27
1 RPC_sim Optimization with Positrons (+ Pions) Burak Bilki Argonne National Laboratory University of Iowa (S)DHCAL Meeting January 15, 2014 Lyon, France

RPC_sim Optimization w ith Positrons (+ Pions)

  • Upload
    julius

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

RPC_sim Optimization w ith Positrons (+ Pions). Burak Bilki Argonne National Laboratory University of Iowa. (S)DHCAL Meeting January 15, 2014 Lyon, France. DHCAL Simulation Strategy. GEANT4 → points in the gas gap with energy loss - PowerPoint PPT Presentation

Citation preview

Page 1: RPC_sim  Optimization w ith Positrons (+ Pions)

1

RPC_sim Optimizationwith Positrons (+ Pions)

Burak Bilki

Argonne National LaboratoryUniversity of Iowa

(S)DHCAL MeetingJanuary 15, 2014

Lyon, France

Page 2: RPC_sim  Optimization w ith Positrons (+ Pions)

2

DHCAL Simulation Strategy

GEANT4 → points in the gas gap with energy loss

RPC_sim → generates and distributes the charge over pads applies a threshold to determine pad hits

Simulated data → pad hits

RPC_sim tuning

Tune major parameters to reproduce the muon response (José)Match number of hits per layer in the clean regions

Tune charge at edges of chambers to reproduce tapering off of efficiency

Tune the remaining parameters to reproduce the positron response (Kurt → Burak)Match mean and sigma of Nhits distributions, longitudinal profiles, density plots

No tuning based on pion response

Page 3: RPC_sim  Optimization w ith Positrons (+ Pions)

3

RPC_sim_ Spread functions Comments

3 R e-ar + (1-R) e-br To help the tail

4 e-ar Measurement from STAR

5 R e-(r/σ1)^2+ (1-R) e-(r/σ2)^2 Commonly used

6 1/(a + r2)3/2 Recently came across

RPC_sim_ Slope a Slope b Sigma1 Sigma2 R Q0 dcut T

3 0.0678 0.671 0.345 0.201 0.262 0.3645

4 0.0843 0.199 0.092 0.286

5 0.120 0.983 0.241 0.114 0.092 0.250

6 0.0761 0.384 0.092 0.3405

The 4 RPC_sim Versions

Page 4: RPC_sim  Optimization w ith Positrons (+ Pions)

4

rdcut

1

weight

A

dcut

1

weight

recut

B1

weight

r

(tanh(A*(r-B))+1)/2

C

3 Versions of the dcut

dcut suppresses avalanches close to othersCan not be tuned with μ‘s

Page 5: RPC_sim  Optimization w ith Positrons (+ Pions)

5

Tuning of dcut Values

Use Positron distributions at 8 GeV

Mean of hit distribution Sigma of hit distribution Density distribution (0÷8) Longitudinal profile

Measure difference to measured distributions

Define a χ2

Tuning

Identify smallest χ2

Page 6: RPC_sim  Optimization w ith Positrons (+ Pions)

6

RPC_sim_3_A

Best result for dcut = 0.1

MeanSigmaDensityLongitudinal profile

Simulation index

dcut

0 01 0.0012 0.0053 0.014 0.055 0.066 0.077 0.088 0.099 0.1

10 0.1511 0.212 0.2513 0.314 0.3515 0.416 0.4517 0.5

2 exponential lateral charge distribution1 dcut parameter

χ2

Simulation index

Page 7: RPC_sim  Optimization w ith Positrons (+ Pions)

7

RPC_sim_3_A with dcut = 0.1DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 8: RPC_sim  Optimization w ith Positrons (+ Pions)

8

Simulation index

dcut

0 01 0.0012 0.0053 0.014 0.055 0.16 0.157 0.28 0.259 0.3

10 0.3511 0.412 0.4513 0.5

No best solution

RPC_sim_4_A1 exponential lateral charge distribution1 dcut parameter

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 9: RPC_sim  Optimization w ith Positrons (+ Pions)

RPC_sim_4_A with dcut = 0.05DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 10: RPC_sim  Optimization w ith Positrons (+ Pions)

10

Simulation index

dcut

0 01 0.0012 0.0053 0.014 0.055 0.16 0.157 0.168 0.179 0.18

10 0.1911 0.212 0.2513 0.314 0.3515 0.416 0.4517 0.5

Best result for dcut = 0.18

RPC_sim_5_A1 Gaussian lateral charge distribution1 dcut parameter

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 11: RPC_sim  Optimization w ith Positrons (+ Pions)

11

RPC_sim_5_A with dcut = 0.18DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 12: RPC_sim  Optimization w ith Positrons (+ Pions)

12

Simulation index

dcut

0 01 0.0012 0.0053 0.014 0.055 0.16 0.157 0.28 0.259 0.3

10 0.3511 0.412 0.4513 0.5

RPC_sim_6_ALateral charge distribution with 1(a+r2)3/2

1 dcut parameter

No best solution

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 13: RPC_sim  Optimization w ith Positrons (+ Pions)

13

Check 0.01/0.35

Simulation index dcut ecut

0 0.01 0.31 0.01 0.352 0.01 0.43 0.01 0.454 0.01 0.55 0.01 0.556 0.01 0.67 0.05 0.38 0.05 0.359 0.05 0.4

10 0.05 0.4511 0.05 0.512 0.05 0.5513 0.05 0.614 0.1 0.315 0.1 0.3516 0.1 0.417 0.1 0.4518 0.1 0.519 0.1 0.5520 0.1 0.621 0.15 0.322 0.15 0.3523 0.15 0.424 0.15 0.4525 0.15 0.526 0.15 0.5527 0.15 0.628 0.2 0.329 0.2 0.3530 0.2 0.431 0.2 0.4532 0.2 0.533 0.2 0.5534 0.2 0.635 0.25 0.336 0.25 0.3537 0.25 0.438 0.25 0.4539 0.25 0.540 0.25 0.5541 0.25 0.642 0.3 0.3543 0.3 0.444 0.3 0.4545 0.3 0.546 0.3 0.5547 0.3 0.648 0.35 0.449 0.35 0.4550 0.35 0.551 0.35 0.5552 0.35 0.6

dcut

1

weight

recut

B

RPC_sim_3_B

Best solution with 0.01/0.35

2 exponential lateral charge distribution2 dcut parameters

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 14: RPC_sim  Optimization w ith Positrons (+ Pions)

14

RPC_sim_3_B with dcut /ecut = 0.01/0.35DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 15: RPC_sim  Optimization w ith Positrons (+ Pions)

15

Best result with 0.15/0.40

RPC_sim_5_B2 exponential lateral charge distribution2 dcut parameters

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 16: RPC_sim  Optimization w ith Positrons (+ Pions)

16

RPC_sim_5_B with dcut /ecut = 0.15/0.40DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 17: RPC_sim  Optimization w ith Positrons (+ Pions)

17

Simulation index A B0 10 0.11 10 0.152 10 0.23 10 0.254 10 0.35 10 0.356 10 0.47 10 0.458 10 0.59 10 0.55

10 20 0.111 20 0.1512 20 0.213 20 0.2514 20 0.315 20 0.3516 20 0.417 20 0.4518 20 0.519 20 0.5520 30 0.121 30 0.1522 30 0.223 30 0.2524 30 0.325 30 0.3526 30 0.427 30 0.4528 30 0.529 30 0.5530 40 0.131 40 0.1532 40 0.233 40 0.2534 40 0.335 40 0.3536 40 0.437 40 0.4538 40 0.539 40 0.5540 50 0.141 50 0.1542 50 0.243 50 0.2544 50 0.345 50 0.3546 50 0.447 50 0.4548 50 0.549 50 0.5550 60 0.151 60 0.1552 60 0.253 60 0.2554 60 0.355 60 0.3556 60 0.457 60 0.4558 60 0.559 60 0.55

1

weight

r

C

Best result with 20.0/0.225

RPC_sim_3_C

2 exponential lateral charge distributionSmooth transition with 2 parameters

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 18: RPC_sim  Optimization w ith Positrons (+ Pions)

18

RPC_sim_3_C with A/B = 20.0/0.225DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 19: RPC_sim  Optimization w ith Positrons (+ Pions)

19

Best result with 40.0/0.40

RPC_sim_5_C2 exponential lateral charge distributionSmooth transition with 2 parameters

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 20: RPC_sim  Optimization w ith Positrons (+ Pions)

20

RPC_sim_5_C with A/B = 40.0/0.40DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 21: RPC_sim  Optimization w ith Positrons (+ Pions)

21

RPC_sim Charge Generation

Default Sample distribution measured with cosmic rays

dE/dx based sampling Model the gas with heed++ pC

μ

# of

prim

ary

ioni

zatio

ns

βγ

Page 22: RPC_sim  Optimization w ith Positrons (+ Pions)

22

Charge Generation using βγ

Q=5.46(1-tanh(60.8(d-0.1012)))

βγ→ d → Q

Sample βγ from cosmic muon spectrum Sample ionization location d inside gas gap from heed++

Generate charge spectrum using empirical function

Page 23: RPC_sim  Optimization w ith Positrons (+ Pions)

23

Simulation index

dcut

0 01 0.0012 0.0053 0.014 0.055 0.16 0.157 0.28 0.259 0.3

10 0.3511 0.412 0.4513 0.5

Best result with dcut = 0.01

RPC_sim_3_A with βγ1 exponential lateral charge distribution1 dcut parameter

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 24: RPC_sim  Optimization w ith Positrons (+ Pions)

24

RPC_sim_3_A with dcut = 0.01 and βγ DataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 25: RPC_sim  Optimization w ith Positrons (+ Pions)

25

Simulation index

dcut

0 01 0.0012 0.0053 0.014 0.055 0.16 0.157 0.28 0.259 0.3

10 0.3511 0.412 0.4513 0.5

Best result with dcut = 0.01

RPC_sim_5_A with βγ2 exponential lateral charge distribution1 dcut parameter

MeanSigmaDensityLongitudinal profile

χ2

Simulation index

Page 26: RPC_sim  Optimization w ith Positrons (+ Pions)

26

RPC_sim_5_A with dcut = 0.01 and βγDataRPC_sim

Number of hitsNumber of hits

Layer number Density bin Number of hits

Not use

d for t

uning

e+

e+

e+

π+

μ+

Page 27: RPC_sim  Optimization w ith Positrons (+ Pions)

27

Conclusions

Even though muons are well simulated, the simulation of positrons is not trivial

The simulation of positrons depends strongly on the RPC_sim version, even though all reproduce the muons quite well

The simulation of positrons depends strongly on the dcut parameter/implementation

Treating the energy loss in the gap properly (using βγ) might be necessary Current implementation of ionization losses not yet successful Other approaches are being explored

None of the digitizers satisfactory yet

RPC_sim_5 with 2 Gaussians performs best

(I have been told that OPAL never succeeded in simulating their high granularity gaseous HCAL response)