34
N95- 23626 CFD PARAMETRIC STUDY OF CONSORTIUM IMPELLER Gary C. Cheng °, Y.S. Chen*, R. Garcia*, and R.W. Williams i Abstract Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-e turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform. Due to the complexity of blade geometries, the TANDEM blade configurations were analyzed with the multi-zone grid structure. Both the 7.5 °- and the 22.5°-clocking TANDEM blade cases utilized a 80K mesh system. The numerical result of two TANDEM blade modifications indicates the efficiency and the head are worse than those of the baseline case due to larger flow distortion. The gap between the TANDEM blade and the full blade allows the flow passes through and heavily loads the pressure side of the partial blade such that flow reversal occurs near the suction side of the splitter. The flow split at the exit of impeller blades is very non-uniform for TANDEM blade cases, and this will greatly induce the side load on the diffuser. Therefore, the TANDEM blade modification in the present CFD analysis does not improve the performance of the consortium impeller. r:y .-'_ eSECA, Inc., 3313 Bob Wallace Ave., Suite 202, Huntsville, AL Engineering Sciences, Inc., 4920 Corporate Dr., Suite K, Huntsville, AL ED 32, NASA/Marshall Space Flight Center, Huntsville, AL ED 32, NASA/Marshall Space Flight Center, Huntsville, AL PRECEDING PAGE EILANK NOT FILMED https://ntrs.nasa.gov/search.jsp?R=19950017206 2018-08-25T16:47:43+00:00Z

r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

Embed Size (px)

Citation preview

Page 1: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

N95- 23626

CFD PARAMETRIC STUDY OF CONSORTIUM IMPELLER

Gary C. Cheng °, Y.S. Chen*, R. Garcia*, and R.W. Williams i

Abstract

Current design of high performance turbopumps for rocket engines requires effective and

robust analytical tools to provide design impact in a productive manner. The main goal of this

study is to develop a robust and effective computational fluid dynamics (CFD) pump model for

general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow

solver, FDNS, which includes the extended k-e turbulence model and appropriate moving

interface boundary conditions, was developed to analyze turbulent flows in turbomachinery

devices. A second-order central difference scheme plus adaptive dissipation terms was employed

in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure.

The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with

complicated geometry. The FDNS code has been benchmarked by analyzing the pump

consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric

study of the pump consortium impeller was conducted using the FDNS code. The pump

consortium impeller, with partial blades, is a new design concept of the advanced rocket engines.

The parametric study was to analyze the baseline design of the consortium impeller and its

modification which utilizes TANDEM blades. In the present study, the TANDEM blade

configuration of the consortium impeller considers cut full blades for about one quarter chord

length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5

degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM

blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103

x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was

performed for the baseline consortium impeller. The numerical result shows that the mass flow

rate splits through various blade passages are relatively uniform. Due to the complexity of blade

geometries, the TANDEM blade configurations were analyzed with the multi-zone grid structure.

Both the 7.5 °- and the 22.5°-clocking TANDEM blade cases utilized a 80K mesh system. The

numerical result of two TANDEM blade modifications indicates the efficiency and the head are

worse than those of the baseline case due to larger flow distortion. The gap between the

TANDEM blade and the full blade allows the flow passes through and heavily loads the pressure

side of the partial blade such that flow reversal occurs near the suction side of the splitter. The

flow split at the exit of impeller blades is very non-uniform for TANDEM blade cases, and this

will greatly induce the side load on the diffuser. Therefore, the TANDEM blade modification

in the present CFD analysis does not improve the performance of the consortium impeller.

r:y.-'_ e• •

SECA, Inc., 3313 Bob Wallace Ave., Suite 202, Huntsville, AL

Engineering Sciences, Inc., 4920 Corporate Dr., Suite K, Huntsville, AL

ED 32, NASA/Marshall Space Flight Center, Huntsville, AL

ED 32, NASA/Marshall Space Flight Center, Huntsville, AL

PRECEDING PAGE EILANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19950017206 2018-08-25T16:47:43+00:00Z

Page 2: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

d

¢O

n-I,I..J..Ji,I

O

ZOO

U.

O

>-

O

W

O.

aU.

O

!!

O0<O

O_JU_

Z(.9m

O0W

OO

II

O

m

<-OW

O0

c-

O

O

>.

W

g(D

O

00

%

272

II-ZILl

>ILl._ILLI

Page 3: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

d

uj

I

0HI

0

"ZJLLJwZ_0On

_n

LLD-(DO

rnwrr_>oOLL

_ou-(,D

J<<

o<

_nLU>wwIg31--

@

I--<>-rrt-

_-0LU

_wo_Z

<arn

0--

l--a_rr<_wrr"

O_ILI

< coLLI

_cz oIO

0mOo

@

273

Z0

O0Z0i

F-<C)i

LL

_wO0_z,,,<o_<rr-JOrnu_

rr_u_I.UD_

Zm

U.l

O_I----

w_U-Iu-I--wrr"wO100

3,,,F--I

@

Page 4: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

cO

IJJ

I

I

IJ.

Z0

UJ

I./JiI--.ILU

LU

Z.-ILUU_<

0

E3i

ZQ_ z

o _ OCO 0X _ I--

n_ oCO -- I.I.Ic_ rh n"

I

X _ ch

co 00 o_o _ V--

I

'-- _ 0

Z _ '0 _ rnN _'- _

_ -r"U.l

Z0 "" _

0 0 0

A

LU

0I-

Z0i

I--0

Z0i

I-0I.LI

i

a

LLI

<_1m

I

©I--

I

<_1

274

Z

OO-J

OOLO

r',

-r

J

r_<..I

rn

UJ

r_Z<F-

O

¢O¢'q

¢N X

X

r-- ,--

x x

LOLO

(D (I)c- c-O ONN

X × ×

× × ×

_" E EO O ONNN

66LU

Z

©N

rc

©U_

O

ZOi

OLU

rri

rh

UJ

09i

<UJ

rr"

O9

i

O

Page 5: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

Lu O

(JD0O

OE--

UJG:

00COi!1E:D_

ZOm

E--(JUJG:u

a

UJ

<10O

I

O

I

Iii

<._JG3

O

ZOm

E--(JUJG:m

n

D_m

I

OF--

I

COD-r

O

(DZm

OO

OoLD

¢_eo

x _

cO x,--LO

X X

¢'Q

"I"

UJ

a

UJ

aZ

0 0E C0 0

NN

&" m{N _1 (N

× X X

{_ _.-. CO

× × ×

L¢') _,. v--

_-.- LO CO

,--: u-;

(D (D (DE E EO O ONNN

66UJ

Z

ON

OU_

O

A

ZO

O

CO

O

LU0C

0000LU

CCG.v

O O-- LU Z

cz 0

,,, g] _-(D

G_ w_ CK

--,,i _j f_CO OG O_

_ ' ___ _- ,, ©

u.l I_ ,

_- _.1 _m m "1-

.. ...9

0 0 0

0

275

Page 6: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

d

co

111

_I

I

Z

W¢h00

Z

uJ>.J0CO

0.Ju_

COwv0

coI

rrhui

><Z

0

Z

rr"

0u_

w

-i- o _ n-o rr ,,, 0< < _- o0o00 _ >_ z

w oo 0_n I-n _ "'

-- !- << _ _ _w n-" Z or}

o o _ ooz,,, (&rr ,,, 0 O0"' rr 0IJ_. r'r" 0 -_-- 0 rn na 0 w ._"' --' I-- <I-- I-- I-- rr"

Z _ -- COu_ _ >_a o0 a orr,,, 0 rr"'

_j uJ

< o_ uJ" oz_ Z frO

"' o o 0,7-rr" I--" uJ N ¢hO

O0 --O9 n"'w w "Trr froQ_ n O0

O0.JWao

0 0

w>.j hW

0 0o9 Z

wI--Z ZD

5 mrr"!

rn coI

I

Z

a. a_ Z

_ X_-. w.I

Z

00 __ frm <

I I

<

00o _ 00

• • • •

276

Page 7: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

_JD3

O.._J

\

\cJ

Q.

¢J3

A

I-

o

£

,IZ

0

I--

277

Page 8: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

_j

d

.-Io>.0

iii

.Jrnm

._I,_I

LL

d_d(jm

(J>-(J

LU

N0 I.LVJ.OI:I

278

dad

E O_Jo>-

e0 o

ii

\

/

II

UJ

_J_tn

..J_J

LL

dad

O>-O

Y

m

_E

U

nm

m

O

0

_J

E

Page 9: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

006oE._1

d

_J

o

II

N

LU£3<

m

<

I.--or"

I.U IIZ

t.--

O

O>- cdO

u3

I..UZON

I.JJZON

LUZON

o/II

lJlO<._1¢n

LI..

i I..UZON

o._1u_

NOIJ.V.LOhl

d

mO.._1o(.)

d

Mo_..JO

(..)

o

II

LUI.U a

._l,< tnI'--

o_d

.

l--

m

n

E

m

I,,I.I

Z<

Cmm

0m

0

N

0

0

_J

E

i-

279

Page 10: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

G

O9

dad

--.I

(_]

dcd

--I ;

o

II

LI.Ja r_z j

(0

-_ (.j__(o

(o

Lt}

LUZ0N

LUZ0N

CO

LUZ0N

_<rn

2

/

dad

--0..J0>-(0

' Iw I ___dI Z

0 I _ cdI N

I I

I.-.

im

E

o,TI.J_

NOI.LV.LO_

I

I

I,I,II:IZ

I--

E

I-

Page 11: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

d

® ___o_,X ooco o_ cJ

OOwW_J

__zIJ_ u

000

O_

_DOw

@ @

281

Page 12: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

U.i

Zm

.-.II.U

,\\\\\

lllllI .....I .....4...o

]fillJ,,s,l

I

COI

q==0

iiiI

I,==

:3cnG_

a.

IIII1T| I t

C_I

I

I

U.q_0

¢U

282

Page 13: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

l!ij'___ _:_.:_!!l!i::_ __ __.,...___

_!iiiiiiiiiiiiiiiiiiiiiiiiiii',l_:_:_:::;%0_:/_.i

i

283

Page 14: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

Zm

._I

(/3

l-4-J

L._

Z

04d

mn

0m

284

Page 15: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

¢o

C

O.CO

"0

e-

l__0

0

iI

0i

285

Page 16: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

"0_30

0

L_t_0

Z

0

00

Ii

286

Page 17: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

0

LD

r'-

I._

287

Page 18: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

c3

ua

LLI

.<"a

0

LO

e_

,tt t l lfTlr,r r r lITT

"0

m

IXI

mm

kl.

0

im

!...

t_

IX,

288

Page 19: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

o

r,,,,,,

-I

289

Page 20: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

_5

290

Page 21: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

291

Page 22: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

u_co

(D"0

nn

W

az<

o

LO

"0

0

>

>

292

Page 23: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

ai

- - - E E EEE

lie

,_rtt t tit1 _

293

Page 24: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

t_

294

Page 25: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

d

U_

"0

I

m

UJ

az<

oI.O

c,iCN

tI,/

_5

if)(/)

e_

"I-

>

>

295

Page 26: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

u_co

"0

m

m

W

Z<

0

LO

¢q

(I)"0

O0

0

0

O0

r-

"o

t-

o

>

om

0m

>

296

Page 27: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

nn

W

Z<

o

LO

O0

0

0

O0

0i.__

297

Page 28: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

6

Zom

I-

I-0

0

c-

LJ.IZi

_1I.l.I

m

I.l..Iaz

t-o

O3

rn

iii

r_Z<_

oL_

c_C'4

t

en

o_ii

c_

Em

I.i--

0,Iilin

Iii

,iil

m+9°

,i..i

298

Page 29: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

0.80

Advanced Impeller Parametrics: Tandem BladesPerformance Predictions: Head Coefficient

I ' i ' I ' I

¢-.__ 0.70O

o_

OO

0.60"1-

0.500.0

H seca baseline I

seca 7.5 degrees Iseca 22.5 degrees

•,- -.. -- ._ @ @ @ @ @ @ @ @

m I m mmm

mm-mm.m--_

0.2 0.4 0.6

# # v" #

, I

0.8

A

I

1.0

Relative X

=o

.m

uJ

1.10

1.00

0.90

0.800.0

Performance Predictions: EfficiencyI I I I

H seca baseline I

H seca 7.5 degrees IH seca 22.5 degrees

+ I L I * I , I a

0.2 0.4 0.6 0.8

Relative X

1.0

299

Page 30: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

0.50

Advanced Impeller Parametrics: Tandem BladesPerformance Predictions: Static Head Coeff.

I I I ' I

0

03

H seca baseline

H seca 7.5 degrees

seca 22.5 degrees

0.300.0

¢ # v v

- - - .

I , I , I , I ,

0.2 0.4 0.6 0.8

Relative X

1.0

0.80

0.75

_o 0.700

"_ 0.65

0.60

0.55

0.,500.0

I

Performance Predictions: Euler Head Coeff.

' I I

H seca baseline

H seca 7.5 degrees

H seca 22.5 degrees

t

a I _ I , I , I , 1

0.2 0.4 0.6 0.8 1.0

Relative X

300

Page 31: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

TB

a. mim

<

I

÷ +

cO

O

O ®

m

Q

X

O

n

0

301

Page 32: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

Rm

L_

U

<

I I

÷0

0o>°m

ok,.

X

0

302

Page 33: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I

d

ev"

i

._.112_O0

ILl!-.

rv"

0._.!LL

09far)

LLI

@

n"I

a:in"o6

n"n"

I

o6

cN _ 0_I" _I"

oo ¢..0 0LO e.O

0rv"

LLICI

__!m

re"LLIml._1LLIel

LLIZi

mlLL!or)

r.n

LLILLICI Cl

._.1J mm

LLIILlrh rhZ Z

0

o I..OI.O .• CXl

P" CXl

303

ILl>0rv"12.

i

I--0Z

ch

Z0m

F-

_w

wOciu-

•--I 13-m

rr"_wI.I.I--I

n_1.12

Z_

I.I.II.lJ

-I--r"F-F-

@

Page 34: r:y - NASA · 0.80 Advanced Impeller Parametrics: Tandem Blades Performance Predictions: Head Coefficient I ' i ' I ' I ¢-.__ 0.70 O o_ O O 0.60 "1-0.50 0.0 H seca baseline I