4
A SHORT INTRODUCTION TO SOME RECENT PROGRESS IN PHYLOGENETIC NETWORK RECONSTRUCTION, GENOME MAPPING, GENE EXPRESSION ANALYSIS, MOLECULAR DYNAMIC SIMULATION, AND OTHER PROBLEMS IN BIOINFORMATICS LIMSOON WONG Managing Editor Phylogenetic network is a way to describe evolutionary histories that have under- gone evolutionary events such as recombination, hybridization, or horizontal gene transfer. The level, k, of a network determines how non-treelike the evolution can be, with level-0 networks being trees. A number of methods for constructing rooted phylogenetic network from triplets have been proposed in the past. 1,2 In this issue, Gambette et al. 3 discuss how to generalize these methods to construct unrooted phylogenetic network from quartets. The paper has three main contributions: (1) it gives an Oðn 5 ð1 þ ðn; nÞÞÞ time algorithm to compute the set of quartets of a network; (2) it shows that level-1 quartet consistency is NP-hard; and (3) given a set Q of quartets, it shows that Oðn 4 Þ time is su±cient to compute the unrooted level-1 network N such that Q ¼ QðN Þ, if it exists. Modern DNA sequencers produce an explosive amount of sequence data of rela- tively short read lengths. A number of fast genome mapping tools, which use the BurrowsÀWheeler transforms 4 for seed search and dynamic programming for ex- tension, have been developed. Myers proposed an elegant dynamic programming method for this problem that uses bit-parallelism for approximate string matching. However, it comes with a restriction that the query length should be within the word size of the computer. In this issue, Kimura et al. 5 propose a modi¯cation of Myers' algorithm that removes the restriction on the query length. Gene expression analysis is a powerful way to detect the biological signature of a disease. 6À8 In this issue, Han and Dong 9 introduce new ideas to optimize the diversity of decision trees in an ensemble classi¯er, CABD, for gene expression pro¯le classi- ¯cation. CABD is shown to be superior to other ensemble methods. Moreover, the diversi¯ed features produced by CABD are also useful for improving the performance of other classi¯ers, e.g. SVM. In another paper in this issue, Xu 10 describes an approach to identify di®erentially expressed genes in non-homogeneous time course Journal of Bioinformatics and Computational Biology Vol. 10, No. 4 (2012) 1203002 (3 pages) # . c Imperial College Press DOI: 10.1142/S0219720012030023    J  .    B    i   o    i   n    f   o   r   m  .    C   o   m   p   u    t  .    B    i   o    l  .    2    0    1    2  .    1    0  .    D   o   w   n    l   o   a    d   e    d    f   r   o   m    w   w   w  .   w   o   r    l    d   s   c    i   e   n    t    i    f    i   c  .   c   o   m    b   y    8    5  .    7    4  .    8    4  .    1    3    4   o   n    1    0    /    2    3    /    1    2  .    F   o   r   p   e   r   s   o   n   a    l   u   s   e   o   n    l   y  .

s 0219720012030023

Embed Size (px)

Citation preview

Page 1: s 0219720012030023

7/27/2019 s 0219720012030023

http://slidepdf.com/reader/full/s-0219720012030023 1/3

Page 2: s 0219720012030023

7/27/2019 s 0219720012030023

http://slidepdf.com/reader/full/s-0219720012030023 2/3

Page 3: s 0219720012030023

7/27/2019 s 0219720012030023

http://slidepdf.com/reader/full/s-0219720012030023 3/3