25
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R.W.Ericksonecee.colorado.edu/~ecen5807/course_material/Lecture40.pdfElectronics 78 Rectifiers RMS transistor current t is i Q (t) I Qrms = 1 T ac i Q 2 (t) dt 0 T ac ver ained period:

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

  • R.  W.  Erickson  Department  of  Electrical,  Computer,  and  Energy  Engineering  

    University  of  Colorado,  Boulder  

  • Fundamentals of Power Electronics 77 Chapter 18: PWM Rectifiers

    18.5 RMS values of rectifier waveforms

    t

    iQ(t)

    Doubly-modulated transistor current waveform, boost rectifier:

    Computation of rms value of this waveform is complex and tedious

    Approximate here using double integral

    Generate tables of component rms and average currents for variousrectifier converter topologies, and compare

  • Fundamentals of Power Electronics 78 Chapter 18: PWM Rectifiers

    RMS transistor current

    t

    iQ(t)RMS transistor current is

    IQrms = 1TaciQ2 (t)dt

    0

    Tac

    Express as sum of integrals overall switching periods containedin one ac line period:

    IQrms = 1TacTs 1Ts

    iQ2 (t)dt(n-1)Ts

    nTs

    ∑n = 1

    Tac/Ts

    Quantity in parentheses is the value of iQ2, averaged over the nthswitching period.

  • Fundamentals of Power Electronics 79 Chapter 18: PWM Rectifiers

    Approximation of RMS expression

    IQrms = 1TacTs 1Ts

    iQ2 (t)dt(n-1)Ts

    nTs

    ∑n = 1

    Tac/Ts

    When Ts

  • Fundamentals of Power Electronics 80 Chapter 18: PWM Rectifiers

    18.5.1 Boost rectifier example

    For the boost converter, the transistor current iQ(t) is equal to the inputcurrent when the transistor conducts, and is zero when the transistoris off. The average over one switching period of iQ2(t) is therefore

    iQ2 Ts =1Ts

    iQ2 (t)dtt

    t+Ts

    = d(t)iac2 (t)If the input voltage is

    vac(t) = VM sin ωt

    then the input current will be given by

    iac(t) =VMRe

    sin ωt

    and the duty cycle will ideally beV

    vac(t)= 11 – d(t)

    (this neglectsconverter dynamics)

  • Fundamentals of Power Electronics 81 Chapter 18: PWM Rectifiers

    Boost rectifier example

    Duty cycle is therefored(t) = 1 – VMV sin ωt

    Evaluate the first integral:

    iQ2 Ts =V M2

    Re21 – VMV sin ωt sin

    2 ωt

    Now plug this into the RMS formula:

    IQrms = 1TaciQ2 Ts0

    Tac

    dt

    = 1TacV M2

    Re21 – VMV sin ωt sin

    2 ωt0

    Tac

    dt

    IQrms = 2TacV M2

    Re2sin2 ωt – VMV sin

    3 ωt0

    Tac/2

    dt

  • Fundamentals of Power Electronics 82 Chapter 18: PWM Rectifiers

    Integration of powers of sin θ over complete half-cycle

    1π sin

    n(θ)dθ0

    π

    =2π2⋅4⋅6 (n – 1)1⋅3⋅5 n if n is odd

    1⋅3⋅5 (n – 1)2⋅4⋅6 n if n is even

    n 1π sinn (θ)dθ0π

    1 2π

    2 12

    3 43π

    4 38

    5 1615π

    6 1548

  • Fundamentals of Power Electronics 83 Chapter 18: PWM Rectifiers

    Boost example: transistor RMS current

    IQrms =VM2Re

    1 – 83πVMV = Iac rms 1 –

    83π

    VMV

    Transistor RMS current is minimized by choosing V as small aspossible: V = VM. This leads to

    IQrms = 0.39Iac rms

    When the dc output voltage is not too much greater than the peak acinput voltage, the boost rectifier exhibits very low transistor current.Efficiency of the boost rectifier is then quite high, and 95% is typical ina 1kW application.

  • Fundamentals of Power Electronics 84 Chapter 18: PWM Rectifiers

    Table of rectifier current stresses for various topologies

    Table 18. 3 Summary of rectifier current stresses for several converter topologies

    rms Average Peak

    CCM boostTransistor Iac rms 1 – 83π

    VMV

    Iac rms 2 2π 1 –π8

    VMV

    Iac rms 2

    Diode Idc 163πV

    VM Idc 2 Idc VVM

    Inductor Iac rms Iac rms 2 2π Iac rms 2

    CCM flyback, with n:1 isolation transformer and input filterTransistor,xfmr primary

    Iac rms 1 + 83πVMnV

    Iac rms 2 2π Iac rms 2 1 +Vn

    L1 Iac rms Iac rms 2 2π Iac rms 2

    C1 Iac rms 83πVMnV

    0 Iac rms 2 max 1,VMnV

    Diode,xfmr secondary

    Idc 32 +163π

    nVVM

    Idc 2Idc 1 + nVVM

  • Fundamentals of Power Electronics 85 Chapter 18: PWM Rectifiers

    Table of rectifier current stressescontinued

    CCM SEPIC, nonisolatedTransistor Iac rms 1 + 83π

    VMV

    Iac rms 2 2π Iac rms 2 1 +VMV

    L1 Iac rms Iac rms 2 2π Iac rms 2

    C1 Iac rms 83πVMV

    0 Iac rms max 1,VMV

    L2 Iac rmsVMV

    32

    Iac rms2

    VMV

    Iac rmsVMV 2

    Diode Idc 32 +163π

    VVM

    Idc 2Idc 1 + VVM

    CCM SEPIC, with n:1 isolation transformertransistor Iac rms 1 + 83π

    VMnV

    Iac rms 2 2π Iac rms 2 1 +VMnV

    L1 Iac rms Iac rms 2 2π Iac rms 2

    C1,xfmr primary

    Iac rms 83πVMnV

    0 Iac rms 2 max 1, n

    Diode,xfmr secondary

    Idc 32 +163π

    nVVM

    Idc 2Idc 1 + nVVM

    with, in all cases, Iac rmsIdc= 2 VVM

    , ac input voltage = VM sin(ω t)

    dc output voltage = V

  • Fundamentals of Power Electronics 86 Chapter 18: PWM Rectifiers

    Comparison of rectifier topologies

    Boost converter

    • Lowest transistor rms current, highest efficiency

    • Isolated topologies are possible, with higher transistor stress

    • No limiting of inrush current

    • Output voltage must be greater than peak input voltage

    Buck-boost, SEPIC, and Cuk converters

    • Higher transistor rms current, lower efficiency

    • Isolated topologies are possible, without increased transistorstress

    • Inrush current limiting is possible

    • Output voltage can be greater than or less than peak inputvoltage

  • Fundamentals of Power Electronics 87 Chapter 18: PWM Rectifiers

    Comparison of rectifier topologies

    1kW, 240Vrms example. Output voltage: 380Vdc. Input current: 4.2Arms

    Converter Transistor rmscurrent

    Transistorvoltage

    Diode rmscurrent

    Transistor rmscurrent, 120V

    Diode rmscurrent, 120V

    Boost 2 A 380 V 3.6 A 6.6 A 5.1 A

    NonisolatedSEPIC

    5.5 A 719 V 4.85 A 9.8 A 6.1 A

    IsolatedSEPIC

    5.5 A 719 V 36.4 A 11.4 A 42.5 A

    Isolated SEPIC example has 4:1 turns ratio, with 42V 23.8A dc load

  • Fundamentals of Power Electronics 88 Chapter 18: PWM Rectifiers

    18.6 Modeling losses and efficiencyin CCM high-quality rectifiers

    Objective: extend procedure of Chapter 3, to predict the outputvoltage, duty cycle variations, and efficiency, of PWM CCM lowharmonic rectifiers.

    Approach: Use the models developed in Chapter 3. Integrate overone ac line cycle to determine steady-state waveforms and averagepower.

    Boost example

    +– Q1

    L

    C R

    +

    v(t)

    D1

    vg(t)

    ig(t) RL i(t)

    +– R

    +

    v(t)

    vg(t)

    ig(t)RL i(t)

    DRon

    + –

    D' : 1VF

    Dc-dc boost converter circuit Averaged dc model

  • Fundamentals of Power Electronics 89 Chapter 18: PWM Rectifiers

    Modeling the ac-dc boost rectifier

    Rvac(t)

    iac(t) +

    vg(t)

    ig(t)+

    v(t)

    id(t)

    Q1

    L

    C

    D1

    controller

    i(t)

    RL

    +– R

    +

    v(t) = V

    vg(t)

    ig(t)RL i(t) = I

    d(t) Ron

    + –

    d'(t) : 1VF id(t)

    C(large)

    Boostrectifiercircuit

    Averagedmodel

  • Fundamentals of Power Electronics 90 Chapter 18: PWM Rectifiers

    Boost rectifier waveforms

    0

    2

    4

    6

    8

    10

    0

    100

    200

    300

    vg(t)

    vg(t)

    ig(t)

    ig(t)

    0° 30° 60° 90° 120° 150° 180°

    d(t)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0° 30° 60° 90° 120° 150° 180°

    0

    1

    2

    3

    4

    5

    6

    id(t)

    i(t) = I

    ωt0° 30° 60° 90° 120° 150° 180°

    Typical waveforms(low frequency components)

    ig(t) =vg(t)Re

  • Fundamentals of Power Electronics 91 Chapter 18: PWM Rectifiers

    Example: boost rectifierwith MOSFET on-resistance

    +– R

    +

    v(t) = V

    vg(t)

    ig(t) i(t) = I

    d(t) Ron

    d'(t) : 1id(t)

    C(large)

    Averaged model

    Inductor dynamics are neglected, a good approximation when the acline variations are slow compared to the converter natural frequencies

  • Fundamentals of Power Electronics 92 Chapter 18: PWM Rectifiers

    18.6.1 Expression for controller duty cycle d(t)

    +– R

    +

    v(t) = V

    vg(t)

    ig(t) i(t) = I

    d(t) Ron

    d'(t) : 1id(t)

    C(large)

    Solve input side ofmodel:ig(t)d(t)Ron = vg(t) – d'(t)v

    with ig(t) =vg(t)Re

    eliminate ig(t):

    vg(t)Re

    d(t)Ron = vg(t) – d'(t)v

    vg(t) = VM sin ωt

    solve for d(t):

    d(t) =v – vg(t)

    v – vg(t)RonRe

    Again, these expressions neglect converter dynamics, and assumethat the converter always operates in CCM.

  • Fundamentals of Power Electronics 93 Chapter 18: PWM Rectifiers

    18.6.2 Expression for the dc load current

    +– R

    +

    v(t) = V

    vg(t)

    ig(t) i(t) = I

    d(t) Ron

    d'(t) : 1id(t)

    C(large)

    Solve output side ofmodel, using chargebalance on capacitor C:

    I = id Tac

    id(t) = d'(t)ig(t) = d'(t)vg(t)Re

    Butd’(t) is:

    d'(t) =vg(t) 1 –

    RonRe

    v – vg(t)RonRe

    hence id(t) can be expressed as

    id(t) =vg2(t)Re

    1 – RonRe

    v – vg(t)RonRe

    Next, average id(t) over an ac line period, to find the dc load current I.

  • Fundamentals of Power Electronics 94 Chapter 18: PWM Rectifiers

    Dc load current I

    I = id Tac =2

    TacV M2Re

    1 – RonResin2 ωt

    v – VM RonResin ωt

    dt

    0

    Tac/2

    Now substitute vg (t) = VM sin ωt, and integrate to find 〈id(t)〉Tac:

    This can be written in the normalized form

    I = 2TacV M2VRe

    1 – RonResin2 ωt

    1 – a sin ωtdt

    0

    Tac/2

    with a = VMVRonRe

  • Fundamentals of Power Electronics 95 Chapter 18: PWM Rectifiers

    Integration

    By waveform symmetry, we need only integrate from 0 to Tac/4. Also,make the substitution θ = ωt:

    I = V M2

    VRe1 – RonRe

    sin2 θ1 – a sin θ

    dθ0

    π/2

    This integral is obtained not only in the boost rectifier, but also in thebuck-boost and other rectifier topologies. The solution is

    sin2 θ1 – a sin θ

    dθ0

    π/2

    = F(a) = 2a2π – 2a – π +4 sin– 1 a + 2 cos– 1 a

    1 – a2

    • Result is in closed form

    • a is a measure of the lossresistance relative to Re

    • a is typically much smaller thanunity

  • Fundamentals of Power Electronics 96 Chapter 18: PWM Rectifiers

    The integral F(a)

    F(a)

    a–0.15 –0.10 –0.05 0.00 0.05 0.10 0.15

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    sin2 θ1 – a sin θ

    dθ0

    π/2

    = F(a) = 2a2π – 2a – π +4 sin– 1 a + 2 cos– 1 a

    1 – a2

    F(a) ≈ 1 + 0.862a + 0.78a2

    Approximation viapolynomial:

    For | a | ≤ 0.15, thisapproximate expression iswithin 0.1% of the exactvalue. If the a2 term isomitted, then the accuracydrops to ±2% for | a | ≤ 0.15.The accuracy of F(a)coincides with the accuracyof the rectifier efficiency η.

  • Fundamentals of Power Electronics 97 Chapter 18: PWM Rectifiers

    18.6.3 Solution for converter efficiency η

    Converter average input power is

    Pin = pin(t) Tac =V M22Re

    Average load power is

    Pout = VI = VV M2VRe

    1 – RonReF(a)2 with a =

    VMV

    RonRe

    So the efficiency is

    η = PoutPin= 1 – RonRe

    F(a)

    Polynomial approximation:

    η ≈ 1 – RonRe1 + 0.862 VMV

    RonRe+ 0.78 VMV

    RonRe

    2

  • Fundamentals of Power Electronics 98 Chapter 18: PWM Rectifiers

    Boost rectifier efficiency

    η = PoutPin= 1 – RonRe

    F(a)

    0.0 0.2 0.4 0.6 0.8 1.00.75

    0.8

    0.85

    0.9

    0.95

    1

    VM /V

    η

    Ron/Re = 0.05

    Ron/Re = 0.1

    R on/R e = 0.1

    5

    R on/R e =

    0.2

    • To obtain highefficiency, choose Vslightly larger than VM

    • Efficiencies in the range90% to 95% can then beobtained, even with Ronas high as 0.2Re

    • Losses other thanMOSFET on-resistanceare not included here

  • Fundamentals of Power Electronics 99 Chapter 18: PWM Rectifiers

    18.6.4 Design example

    Let us design for a given efficiency. Consider the followingspecifications:

    Output voltage 390 VOutput power 500 Wrms input voltage 120 VEfficiency 95%

    Assume that losses other than the MOSFET conduction loss arenegligible.

    Average input power isPin =

    Poutη =

    500 W0.95 = 526 W

    Then the emulated resistance is

    Re =V g, rms2

    Pin= (120 V)

    2

    526 W = 27.4Ω

  • Fundamentals of Power Electronics 100 Chapter 18: PWM Rectifiers

    Design example

    Also, VMV =

    120 2 V390 V = 0.435

    0.0 0.2 0.4 0.6 0.8 1.00.75

    0.8

    0.85

    0.9

    0.95

    1

    VM /V

    η

    Ron/Re = 0.05

    Ron/Re = 0.1

    R on/R e = 0.1

    5

    R on/R e =

    0.2

    95% efficiency withVM/V = 0.435 occurswith Ron/Re ≈ 0.075.

    So we require aMOSFET with onresistance ofRon ≤ (0.075) Re

    = (0.075) (27.4Ω) = 2 Ω