Roy Davis Ballard

Embed Size (px)

Citation preview

  • 8/3/2019 Roy Davis Ballard

    1/19

    Ballard Pow er Systems

    Using Simplorer and Maxwell Tools to ValidateElectric Drives for EV Applications, and Interactions

    w ith Rapid Prototyping Tools

    Roy I. Davis

    Ballard Power Systems

    Dearborn, Michigan

    Automotive Electromechanical Simulation Workshop

    9 October 2003

  • 8/3/2019 Roy Davis Ballard

    2/19

    18 December 2003 2

    Electric Drives for EV Applications - Outline

    n Brief Overview of Ballard

    n Electric Drives Design Process

    n How Ansoft Tools Fit In at Ballard

    n PM Motor Design Evaluation

    n Control Design Motor Designn Inverter Design Custom Power Module Design

    n Rapid Prototyping Control Design

    n Testing Motor Design Evaluation

  • 8/3/2019 Roy Davis Ballard

    3/19

    18 December 2003 3

    Electric Drives Design Process

    Inverter

    Controller

    Motor TransmissionDC Supply LoadVDC V AC MM M T

    IDC IAC NM NT

    Customer Specification

    Motor Requirements

    Motor Mechanical Design

    Motor Thermal Design

    Inverter Requirements

    Motor Electromagnetic Design

    Cost EvaluationVolume EstimateMass Estimate

    TransmissionAssumptions

    Transmission Requirements

    Custom Power Module DesignInverter Design

    Performance Evaluation

  • 8/3/2019 Roy Davis Ballard

    4/19

    18 December 2003 4

    Inverter

    Controller

    Motor TransmissionDC Supply LoadVDC V AC MM M T

    IDC IAC NM NT

    Customer Specification

    Motor Requirements

    Motor Mechanical Design

    Motor Thermal Design

    Inverter Requirements

    Motor Electromagnetic Design

    Cost EvaluationVolume EstimateMass Estimate

    TransmissionAssumptions

    Transmission Requirements

    Custom Power Module DesignInverter Design

    Performance Evaluation

    How Ansoft Tools Fit in at Ballard

    Simp lo re r

    RMxpr t

    M ax w e ll 2 D

    M ax w e l l The r m a l

    M ax w e ll 3 D

    S imp lo re r

  • 8/3/2019 Roy Davis Ballard

    5/19

    18 December 2003 5

    PM Motor Design Evaluation

    n Maxwell 2D used to perform analysis

    Calculation of Average Torque and Ripple Torque

    Average value and peak-to-peak magnitude match well between test andFEA calculations.

    70

    75

    80

    85

    90

    95

    -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

    Time, seconds

    Torque,

    Nm

    Maxwell 2D Torque vs. Time

    Time, seconds

    Torq

    ue,

    Nm

    Test Data (2.8 revolutions)FEA Results (3.7 revs)

  • 8/3/2019 Roy Davis Ballard

    6/19

    18 December 2003 6

    PM Motor Design Evaluation

    n Maxwell 2D used to perform analysis

    Calculation of Back EMF

    Harmonic content and magnitude matches well with experiments.

    Test Data

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    -0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0.008

    Time (s)

    Back-E

    MF(V)

    FEA Results

    Equal time and voltage scales

  • 8/3/2019 Roy Davis Ballard

    7/19

    18 December 2003 7

    PM Motor Design Evaluation

    n RMxprt used to enter motor design information

    n Maxwell 2D used to perform analysis

    Calculation of Ld and Lq (Energy or Vector Potential Method)

    Flux Linkage Method:Ld versus Id

    0.0E+00

    5.0E-05

    1.0E-04

    1.5E-04

    2.0E-04

    2.5E-04

    0 100 200 300 400 500 600

    Id(A)

    Ld(H)

    Ld (25 Turns) FEA Ld Test

    Flux Method: Lq versus Iq

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    3.00E-04

    3.50E-04

    4.00E-04

    4.50E-04

    0 100 200 300 400 500 600 700

    Iq (A )

    Lq(H)

    Lq (25 Turns) FEA Lq,Test

  • 8/3/2019 Roy Davis Ballard

    8/19

    18 December 2003 8

    Control Design Motor Design - General

    n Motor equivalent circuit parameters with saturation

    Needed for control development

    Use Maxwell 2D to update estimates made earlier in design process

    Used to populate Simplorer model of PM motor

    n Ansoft tools are used to explore and understand:

    PTPA (selection of id/iq trajectories) Maxwell & Simplorer Field weakening control Maxwell & Simplorer

    Interactions of control with dc bus variations due to load pointchanges (dynamic) - Simplorer

    Interactions of sensors and interface limitations on controlperformance Simplorer

    Etcetera

    n Matlab/Simulink used as primary control development tool withautocode function for dSpace rapid prototyping hardware.

  • 8/3/2019 Roy Davis Ballard

    9/19

    18 December 2003 9

    Control Design Motor Design - Simplorer

    GND

    MS3 ~BA

    C

    Viscous_Load

    +

    Omega_GND

    +

    Omega_Motor

    Ballard_IPM

    EQUBL

    EQUBL

    EQUBL

    +

    V

    +

    V

    +

    V

    vdr

    vqr

    Rotor_Speed_MechVq_feedfwd

    Vd_feedfwd

    Vq_feedback

    Vd_feedback

    Q_reference

    Q_feedback

    D_reference

    D_feedback

    A_voltage_reference

    B_voltage_reference

    C_voltage_reference

    Theta_Rotor_Mech

    D_Q_Controller_Rotor_Frame

    GAIN

    Norm_to_DC_Bus_A

    GAIN

    Norm_to_DC_Bus_B

    GAIN

    Norm_to_DC_Bus_C

    OMEGA

    SINE

    COSINE GAIN

    NEG

    P_over_2

    IQ_Rotor

    ID_Rotor

    CONST

    IQ_R_Ref

    CONST

    ID_R_Ref

    +

    V

    EQUBL

    Reciprocate

    Lin_IPM_25kW.IQ_Rotor.VALIQ_R_Ref.VALLin_IPM_25kW.I1Lin_IPM_25kW.I1ID_R_Ref.VALID_Rotor.VALLin_IPM_25kW.I1IA_Filter.VAL

    t [s]

    0.4k

    -0.3k

    0

    -0.2k

    -0.1k

    0.1k

    0.2k

    0.3k

    0 5.6m1m 2m 3m 4m

    A

    A

    Transform_ab_alphabeta

    IA_Meas

    IB_Meas

    PHIMLOAD

    LIMIT

    LIMIT

    LIMIT

    Ibeta

    theta_electrical

    Ialpha

    V1D

    V1Q

    GAIN

    Half

    I1D

    I1Q

    FA

    FB

    Falpha

    Fbeta

  • 8/3/2019 Roy Davis Ballard

    10/19

  • 8/3/2019 Roy Davis Ballard

    11/19

    18 December 2003 11

    Control Design Motor Design Co-simulate

    Kp

    Ki R

    1

    S

    1

    S

    1

    L q

    eL d

    K p

    K i

    R

    1

    S

    1

    S

    1

    Ld

    eL q

    P M S M p h y s i c a l m o d e l

    eL d

    eL q

    R

    R

    C ross-

    Coup l ingI n p u t

    Decoup l ing

    Res is tance

    Decoupl ing

    Res is tanceDecoupl ing

    e

    pm e pm

    B a c k - E M FDecoupl ing

    S t a t e F e e d b a c kCur ren t Regu la to r

    ^

    ^

    ^

    ^

    ^

    iq

    *

    id

    *

    -

    -

    --

    +

    + +

    +

    +

    ++

    ++

    ++

    +++

    +-

    -

    iq

    iq

    id

    id

    v d

    vq

    Current Regulator/Motor Block Diagram Simulink Current Regulator

  • 8/3/2019 Roy Davis Ballard

    12/19

    18 December 2003 12

    Control Design Motor Design Co-simulate

    n Space Vector Modulation (SVM) with Overmodulation Modes 1-2and Deadtime Compensation

    Simulink Model of Modulation Systems

  • 8/3/2019 Roy Davis Ballard

    13/19

    18 December 2003 13

    Control Design Motor Design Co-simulate

    GND

    PHIDEGMS3 ~B

    A

    C

    Viscous_Load+

    Omega_GN

    +

    Omega_Moto

    Ballard_IPM

    EQUBL

    EQUBL

    EQUBL

    +

    V

    +

    V+

    V

    OMEGA

    +

    V

    V_DC

    IQ_Rotor.VALID_Rotor.VALLin_IPM_25kW.Viscous_Load.TLin_IPM_25kW.Lin_IPM_25kW.I-1 * Lin_IPM_25

    t [s]

    60

    -0.12k

    0

    -0.1k

    -80

    -60

    -40

    -20

    20

    40

    0 23m2.5m 5m 7.5m 10m 13m 15m 18m 20m

    A

    A

    IA_Meas

    IB_Meas

    PHIMLOAD

    LIMIT

    LIMIT

    LIMIT

    Ballard Powe r Syste ms

    Roy Davis

    Simulation of IPM Drive

    7 April 2003

    SiM2SiMSIMPLORER Link Interface

    SiM2SiM

    SIM2SIM1

    EQU

    FML1

    PHI_MOD:=MOD(Lin_IPM_25kW.PHIDEG,36

    CONST

    CONST1

    CONST

    CONST2

    CONST

    CONST3

  • 8/3/2019 Roy Davis Ballard

    14/19

    18 December 2003 14

    Control Design Motor Design Co-simulate

    GND

    PHIDEGMS3 ~B

    A

    C

    Viscous_Load+

    Omega_GN

    +

    Omega_Moto

    Ballard_IPM

    EQUBL

    EQUBL

    EQUBL

    +

    V

    +

    V+

    V

    OMEGA

    +

    V

    V_DC

    IQ_Rotor.VALID_Rotor.VALLin_IPM_25kW.Viscous_Load.TLin_IPM_25kW.Lin_IPM_25kW.I-1 * Lin_IPM_25

    t [s]

    60

    -0.12k

    0

    -0.1k

    -80

    -60

    -40

    -20

    20

    40

    0 23m2.5m 5m 7.5m 10m 13m 15m 18m 20m

    A

    A

    IA_Meas

    IB_Meas

    PHIMLOAD

    LIMIT

    LIMIT

    LIMIT

    Ballard Powe r Syste ms

    Roy Davis

    Simulation of IPM Drive

    7 April 2003

    SiM2SiMSIMPLORER Link Interface

    SiM2SiM

    SIM2SIM1

    EQU

    FML1

    PHI_MOD:=MOD(Lin_IPM_25kW.PHIDEG,36

    CONST

    CONST1

    CONST

    CONST2

    CONST

    CONST3

  • 8/3/2019 Roy Davis Ballard

    15/19

    18 December 2003 15

    Control Design Motor Design Co-simulate

    GND

    PHIDEGMS3 ~B

    A

    C

    Viscous_Load+

    Omega_GN

    +

    Omega_Moto

    Ballard_IPM

    EQUBL

    EQUBL

    EQUBL

    +

    V

    +

    V+

    V

    OMEGA

    +

    V

    V_DC

    IQ_Rotor.VALID_Rotor.VALLin_IPM_25kW.Viscous_Load.TLin_IPM_25kW.Lin_IPM_25kW.I-1 * Lin_IPM_25

    t [s]

    60

    -0.12k

    0

    -0.1k

    -80

    -60

    -40

    -20

    20

    40

    0 23m2.5m 5m 7.5m 10m 13m 15m 18m 20m

    A

    A

    IA_Meas

    IB_Meas

    PHIMLOAD

    LIMIT

    LIMIT

    LIMIT

    Ballard Powe r Syste ms

    Roy Davis

    Simulation of IPM Drive

    7 April 2003

    SiM2SiMSIMPLORER Link Interface

    SiM2SiM

    SIM2SIM1

    EQU

    FML1

    PHI_MOD:=MOD(Lin_IPM_25kW.PHIDEG,36

    CONST

    CONST1

    CONST

    CONST2

    CONST

    CONST3

  • 8/3/2019 Roy Davis Ballard

    16/19

    18 December 2003 16

    Inverter Design Custom Pow er Module Design

    n Use Maxwell 3D to model power module layout Objective is to compute parasitic module inductance to support

    module design layout decisions

    2nd objective is to provide inductances for bridge circuit simulation

    Presently developing this process difficult to get accurate resultsUppe

    Lowe

    E1

    E2 S2

    S14.7

    3.3EMF := 17

    EMF := 5

    Switching

    NEG

    E3

    -5

    I1

    Lstray

    E4

    n Also developing process for parameterizing the detailed modelsof IGBTs in Simplorer using this test circuit.

  • 8/3/2019 Roy Davis Ballard

    17/19

    18 December 2003 17

    Inverter Design Custom Pow er Module Design

    n Simplorer model of inverter, dc source, and motor used to:

    Evaluate component stresses under realistic conditions

    Switches

    Diodes

    Capacitors

    Investigate effects of different/variable PWM algorithms Determine losses

  • 8/3/2019 Roy Davis Ballard

    18/19

    18 December 2003 18

    Rapid Prototyping Control Design

    n We use dSpace for rapid prototyping control design and motorperformance evaluations on the dyno

    Clean interface to Simulink/RTW with Control Desk

    n Simplorer model of motor and inverter easily integrated withSimulink model of control

    Helps to debug any problems arising from interactions with inverter

    PM motor model easily allows use of saturable inductances asfunctions of current

    Easy to do what-if investigations

    Much easier and seemingly more reliable than Matlab Power System

    Toolbox to include detail model of inverter and PM motor.

  • 8/3/2019 Roy Davis Ballard

    19/19

    18 December 2003 19

    Testing Motor Design Evaluation

    n Unexplained or different behavior that occurs during testing canbe examined in Maxwell or Simplorer to determine cause.

    n Provides a feedback link to design tool usage that allowsrefinement of rules of thumb or development of design rules tobe applied with the numerical design tools.