29
Physicochemical Characterization of Novel Oxime Ether Surfactants Becky Rowe, Katie Matasci, Harrison S. Ewan, Annie Veitchegger, Steven Touba, Christine Muli, Liz Selwan, Amy Bellinghiere, Abbey Rickelmann, John Hagen, Hasan Palandoken 1

RoweLS

Embed Size (px)

Citation preview

1

Physicochemical Characterization of Novel Oxime Ether Surfactants

Becky Rowe, Katie Matasci, Harrison S. Ewan, Annie Veitchegger, Steven Touba,

Christine Muli, Liz Selwan, Amy Bellinghiere, Abbey Rickelmann, John

Hagen, Hasan Palandoken

2

Overview• Introduction

• Experimental• TGA• Tensiometer• Spartan

• Conclusions

• Future Work

3

Polar HeadNon-polar Tail

Surfactants• Anything with polar head group(s) and non-polar

tail(s)

• Common Surfactants:

• Soaps

• Lipids

4

• Surrounded by water

• Formation of micelles

• Move to the surface• Called surface adsorption

3 Fates of a Surfactant

• Problem: Non-polar tail not happy

•Polar heads happy•Non-polar tails happy•Problem: Need a long enough tail

•Polar head happy•Non-polar tail happy•Bonus: Lowers surface tension which makes the solvent happy

5

Sugar Oxime Ether Surfactants

6

9 Novel Sugar Oxime Ether Surfactants

Compound Abbreviation

D-glyceraldehyde adamantyl oxime ether

Ad-ON=Gla

D-glucose adamantyl oxime ether

Ad-ON=Glc

D-maltose adamantyl oxime ether

Ad-ON=Malt

D-glyceraldehyde decyl oxime ether

Dec-ON=Gla

D-glucose decyl oxime ether Dec-ON=Glc

D-maltose decyl oxime ether Dec-ON=Malt

D-glyceraldehyde dodecyl oxime ether

Dodec-ON=Gla

D-glucose dodecyl oxime ether Dodec-ON=Glc

D-maltose dodecyl oxime ether Dodec-ON=Malt

7

PurposeStrength of oxime ether bond

Structure-property relationship

Gibbs free energy of adsorption and micelle formation

Hydrophobic area

Temperature Dependence

8

Experimental

TGA

Tensiometer

Spartan

9

TGAThermal Gravimetric Analysis

Determine decomposition temperature

Determine high end of temperature range for future experiments

10

11

TGA Data TableCompound % Mass Loss Temperature

Range (°C)Glyceraldehyde    

Adamantyl 99.05 215.12 - 259.92

Decyl 99.69 214.09 - 255.89

Dodecyl 102.3 201.76 - 247.45

Glucose    

Adamantyl 76.40 217.14 - 253.61

Decyl 79.39 219.42 - 256.93

Dodecyl 60.96 164.96 - 248.09

Maltose    

Adamantyl 78.99 227.97 - 265.47

Decyl 74.64 203.83 - 261.19

Dodecyl 79.28 225.05 - 266.57

12

TensiometerTheory

Method

Data

13

Theory: Frumkin

Π Surface tension (mN/m)

ω Cross-sectional area of the surfactant molecules at the surface

θ Surface coverage

α Fitting parameter

T Temperature in K

R 8.31 J/(molK)

14

Theory II

• Frumkin used to find Kad via Isofit

• Use Kad to find Δad G°

• Δad G° is measurement of how good a surfactant is

• Use Δad G° understand structure-property relationship

ΔG°ad = - RT ln(Kad)

15

• Tensiometer• Du Noüy Ring

Method

Du Noüy Ring

16

Data

A representative Frumkin curve fitted to experimental data for

Dec-ON=Glc Stock Solution 1.

-0.1 0.1 0.330

35

40

45

50

55

60

65

70

75

Concentration (mM)

Su

rface T

en

sio

n (

mN

/m)

17

Data II

-13.00 -12.00 -11.00 -10.00 -9.00 -8.00 -7.00 -6.00 -5.00202530354045505560657075

f(x) = − 0.216556636000893 x + 22.6608000459155R² = 0.803883710215086

f(x) = − 15.6649531320332 x − 112.720093890423R² = 1

Ln (Concentration)

Su

rface T

en

sio

n (m

N/m

)

Experimental data for Dec-ON=Glc Stock Solution 1 shown above. The CMC occurs at the intersection of the

two linear lines.

18

SpartanComputer modeling software

Calculate energies from wavefunctions

Electrostatic potential maps

19

Log P

Also known as partition coefficient

More hydrophilic, more soluble in water, more negative log P

More hydrophobic, more soluble in hydrophobe, more positive log P

logSolute[ ]

hydrophobe

Solute[ ]water

⎝ ⎜ ⎜

⎠ ⎟ ⎟

20

Electrostatic Potential Fields

21

TensiometerCompound ΔadG°

(KJ/mol) �CMC (mM) ΔmicG°

(KJ/mol) �Glyceraldehyde      

Adamantyl -16.6±0.4 NA NA

Decyl -22.8±0.5 0.17±0.04 -21.6±0.6

Dodecyl -22.5±0.1 0.070±0.02 -23.8±0.7

Glucose

Adamantyl -13.1±0.9 NA NA

Decyl -21.4±0.6 NA NA

Dodecyl -22.6±0.7 0.041±0.008 -25.1±0.5

Maltose

Adamantyl -12.7±0.4 NA NA

Decyl -22.8±0.4 1.5±0.2 -16.1±0.4

Dodecyl -23.8±0.5 0.12±0.03 -22.5±0.6

22

CMC Comparison to Literature

Compound Experimental (mM)

Literature(mM)

Dec-ON=Malt 1.5±0.2 1.4-3.23

Dodec-ON=Malt 0.12±0.03 0.1-0.6

YAY!

23

SpartanCompound Hydrophobic

Area(Å2)

Log P

Glyceraldehyde    

Adamantyl 129.37 0.69

Decyl 171.15 2.61

Dodecyl 189.91 3.44

Glucose    

Adamantyl 144.41 -0.92

Decyl 169.28 1.00

Dodecyl 204.22 1.83

Maltose    

Adamantyl 174.40 -2.05

Decyl 212.68 -0.47

Dodecyl 231.42 0.09

24

ConclusionsOxime ether bond robust

Overlap between decyl and dodecyl compounds

Correlation between structure and property

Micelle formation as expected

Hydrophobic/hydrophilic area follows convention

25

Future Work

More non-polar tails

Larger polar heads

Temperature dependence

Other types of surfactants

26

ReferencesEwan, Harrison S. Synthesis of Novel Oxime Ether

Surfactants Presentation. Given May 12, 2013

Tanford, Charles. Interfacial free energy and the hydrophobic effect. Proc. Natl. Acad. Sci. USA. Vol. 76, No. 9, pp. 4175-4176, September 1979

Reinsborough, Vincent C; Stephenson, Vanessa C. Inclusion complexation involving sugar-containing species: β-cyclodextrin and sugar surfactants. Can. J. Chem. 82: 45–49 (2004).

Aveyard, R.;B. P. Binks, J. Chen, J. Esquena, and P. D. I. Fletcher. Surface and Colloid Chemistry of Systems Containing Pure Sugar Surfactant. Langmuir 1998, 14, 4699-4709.

27

Questions

28

• Model surface tension using Szyszkowski Equation

0 RT

ln(Kadc 1)

Theory: Szyszkowski• High surface adsorption means lower surface tension

= Surface tension of pure waterR = 8.31 J/(molK)T = Temperature in K

= Cross-sectional area of the surfactant molecules at the surfaceKad = Surface adsorption equilibrium constantc = Concentration

0

29

Spartan SettingsMethod: B3LYP

Basis Set: 6-316*

Environment: Vacuum

QSAR, orbitals, energies options selected