énergétique et de Mécanique Théorique et Appliquée Ecole Nationale Supérieure de GéologieInstitut National Polytechnique de Lorraine

STREAMLINE SPLITTING THE STREAMLINE SPLITTING THE THERMO- AND HYDRODYNAMICS THERMO- AND HYDRODYNAMICS

IN COMPOSITIONAL FLOW THROUGH POROUS IN COMPOSITIONAL FLOW THROUGH POROUS MEDIAMEDIA

APPLICATION TO HAPPLICATION TO H22-WATER IN RADIOACTIVE WASTE -WATER IN RADIOACTIVE WASTE DEPOSITSDEPOSITS

Page 2: S. OLADYSHKIN, M. PANFILOV

2

SommaireP

r e s

e n

t a t

I o n

Flow Model

Limit compositional model

Streamline HT-splitting

Introduction

Validation to the limit thermodynamic modelValidation to the limit thermodynamic model

Page 3: S. OLADYSHKIN, M. PANFILOV

3

IntroductionIntroductionPhysical descriptionPhysical description

Page 4: S. OLADYSHKIN, M. PANFILOV

4

Hydrogen generation in a radioactive waste deposit

Gas generation:

Waste storage

Storage pressure growth : - Initial : 100 bar - Increased by H2 : 300 bar

Monitoring problem :H2 transport through porous media

accompanied with radionuclides

H2 + CO2 + N2 + O2 + …

Corrosion in storage tank

underground: 900 - 1100m

Water

Page 5: S. OLADYSHKIN, M. PANFILOV

5

Fluid structure

Phases :

Components :

Gas Liquid

H2CO2N2O2H20…

Gas

Liquid

2 phases

Page 6: S. OLADYSHKIN, M. PANFILOV

6

Similar phenomena in an underground H2 storage

Well Well

GAS and LIQUID

H20 + H2 + CO2 + CH4 + …

Hydrogen storage

Page 7: S. OLADYSHKIN, M. PANFILOV

7

Initial stateL

L + G

G

Phase behaviour

Critical point

Page 8: S. OLADYSHKIN, M. PANFILOV

8

Flow ModelFlow Model

Page 9: S. OLADYSHKIN, M. PANFILOV

9

2 phases (gas & liquid)N chemical components

Compositional model

Mass balance for each chemical component k :

Momentum balance for each phase (the Darcy law)

Phase equilibrium :

Phase state :

( = the chemical potential)

or

Closure relationships:or

Page 10: S. OLADYSHKIN, M. PANFILOV

10

Limit contrast Limit contrast compositional modelcompositional model

Page 11: S. OLADYSHKIN, M. PANFILOV

11

Canonical dimensionless form of the compositional

modelgas flow

liquid flow

transport of basicchemical components

Page 12: S. OLADYSHKIN, M. PANFILOV

12

Mathematical type of the system

Parabolic equation

Hyperbolic equation

Page 13: S. OLADYSHKIN, M. PANFILOV

13

gas flow

liquid flow

transport of basicchemical components

Characteristic parameters of a gas-liquid

system

Page 14: S. OLADYSHKIN, M. PANFILOV

14

Perturbation parameter:

Parameter of relative phase mobility:

Perturbation propagation timeReservoir depletion time

Characteristic parameters of the system

Page 15: S. OLADYSHKIN, M. PANFILOV

15

Limit behaviour

Semi-stationarity : p and C(k) are steady-state, while s is non stationary

gas flow

liquid flow

transport of basicchemical components

Page 16: S. OLADYSHKIN, M. PANFILOV

16

Streamline HT-splittingStreamline HT-splitting

Page 17: S. OLADYSHKIN, M. PANFILOV

17

Integration of the transport subsystem

gas flow

liquid flow

transport of basicchemical components

This subsystem can be integrated along streamlines :

Asymptotic contrast compositional model :

A differential thermodynamic system

Page 18: S. OLADYSHKIN, M. PANFILOV

18

Hydrodynamic subsystem (limit hydrodynamic model):

Thermodynamic subsystem (limit thermodynamic model):

HT-splitting

Page 19: S. OLADYSHKIN, M. PANFILOV

19

variation of the total composition in an open system

The thermodynamic independent system is monovariant: all the thermodynamic variables depend on

pressure only The new thermodynamic model is valid along streamlines

Split Thermodynamic Model

Properties

Page 20: S. OLADYSHKIN, M. PANFILOV

20

Due to the monovariance, the thermodynalmic differential equations may be simplified to a “Delta-law”:

Thermodynamic “Delta-law”

“Delta-law”

Page 21: S. OLADYSHKIN, M. PANFILOV

21

Individual gas volume

Individual condensate volume

Interpretation of the delta-law

Page 22: S. OLADYSHKIN, M. PANFILOV

22

gas flow

liquid flow

Split Hydrodynamic Model

Page 23: S. OLADYSHKIN, M. PANFILOV

23

Validation to the limit Validation to the limit thermodynamic modelthermodynamic model

Page 24: S. OLADYSHKIN, M. PANFILOV

24

These functions have been calculated using Eclipse simulation data for a

dynamic system

F1 F2

Validation of the Delta-law

Page 25: S. OLADYSHKIN, M. PANFILOV

25

Phase plot

Fluid compositionCH4

H2

C10H22

Initial conditions:P0 = 315 barT = 363 K

T

P

Flow simulation: Fluid properties

Page 26: S. OLADYSHKIN, M. PANFILOV

26

Well

Flow simulation: Flow problem

Page 27: S. OLADYSHKIN, M. PANFILOV

27

Validation of the Delta-law

F1

F2

These functions have been calculated using the Eclipse simulation data

“Delta-law”

Page 28: S. OLADYSHKIN, M. PANFILOV

28

Liquid mole fractions

Gas mole fractions

Validation of the total limit thermodynamic model

Composition variation in an open thermodynamic system

Compositional Model (Eclipse) - points; Limit thermodynamic model - solid Compositional Model (Eclipse) - points; Limit thermodynamic model - solid curvescurves

Page 29: S. OLADYSHKIN, M. PANFILOV

29

FinitaFinita