27
Rosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned Jon P. Pineau 1 , Joel Wm. Parker 2 , Andrew J. Steffl 2 , Eric Schindhelm 2 , Richard Medina 2 , S. Alan Stern 2 , M. Versteeg 3 , and Emma M. Birath 2 1 Stellar Solutions, Inc., Palo Alto, CA, United States. 2 Southwest Research Institute, Department of Space Studies, Boulder, CO, United States. 3 Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, United States. Abstract This paper explores the uniqueness of ESA Rosetta mission operations from the Alice instrument point of view, documents lessons learned, and suggests operations ideas for future missions. The Alice instrument mounted on the Rosetta orbiter is an imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy with the scientific objectives of measuring properties of the escaping gas and dust, and studying the surface properties, including searching for exposed ices. We describe the operations processes during the comet encounter period, the many interfaces to contend with, the constraints that impacted Alice, and how the Alice science goals of measuring the cometary gas characteristics and their evolution were achieved. We provide details that are relevant to the use and interpretation of Alice data and published results. All these flight experiences and lessons learned will be useful for future cometary missions that include ultraviolet spectrographs in particular, and multi-instrument international payloads in general.

Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

Embed Size (px)

Citation preview

Page 1: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlight

OperationsandLessonsLearnedJonP.Pineau1,JoelWm.Parker2,AndrewJ.Steffl2,EricSchindhelm2,RichardMedina2,S.AlanStern2,M.Versteeg3,andEmmaM.Birath2

1StellarSolutions,Inc.,PaloAlto,CA,UnitedStates.2SouthwestResearchInstitute,DepartmentofSpaceStudies,Boulder,CO,UnitedStates.3SouthwestResearchInstitute,6220CulebraRoad,SanAntonio,TX78238,UnitedStates.

AbstractThis paper explores the uniqueness of ESA Rosetta mission operations from the Alice instrument point of view, documents lessons learned, and suggests operations ideas for future missions. The Alice instrument mounted on the Rosetta orbiter is an imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy with the scientific objectives of measuring properties of the escaping gas and dust, and studying the surface properties, including searching for exposed ices. We describe the operations processes during the comet encounter period, the many interfaces to contend with, the constraints that impacted Alice, and how the Alice science goals of measuring the cometary gas characteristics and their evolution were achieved. We provide details that are relevant to the use and interpretation of Alice data and published results. All these flight experiences and lessons learned will be useful for future cometary missions that include ultraviolet spectrographs in particular, and multi-instrument international payloads in general.

Page 2: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 2

1TheRosettaMissionandComet67PAtfirstsightofthecomet67P/Churyumov-Gerasimenko,itwasobviousthattheRosettamissionwouldbedifferentfromanythatcamebefore.Whilethiswasexpectedtosomeextentasreflectedinthemissiondesign,theneedforanevenmorecomplexconceptofoperationswasrealizedwhenthehighlyirregularcometbodywasfinallyresolved10.5yearsafterlaunch.Theshapeofcomet67Piscomposedoftwounequallobeswithadeepneckareaconnectingthetwo.Thisaddedcomplexitiesinthegravityfield,thenon-uniformityofmaterialandlightcomingoffthesurface,andthegeolocationmapping.Thecombinationofthesefactorsalongwiththeanticipateddifficultiesoforbitingalowgravity,dynamicbodythatcreatesitsownever-changingenvironmentresultedintrulyuniquemissionchallengesthatrequiredequallyuniqueoperationssolutions.AsamemberoftheJupiterfamilycomets(JFCs),67P’shighlyellipticalorbittakesitjustpastJupiter’sorbit(5.684au)andalmostasclosetotheSunasEarth(1.246au)every6.45years.Theresultisaperiodictransformationbetweenadormant,dark,frozennucleusnearaphelionandaspectacularlydynamicdisplayofsublimatinggasandejecteddustnearperihelion.ThisstrongvariationinactivitydrovemanyRosettamissionattributesandconstraints,addingtothealreadycomplexsystemthatincludedtheRosettaorbiterwith11instrumentpackagesandthePhilaelanderwithitsownsetof10instruments.AsthecometactivityevolvedasitcircledtheSun,theRosettaandAliceoperationsprocessesevolvedthroughthemissiontoprovideasystemthatcouldmeettheever-changingneeds.Toolswereredesigned,interfaceschanged,andprocessesupdatedtooptimizesciencereturn.Afterlaunch,thecircuitouspathofRosettaincludedseveralorbitsintheinnersolarsystemincludingseveralgravitationalassistsfromEarthandMars,thelastofwhichsentRosettatotheoutersolarsystemonarendezvouspathwith67P.AlongthewayinstrumentswereabletomakeobservationsofEarth,cometLINEAR,cometTempel1duringtheDeepImpactevent,Mars,asteroidSteins,andasteroidLutetia,whichallowedtestingoutflightsystemsandgroundprocesses.Shortlyafterwakingfromanunprecedentedpre-primemission2.5yearhibernationperiodthatlastedthroughaphelionwithoutanycommunicationwithgroundstationsonEarth,Rosettabeganstudyingcomet67Pinamannerneverbeforeattemptedatacomet.Wherepreviousmissionshadstudiedcometsfromflybysofseveral100’skmawaytravelingatrelativevelocitiesof10’sofkm/sorperformingabriefsurfaceimpact,Rosetta’stwoyearencounterperiodwasoftenspentat10’sofkmfromthecometnucleuswithrelativevelocitiesofmeters/second.Aslow,controlledsurfaceimpactconcludedthehistoricmissionaddingtothehighsurfaceresolutionmeasurementsthatthePhilaelanderacquiredatthebeginningofencounter.Table1detailssomeoftheimportantRosettamissionandAliceinstrumentevents.

Page 3: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 3

Table1:MajorMissionandAliceEvents2004Mar2 Launch

2004Apr-May ObservationsofcometLINEAR2005Mar4 Earthflyby#12005Jul4 ObservationsofDeepImpact

2007Feb25 Marsflyby2007Nov13 Earthflyby#22008Jul19 Ø Aliceupset/resetevent#12008Sep5 AsteroidSteinsflyby2009Sep29 Ø Aliceupset/resetevent#22009Nov13 Earthflyby#32010Jul10 AsteroidLutetiaflyby2011Jun8 • Spacecrafthibernationentry(4.5au)2012Oct3 Aphelion(5.3au)2014Jan20 • Spacecrafthibernationexit(4.5au)2014Mar18 Ø Alice1stpoweronafterhibernation2014Jun6 Ø Alicebeginscontinuouspoweredoperations2014Aug6 Orbitinsertionatcomet67P,startofencounterperiod2014Nov12 • Landerdelivery(3.0au)2014Nov15 • Landerhibernationbegins2015Mar28 • Spacecraftstartrackersafemode–instrumentsoff2015Apr15 Ø Alicereturnstonominaloperationsaftersafemode2015May10 Equinox(Nvernal,Sspring)

2015Jun13–Jul9 • Intermittentlandercontacts2015Aug13 Perihelion(1.2au)2015Sep4 Solstice(Nwinter,Ssummer)

2016Mar20 Equinox(Nspring,Svernal)2016May28 • Spacecraftstartrackersafemode–instrumentsoff2015Jun1 Ø Alicereturnstonominaloperationsaftersafemode

2016Sep30 Endofmission(3.8au)

Ø AliceEvent;�SpacecraftorLandereventInSection2wedescribetheAliceUltravioletSpectrographdesignandscienceobjectives.InSection3wedescribetheoperationsofAliceandthevariousinstrumentalandmissionconstraintsthataffecttheoperations.Section4coversthedifferenttypesofAliceobservations,supportingobservationsbyotherinstruments,andthespecialissuesofregardingmakingobservationswhileorbitinganactivecomet.InSection5wedescribethebroadercontextanddesignofRosettamissionoperations.Section6providessomelessonslearnedandadditionalinformation.

Page 4: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 4

2TheAliceUltravioletSpectrograph

2.1AliceDesignDescribedbelowisthedesignoftheNASA-fundedRosettaAliceinstrumentaboardtheESARosettaasteroidflyby/cometrendezvousmission.MostofthetextintheAliceDesignsectionisfromSternetal.,2007[1],butrepeatedhereforstand-alonecompletenessofthisdocument.Aliceisalightweight,low-power,andlow-costimagingspectrographoptimizedforcometaryfar-ultraviolet(FUV)spectroscopy[1].ItwasthefirstofafamilyofsimilarinstrumentscurrentlyincludingAliceonNewHorizons,LAMPUVS(LymanAlphaMappingProjectUltraVioletSpectrograph)onLunarReconnaissanceOrbiter(LRO),UVSonJuno,andtheexpectedUVSinstrumentsontheupcomingJUICEandEuropaClipperMissions.RosettaAlicewasthefirstUVspectrographtostudyacometatcloserange.Itwasdesignedtoobtainspatially-resolvedspectrainthe700–2050Åspectralbandwithaspectralresolutionbetween8Åand12Åforextendedsourcesthatfilltheslit.Anopto-mechanicallayoutofAliceisshowninFigure1.Lightentersthetelescopesectionthrougha40×40mm2entranceapertureatthebottomrightofFigure1andiscollectedandfocusedbyanf/3off-axisparaboloidal(OAP)mirrorontotheentranceslitandthenontoatoroidalholographicgrating,whereitisdispersedontoanimagingphoton-countingmicrochannelplate(MCP)detectorthatusesadouble-delayline(DDL)readoutscheme[2].Thetwo-dimensional(1024×32)-pixelformat,MCPdetectorusesdual,side-by-side,solar-blindphotocathodes:potassiumbromide(KBr;forλ<1200Å)andcesiumiodide(CsI;forλ>1230Å)[3].Themeasuredspectralresolvingpower(λ/Δλ)ofALICEisintherangeof70–170foranextendedsourcethatfillstheinstantaneousfield-of-view(IFOV)definedbythesizeoftheentranceslit.

Page 5: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 5

Figure1.(a)Theopto-mechanicallayoutofAlice.(b)AphotographoftheAliceflightunit.[1]Theslitdesignisdescribedasa“dogbone”;itis5.53°longinthespatialdimension,thecentral2°ofwhich(calledthe“narrowcenter”)is0.05°wideinthespectraldimension,andthe2°“widebottom”and1.5°“widetop”portionsoftheslitare0.1°wideinthespectraldimension,showninFigure2.Thepinholefeatureatthetopoftheslitwasneverdetectedinflight.

Page 6: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 6

Figure2.TheAliceentranceslitdesign[1]Tocapturetheentire700–2050Åbandpassand5.53°spatialfieldofview(FOV),thesizeofthedetector’sactiveareais35mm(inthedispersiondirection)×20mm(inthespatialdimension),withapixelformatof(1024×32)-pixels.The5.53°slit-heightisimagedontothecentral20ofthedetector’s32spatialchannels;theremainingspatialchannelsareusedfordarkcountmonitoring.ThepixelformatallowsaNyquistsampledspectralresolutionof∼3.4Åandaspatialresolutionof0.3°.ThedetectorelectronicsamplifyandconvertthedetectedoutputpulsesfromtheMCPZ-Stacktopixeladdresslocations.InsteadofdiscretephysicalpixelsasinaCCDdetector,thetimeofarrivalofachargeatbothendsoftheorthogonaldelaylinesisusedtodeterminethespectral“pixel”onwhichaphotonlanded.Thesensitivityofthedetectorelectronicstoconvertaphotoneventintoanoutputpulsecanbeadjustedbychangingthedetectorhighvoltagelevel.OnlythoseanalogpulsesoutputfromtheMCPthathaveamplitudesaboveasetthresholdlevel,alsoreferredtoasthediscriminatorlevel,areprocessedandconvertedtopixeladdresslocations.Foreachdetectedandprocessedevent,a10-bitxaddressanda5-bityaddressaregeneratedbythedetectorelectronicsandsenttotheAlicecommand-and-datahandling(C&DH)electronicsfordatastorageandmanipulation.Inadditiontothepixeladdresswords,thedetectorelectronicsalsodigitizestheanalogamplitudeofeachdetectedeventoutputbythepreamplifiersandsendsthisdatatotheC&DHelectronics.Histogrammingthis“pulse-height”datacreatesapulse-height

Page 7: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 7

distributionfunctionthatisusedtomonitorthehealthandstatusofthedetectorduringoperation.Abuilt-in“stim-pulser”isalsoincludedintheelectronicsthatsimulatesphotoneventsintwopixellocationsonthearray.ThispulsercanbeturnedonandoffbycommandandallowstestingoftheentireAlicedetectorandC&DHelectronicsignalpathwithouthavingtopoweronthedetectorhigh-voltagepowersupply.Inaddition,thepositionofthestimpixelsprovidesawavelengthfiducialtoaccountforshiftsthatcanoccurwithoperationaltemperaturechanges.

2.2AliceScienceModesTheAliceinstrumenthasthreemodesoftakingdata:histogram,pixellist,andcountrate.Thefirsttwoacquisitionmodesusethesameeventdatareceivedfromthedetectorelectronics,butthedataareprocessedinadifferentway.Thethirdacquisitionmodeonlyusesthenumberofeventsreceivedinagivenperiodoftime–nospectralorspatialinformationisprovided.

Inhistogrammode,theinstrumentcontinuouslycollectsdetectedeventsbypixellocationthroughouttheexposure,muchlikehowaCCDcountsandaccumulatesdetectedphotons.Duringthecourseofahistogramobservation,eachdetectedeventissavedintomemory,wherethememorylocationsmapone-to-onetopixelsonthedetector.Inthisway,anintegratedspatial-spectralimageisaccumulatedoverthecommandedexposuretime.Thismodeisusefulforobservationswithhighcountrates,andwasthemostcommonlyusedmodeduringthemission.Theresultingimagesarethesameformatasthedetector,1024x32pixels,withthelongaxiscorrespondingtowavelengthandtheshortaxisisthespatialdimension.Sincetheouteredgesoftheimagearean“unexposed”partofthedetector,thesoftwareplacesthepulseheightarrayinthisregion,anditalsoprovidesmonitoringofbackground/cosmicrayanddarkcounts.Thehistogramvalues(counts)saturateat65535counts.

Inpixellistmode,theinstrumentseriallyrecordsthex-ylocationofeachphotonandinsertstimetags(“hacks”)inthislistatregular,user-definableintervalstoprovidethetiminginformationforthephotons.Duetodatavolumeconsiderationsandthetimerequiredformemoryreadout,thismodewasusedprimarilyatlowcountrates.Themaximumnumberofentriesis32767(includingphotonsandtimetags),butmaybelessdependingonthecombinationofbrightnessofthetargetandtheexposuretimeoftheparticularobservation.Oncethememoryisfilledtothislimit,nomoredataarerecordeduntiltheexposureisstoppedandthememoryisreadout.ThismodewasemployedprimarilyduringtheBi-MonthlyCrossSlitScanCalibrationduetotheneedfortimeresolutiontodetectwhenthestarcrossedtheedgesoftheslit.

Incountratemode(alsocalled“photometer”mode),thespatialandspectralinformationforeachphotonisignored.Thenumberofphotonsdetectedineachuser-definedtimeintervalaresummedandsavedasasinglenumberinmemory.Thismodewasnotwidelyused,butcouldbeusefulforobservingverybrightultravioletstars.Themaximumnumberofintervalsis32678,butmaybelessdependingonthecombinationoftimeintervalandtotalexposuretimeoftheparticularobservation.(Notethatthenumberofintervalsisindependentofthe

Page 8: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 8

brightnessofthetarget.)Thesummedcountspertimeintervalsaturateat65535counts.[4]

2.3AliceScienceObjectivesThescientificobjectivesoftheAliceinvestigationweredefinedasfollowsandfurtherdetailsfoundin[1]:

1. Searchforanddeterminetheevolvedraregascontentofthenucleustoprovideinformationonthetemperatureofformationandthermalhistoryofthecometsinceitsformation.

2. Determinetheproductionratesoftheparentmoleculespecies,H2O,COandCO2,andtheirspatialdistributionsnearthenucleus,therebyallowingthenucleus/comacouplingtobedirectlyobservedandmeasuredonmanytimescales.

3. StudytheatomicbudgetofC,H,O,N,andSinthecomaasafunctionoftime.4. StudytheonsetofnuclearactivityinwaysRosettaotherwisecannot.5. Spectralmappingoftheentirenucleusof67PatFUVwavelengthsinorderto

bothcharacterizethedistributionofUVabsorbersonthesurface,andtomaptheFUVphotometricpropertiesofthenucleus.

6. Studythephotometricandspectrophotometricpropertiesofsmallgrainsinthecomaasanaidtounderstandingtheirsizedistributionandhowtheyvaryintime.

7. MapthespatialandtemporalvariabilityofO+,N+,S+andC+emissionsinthecomaandiontailinordertoconnectnuclearactivitytochangesintailmorphologyandstructurenearperihelion.

3AliceOperationsandConstraints

3.1ContaminationThematerialcomingoffthecometposedaseriousmissionriskasthefinedustandgascouldcoatinstrumentopticsandsolarpanelswhichcouldleadtoseveresciencedegradation,decreasespacecraftpowerproduction,andpreventspacecraftattitudeandlocationknowledgedetermination.Furthermore,duringperiodsofhighcometactivitytherewereunpredictablestrongoutburststhatquicklypropelledconcentratedjetsofmaterialoutward.LargepiecesofmaterialwereseenorbitingthecometandattimesimagesshowedthatRosettawasflyingthroughablizzardofdustparticlesasshowninFigure3.

Page 9: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 9

Figure3.(a)DustandgasescapingthecometnucleusonMarch272016[5](b)ThedustenvironmentaroundRosettacapturedbyRosetta’sOSIRIS(Optical,Spectroscopic,andInfraredRemoteImagingSystem)cameraonJuly62015[6]Itwasdifficulttostriketherightbalancebetweenwhatwasperceivedtobeasafedistancefromthematerialcomingoffthecometandbeingclosetothenucleustoobtainhighresolutionmeasurementsandsignificantcountsforthedustandgasinstruments.ForAlice,thelocalgaspressureanddustcountmeasurementsneverreachedsustainedlevelsthatwouldcausegreatconcernofcontamination,andthelevelswerealwaysbelowlimitsthatwouldhavetriggeredanAlicesafingeventthatclosestheaperturedoorandturnsoffthedetectorhighvoltage.RegularcalibrationobservationswiththeAliceinstrumentthroughtheescortphasetrackedsensitivitydegradation,whichwasminimal,duetocontaminationandothersources.However,onesystemaffectedbythedirtyenvironmentwasthespacecraftstartrackersthatoccasionallywouldgetconfusedbythebrightdustparticlesandloseattitudeknowledge.Thatresultedintwospacecraftsafeeventsthathaltedallactivitiestoregainattitudeknowledge,andtherewereseveralotherclosecalls(asfurtherdetailedinTable1).Sincesuchspacecraftsafetyeventscouldjeopardizetheentiremission,theprogramerredonthesideofcautionandusuallykeptahealthymarginonthedistancetothecometbasedonactivity.ThistypicallyhelpedAlicesciencebecausethespectrograph’slongslit(5.53°)attheselargerdistancesallowedAlicetohavesomespectralelementsonthenucleusandotherslookingoff-limbattheescapinggasesintandem(asa“ride-along”)withobservationsdesignedbyotherinstrumentteamsthatpreferredsurfacepointing(seetheFigure4example).AnotherfactorthatpossiblyhelpedpreservetheAlicethroughputisthattheinstrumentoperatedincontinuousdecontaminationmodeformostoftheencounterafterverifyingitdidnotimpactinstrumentcalibration.Thismeantthatthemirrorandgratingheaterswereconstantlyenabledtokeepthoseopticalelementswarmsotheywouldnotbecoldtrapsbydrivingoffanydepositedcontamination.However,giventhattherewereveryfewissuesforcomponentsontheRosettaorbiterthroughencounterphasedemonstratesthatencounteringhighconcentrationsofmaterialandlargedestructivechunksofmaterialwasrareeven

Page 10: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 10

thoughtheenvironmentwasmuchdirtierthantypicalwhenorbitinglessactivebodiessuchasplanets,moons,andasteroids.

Figure4.ExampleofanOSIRIStargetedsurfaceobservation(landersearch)thatcouldbeusedbyAliceasaride-alongtoviewoff-cometgasses[7].

3.2GainSagAddingsomeuniqueconstraintstotheAliceoperations,theinstrumenthasanun-scrubbedmicrochannelplate(MCP)detector.ThescrubbingprocessexposesthedetectortoUVlightreducingthepixelcharge,aconditioningtechniquethat“burnsin”thepixels,eventuallystabilizingthedetectorresponse.However,ascrubbeddetectorimposessignificantconstraintsinpre-flightgroundhandlingincludingrequiringbeingkeptinconstantvacuum,whichwasnotanoptioninthiscaseastheAlicebandpassintheEUVrequiredanopen-faceddetector.Theconsequenceofflyinganun-scrubbeddetectoristhatitsresponsecontinuallydecreasesthroughthemissionfromexposuretoUVlight,atypicalcharacteristicofMCPscalled“gainsag”.Thegainsagisalsospatiallydependentasafunctionofthetotalfluenceonagivenareaofthedetector,leadingtonon-uniformsensitivitydegradationacrossthedetector.Forexample,thevaryingbrightnessofthecometsurface,theobservationofbrightUVstarsonspecificdetectorrows,ortheconstantexposuretoLyman-alphaemissionfromtheinterplanetarymediumwillcausesomepartsofthedetectortodegradedifferentlyfromotherparts(seeFigure5).Thedegradationwastracked,accountedforinthedatacalibration,andperiodicallycompensatedforbychangingdetectorsettingssuchashighvoltagelevel(adetectorsensitivityadjustment)anddiscriminatorlevel(asignalcutoffadjustment).CharacterizationofthedetectorperformancewasconductedperiodicallyusingmoderatelybrightUVstarsascalibrationsources.

Page 11: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 11

Figure5.Theprogressionofdetectorsciencecountsthroughencounter.Theconcentrationofcountsnearcolumn600(1215A)istheLy-αlineandtheregionaroundcolumn~850(~1025Å)correspondstothechameleonartifactregion.Thehighconcentrationofcountsinrows9,15,and21areduetostellarcalibrations.Wavelengthdecreasestotheright,i.e.,tohigherrownumber.

Page 12: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 12

Theanticipatedlongtermgainsagdrovestrategicplanningforthedetectorusagetoensurethatthedetectorwouldmaintainadequatesensitivitythroughoutthemissionincriticalbandsanddetectorregionstosatisfythesciencegoals.Thisinitiallydroveanalysis-intenseobservationconstraintsofconductingonlyhighprioritycometmeasurementsandactivelyavoidingexposuretorelativelybrightUVstars.

3.3BadDogsandChameleonContributiontoGainSagSomestarsweresobrightintheUVthattheycouldcauseexcessivecountratesontheAlicedetector.TheseUV-brightstarswerenicknamed“baddogs”.TheAliceteamwouldreceivethepredictedspacecraftattitudeandlocationinformationanduseitdodeterminewhenbaddogstarswouldcrosstheAliceFOVplusamargintoaccountforpointinguncertainty.TheteamwouldthenadjustinstrumentcommandingtosuspendtheAliceobservationsandclosetheaperturedooraroundtheforecastedbaddogencounters.Makingtheprocessevenmorecomplexwasthattheplannedspacecraftattitudecouldchangelateintheproductdevelopmentprocessduetootherinstrumentteamsadjustingtheirprimeobservationsorbythemissionflightdynamicsteamadjustingthecometorbitplans.ThiswouldrequireagilemonitoringandresponsefromtheAliceteamtoquickly(sometimesasshortaswithinacoupledays)identifyandmakecorrespondingAliceobservationchanges.Asthemissionprogressed,itwasdeterminedthatthedetectorgainsagratewaslowerthaninitiallyprojected,whichallowedthegainsagavoidancetechniquestobecomeprogressivelylessconservative.BytheendofthemissionAlicewasobservingalmostcontinuouslyandbrightUVstarswerenolongermanuallyavoided.Insteadofavoidanceplanning,adetectorcountratemonitorwithaconfigurablethresholdwasreliedupontoreactwhenanytoo-brightstarscameintheFOV,autonomouslysafingtheinstrumentbytemporarilypausingtheobservingandclosingtheaperturedoor.Themomentaryexposuretothebrightsourcedidnotsignificantlycontributetotheoveralldetectorgainsagandwasawelcometradeoffbetweensomelossofexposuretimeinexchangeforsignificantlyreducingthelabor-intensivestaravoidanceplanning.Theotherprimarycontributortobrightsafetyeventscamefromasporadicissuereferredtoasthe“chameleon”,whichisthoughttobeduetochargedparticlesenteringtheinstrument,gettingthroughthedetectorelectrongrid,andcausingstrange,high-countmeasurementartifacts(seeFigure5)[8].Becausethechameleonhadstrongtemporalvariations,usuallythebrightsafetyactionoftemporarilyclosingtheaperturedoorandwaitingthesafetytimeoutperiod(typically10minutes)wassufficienttodealwiththeoccasionalhigh-countratechameleons.

3.4AliceObservingStylesThroughoutthemissionAlicewouldobserveduringbothAlice-planned(termed“prime”)observationsaswellasobservationsplannedbyotherinstrumentteams(termed“ridingalong”).Eventhoughmanyobservationsdesignedbyotherteamsweren’toptimizedforAlicesciencegoals,somesciencereturnwasalwayspossible

Page 13: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 13

whenobservingthecometanditssurroundings.However,potentialsciencereturnalwayshadtobebalancedwithavailablespacecraftresources,developmenteffort,andtheexpectedgainsagimpact.Aliceobservingconsistedoftwomainstyles.Thefirstwascontinuousobservingwherehistogramsweretakenoneafteranother(withshort~40soverheadforimagereadoutbetweenexposures)forhoursatatime,notcorrelatedtoaspecificsceneorpointingchanges.Thiswassimpletoimplement,butcouldleadtodifficulttousedatasuchaswhenhistogramsbridgedchangesinspacecraftstaringandscanningmotionsormajorscenechanges.Theothertypewastomanuallytimehistogramstocorrelatetheirstart/stoptimeswithspecificviewingconditions.Althoughthistechniquecouldoftenreturnbetterscience,thisstylehadahighcostintermsofdevelopmenteffortandcommandingcomplexity.Thiswasespeciallytruewhentiminghistogramsduringridealongsbecauseotherinstrumentteamswouldoftenchangetheirpointingplansduringthedevelopmentperiod,whichusuallyrequiredcorrespondingadjustmentstoAliceobservations.AtthebeginningofthemissiontheAliceteamfocusedonitsprimesciencerefrainingfromobservingduringpointingplannedbymostoftheotherteams.However,asthemissionprogressed,ridealongsincreasedwhendatavolumeandotherresourceswereavailabletoapointwhereAlicewasobservingalmostcontinuously.Thiswasespeciallytrueafteritwasevidentthatthegainsagprogressionratewaslessthanexpectedandsoftwaretoolswerecreatedtoautomateobservationdevelopmentbasedonplannedpointingcharacteristics.

3.5ApertureDoorUsageandPowerCyclingAliceinstrumentoperationsareunlikealotofotherspaceinstrumentsintermsofpowercyclingandmechanicaldooroperations.Duetotheriskofpowerupfailures,theactionofpowercyclingspaceelectronicshaslongbeenavoidedandonsomemissionsonlydonewhenforcedtobecauseofafailureononestringofaredundantsystem.BynecessitythisoperationalmethodwasnotanoptiononRosetta.Powerconstraintsduringcertainperiodsofthemissionrequiredinstrumentsandsomenon-essentialspacecraftcomponentstoalternatepoweredactivitiesleadingtomanyunavoidablecomponentpowercycles.Infact,duringanunprecedented2.5yearhibernationperiodwhenRosettawasattheoutermostpartofitsorbit,whichtookitouttotheorbitofJupiter,itonlyhadenoughsolarpowertohaveafewvitalheatersandelectronicunitson[9].Therewasnocontactwiththespacecraft,notevenbeaconsduringthathibernationperiod.AnonboardtimerwassettotellRosettatowakeuponJanuary20,2014whentherewouldbeenoughpowertoturnsomesystemsonandcontactEarth.Everyonewasontheedgesoftheirseatsonhibernationexitdaytosaytheleastandamazinglyallsystemsturnedonandproceededwiththecometencounter10.5yearsintothemission.Duringtheescortphase(August2014–September2016)standardAliceoperationsweretopowercycletheinstrumentonaweeklybasis.AnAliceupset/reseteventoccurredtwiceduringthecruiseperiodgettingtothecomet(seeTable1forthedates).TheanomalywouldpowercycleAliceandrestartinadefaultstatedefinedbyhard-codedparameters,andalthoughitwouldreturntothenominalactivitytimeline,sciencedataqualitycollectedafterwardcouldbenegativelyimpacteduntilmanualadjustmentswerecommandedtoseveraloperationalparameters.Therootcauseoftheupset/reseteventswasnotidentified,butitwasthoughtthat

Page 14: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 14

periodicallypower-cyclingtheinstrumentperhapscouldpreventsuchaproblemfromoccurringorwouldreturnAlicetoitsnominalstateifanupsetoccurred.WithsomepowercyclesalreadyrequiredandfourseparateEEPROMflightsoftwareimagestobootfrom,itwasdecidedthattheriskwouldbelowertoperformregularpowercyclesratherthanbeingoncontinuously.Additionally,tomitigatetheimpactofanupset/resetevent,activitiesweresplitintosmallindependentsegmentsandseveraloperationalparameterswerereassertedtwicedaily.TheAliceaperturedooroperationsweresimilarlydifferentfrommostotherspacemechanicalsystems.Whereasmostmechanicalsystems,anddoorsespecially,aredesignedforonetimeuse,theAliceaperturedoorwasdesignedtobeopenedandclosedmanytimes,ratedfor10,000such“flaps”,whichgaveafactorof2marginrelativetogroundtests.Alicereliedonarobustlydesignedaperturedoormechanismprovenbyextensivegroundqualificationtestingandsubsequentlybylaterversionsoftheinstrument.TheLAMPUVS,whichisaversionofAliceontheLunarReconnaissanceOrbitermission,hasperformedover95,000cycles.Asasafeguard,Alicealsohadafailsafedoorthatcouldbeopenedpermanentlytoretainsomescienceabilityiftheaperturedoorfailedshut.Drivingallthedoorcycleswastheinstrument’ssusceptibilitytocontaminationanddetectorgainsag.Toavoidcontaminationofinstrumentopticsfromspacecraftthrusterbyproducts,theaperturedoorwasclosedduring,andfor30minutesafter,everyspacecraftpropulsivemaneuver.Toavoidcontaminationfromcometarymaterialtheaperturedoorwasalsoclosedforgapsinobservationsofmorethan15minutesthroughmostoftheencounterandevenshortergapswhenthecometwasespeciallyactive.Monthlydoorperformancetestsconfirmedthemechanismexhibitednomeasurementtrendsthatwouldcauseconcernforcontinuedregularuse.

4AliceObservations

4.1OrbitingaCometTherewasapreliminaryencounterphasetimelineoutliningastrawmanplanofRosetta’sorbitsaroundthecomet,butduetotheuniquecometaryenvironmentittooksometimeforthemissionteamstogetusedtooperatingaroundacometandrefinetheplan.Inadditiontothestandardengineeringandenvironmentmodelsneededforinterplanetarytravel,manyunusualfactorsneededtobeaccountedforincluding:orbitingalowgravitybodywithanasymmetricgravityfieldcreatedbythetwolobedcometshape,variableaerodynamicdragduetotemporalandspatialvariabilityofcometaryactivity,navigationwithstartrackersinanenvironmentwithhighvisualdustconfusion,andcontaminationrisks.Theorbitsvariedquitealottoaccountfortheseconstraintsandtoaccommodatetherequestedobservationalconditions,butthefollowingdescribesthetypicalobittypes:Thespacecraftflewlow(<32kmradius)circularorbitswhenthecometwaslessactive.Thisallowedtheinstrumentstoobtainhigh-resolutionsurfaceinformationwhenthecontaminationriskwaslow,andtoincreasesourcefluxfortheinsituinstruments.

Page 15: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 15

Ascometactivityincreased,thespacecraftorbitwasexpandedtoseveralhundredkilometerstoamaximumradiusofabout~600kmaroundperihelionasasafetyprecaution,buttoaccommodatescienceneeds,themissiontriedtokeeptheorbitheightaslowassafetywouldallow.Boundorbitswerenotusedwhenorbitingabove~32kmbothduetothedifficultyofbalancingaccelerationfactorswhenorbitingalow-gravitybodyduringperiodsofhighercometactivity.Abovethatheight,thespacecrafttransitionedtojoinedsegmentsofhyperbolicarcsthattypicallyresultedinfullorbitsthatwereroughlycircularshape.Thismaintainedregularobservationconditionsforscienceplanningwhilealsoprovidingthesecurityofasafetrajectorythatwouldavoidcollisionwiththecometifcontrolofthespacecraftwerelost[9].Theorbitstypicallywerealignedwiththeterminatortominimizegasdragonthespacecraftandavoideclipses.TheorbitorientationallowedthesolarpanelstobecontinuouslypointedtotheSunandresultedintheminimumsurfaceareapointinginthecometdirection.However,angleoffsetswereoccasionallyusedtoobtainavarietyofilluminationconditions.Closecometflybys,ascloseas7kmfromthesurface,wereusedforhighsurfaceresolutionmeasurements.Distant“excursions”to1000kminthetaildirectionand1500kmintheSundirectionwereusedtomeasurethelocalmagneticfieldproperties.Finally,thelowgravitycometbodyallowedforsomeunusualorbittypesthatwouldhaverequiredanexorbitantamountoffueltoaccomplishifRosettaorbitedalargerbodyrequiringhigherrelativespeeds.Forinstance,sharpturnswereusedforspecialactivitiesincludingthePhilaeLanderreleasetrajectoryandRosettasweptbackandforthoverasingleareaabovethesurfaceinanefforttolocatethePhilaeLander(seeFigure6).Becauseoftheloworbitalspeedsofmeterspersecond,alargechangeindirectionactuallycouldinvolveinarelativelylowchangeinmomentum,andthus,notasignificantuseoffuel.

Page 16: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 16

Figure6.Rosettaorbitdiversityexample[10].ThedarkbluecolordisplaystheapproachbeginningJuly312014andearlyencountercloseorbits.ThelightbluecolordisplaysmoredistantorbitsaroundperihelionthroughAugust92016andthelandersearch.

4.2PointingUncertaintyAnotheruniquechallengethismissionhadtocontendwithwhileplanningobservationswasfairlylargepointinguncertainties.Asisthecaseformostspacemissions,thespacecraftflightdynamicsteamprovidedthescienceteamsmanyorbitalparameterstouseforplanningobservations.However,uniquetothismissionwasthetaskofunderstandingthecraft’srelativelocationandattitudewithrespecttothecometinlightofsignificantnon-gravitationalforces.ThespacecraftinertiallocationandattitudewasknownverywellfromthestartrackerdataandenabledcommunicationwithgroundstationsonEarthandprecisepointingatstarsforinstrumentcalibrations.However,therewereoftenlargeuncertaintiesforthespacecraftpointingrelativetoacometreferencepointsuchasnadir,limb,orsurfacelocationsandthishadasignificantimpactonobservationplanningatseverallevels.Thepointinguncertaintysourcecamefromthecombinationofenvironmentandcometmodeluncertainties,thrusterefficiencyuncertaintiesforupcomingorbitcorrectionmaneuvers,andthequalityofthecomet-relativelocationknowledgeasascertainedfromnavigationimagesofthecomet.Thepointinguncertaintycontinuallychanged,beingbestjustafterthecurrentspacecraftlocationwasdeterminedandupdatedonthespacecraftcomputerand

Page 17: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 17

thenitwouldgrowuntilthenextupdateastheuncertaintiescompoundedinthemodels.Theprojectedcomet-relativepointinguncertaintyrangewastypicallybetween0.1°–4.0°formostofthemission,butwhenthespacecrafttraveledveryclosetothecometsurface(under10km)theuncertaintyforecastcouldgrowmuchlargerupto~16°.Inpracticeitwasfoundthatthedifferencebetweenthedesiredandactualpointingcouldoccasionallygrowlargeforshortperiodsoftime,howeverconservativefactorsinthemodelstypicallyresultedinalargeoverestimateforthepointinguncertainty,typicallybyafactorof0.5ormore.Evenifobservationswereplannedusingpointinguncertaintyvaluesofhalftheforecastedlevel,thescaleoftheuncertaintieswasverydifficultforsomeoftheinstrumentteamstoincorporateintheirplanning.Negotiationsforprimeobservationslotsbytheremote-observinginstrumentteamsoftenprioritizedslotswithlowpointinguncertaintyvaluestoreduceobservationsmear.However,Aliceplanningwasabletobemoreflexiblethanthatforotherinstrumentteamsregardingpointingconstraintsandacquiredalotofprimeobservationswithhighpointinguncertaintyperiods.MakinguseoftheseslotswasmadepossiblesincetheAliceFOVwasmuchlargerthanmostoftheotherinstruments(5.53°long)andittookrelativelylongexposures(5-10minutes)makingobservationsofspecificlocationslessimportantthangettinggoodregionalcoverage.Also,severalAliceobservationtypeswereoff-comet,includinginertialor360°GreatCirclesthatwerenotimpactedbythecomet-relativepointinguncertainty.ThismadeAliceobservingmuchlessdependentonthepointinguncertaintyvaluescomparedtotheothersandAlicewasabletoputmanyoftheworsepointinguncertaintyblockstogooduse.

4.3ObservationTypesSpecificpointingcouldbedevelopedoncetheorbittypewasdefinedandthetrajectoryandsub-spacecraftparameterdetailsfrozen,suchasorbitheight,phaseangle,latitude,longitude,andpointinguncertainty.Afternegotiationsforobservationtimewerecompleted,theinstrumentteamsturnedtheirattentiontoimplementingtheplans.Eachinstrumentteamwouldtailorthepointingduringtheirprimeobservationstooptimizesciencereturn.Teamscouldverifyanditeratethepointingproductsusingmissionsimulatortools,thenaftertheyweredeliveredtheywereverifiedandapprovedbytheRosettaScienceGroundSegment(RSGS)groupatESA’sEuropeanSpaceAstronomyCentre(ESAC)inSpainandtheRosettaMissionOperationsCenter(RMOC)groupattheEuropeanSpaceOperationsCentre(ESOC)inGermany.Therewerequitearangeofobservationtypesimplementedbythevariousinstrumentteams,butmostwerevariationsonthese:

• Staringatthesurfacewiththecometrotatingunderneaththespacecraft• Matchingthecomet’srotationratetotrackasurfacelocation• Scanningacrossthesurface• Staringatoneofthecometlimbs• Pointingoffcomet

BelowaredetailsofsomeofthevariantsoftheseobservationtypesthatAliceutilized.ForreferencetheobservationnamesarealsousedinAlicedatanomenclature,whichisdiscussedfurtherattheendofthepaperintheAliceLogbookSection.

Page 18: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 18

4.4AliceObservationTypes:GasObservationsAprimaryAlicescienceobjectivewastocharacterizethegassescomingoffthecomettobetterunderstandthesolarsystem’sprimordialconstituentsandenvironment.Thisrequiredmeasuringthedifferentgastypes,theirrelativeabundances,andhowtheyvariedthroughtheevolutionofthecometduringitsorbitaroundtheSun.Todothis,avarietyofobservationtypesweredesignedtoviewthegassesagainstadarkbackground(eitherlookingoffcometorashadowedregiononthecomet)wherethecometsurfacereflectancewouldn’tinterferewiththemeasurements.Thestylesvariedandwererefinedbasedondistancetothecomet,gasabundance,andtheunderstandingofthecometenvironment.VolatileAbundanceCampaign.AprimarystyleofgasobservationusedforAliceandotherinstrumentswasnamedVolatileAbundanceCampaign(VAC),whichwasdesignedtomeasureilluminatedgassesagainstthedeepspacebackground(a“DeepVAC”wasalongexposureversionofsuchpointing).ThiswasastablestaringobservationwheretheAliceslitwouldbepositionedsuchthatitwasapproximatelyhalfonthecometsurfaceforlocationcontextandhalfoffthesunwardlimb,thoughtheexactpositionvariedduetopointingerrorandnegotiationswithotherinstrumentteams.InnerComaRaster.Whenthecometwasmoreactive,InnerComaRasterobservationswouldbeused,whichwouldstareinseverallocationssteppingoffthecometinaradialline,typicallysunward,totrackhowthegasabundancefallsoffwithrespecttodistancefromthecomet.GreatCircle.SinceRosettawasnearthecenterofthecomet’scomathroughouttheencounterperiod,theAliceinstrumenttookfull360°“GreatCircle”observationstomeasurethedistributionofthegassesitwasimmersedinandhowtheychangedthroughouttheorbitaroundtheSun.NightStares.Theseobservationsweredesignedtolookattheilluminatedgasbetweenthespacecraftandthecometsurfaceeitheronthenightsideofthecometoroverlargeshadowedregions,whichhadtheusefuleffectofcuttingouttheskybackground.ComaRide-Alongs.TheAliceteamalsorodealongonsimilarobservationsplannedbyotherinstrumentteamssuchastheOSIRIS-ledVACs(termedDiurnalVACs)thatscannedbackandforthalongthesunlitcometlimblookingforconcentrationsofactivityandtheVIRTIS(VisibleandInfraredImagingSpectrometer)instrumentSnowflakesthatwereacombinationmanyoff-cometstares.StellarOccultations.AlthoughobservingstellaroccultationswasalwayspartoftheobservationconceptforAliceandotherinstrumentstomeasurecomagasesinabsorption,planningthoseprovedtobeunfeasibleduetotheuncertaintiesinthepredictedspacecraftorbitandattitude.However,asUVstarsweremonitoredpassingthroughtheAliceFOV,itwasrealizedthatitwasstillvaluabletoobservestellarappulsesevenifthestardidn’tgettotheabsolutelowestlayersofthecomajustabovethenucleus.TheAliceteamwasabletomodel(withinuncertainties)the

Page 19: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 19

tangentialdistancesfromthenucleusofvariousUV-brightO-andB-typestarstotargetthosethatcouldbeobservedthroughthecolumnofgasnearthesunwardlimbofthecomet.Thelargepointinguncertaintiesandfrequentpointingplanchangesmadeplanningtheseobservationsdifficult,butwhensuchobservationsweresuccessful,thesamestarwasobservedagainatalatertimefarawayfromthecometasabaselinemeasurement.Thesetwospectrawerecomparedtomeasurethelevelofattenuationinspecificbandstocharacterizegastypeabundance.Thetechniquewasinitiatedlateinthemissionafterperihelion,soatimehistoryofthesemeasurementsthroughoutthecomet’sactivitycyclecouldnotobtained,butH2OandO2abundancesweremeasuredfromseveralofthe29stellarappulsemeasurementsets[11].

4.5AliceObservationTypes:SurfaceStudiesAsecondaryAlicescienceobjectivewastocharacterizethecometsurfacereflectanceintheUVandsearchforsurfaceicestobetterunderstandthecomet’scompositionandmorphologicalprocesses.Fortheseinvestigationstwotypesofobservationsoftheilluminatedcometsurfacewereplanned.SurfaceCenter.Thisstyleofobservationwouldstareatthesurfaceeitherdirectlynadirorwithadefinedoffsetfromnadirandtakecontinuoushistogramsasthecometrotatedunderneaththespacecraftwithaperiodof12hours24minutes.Ifthecomet’srotationaxiswasnotalignedsothatthescenewouldvarythroughtheobservationperiod,theobservationtypewouldbechangedtoaSurfaceScan.SurfaceScan.Thisstylewouldscanveryslowlyat0.01°/sbackandforthfromthesunwardlimbtotheanti-sunwardlimb(spacecraftY-axis,perpendiculartotheALICEslit)orasfarascouldbescannedwithinanobservationwindowwhenclosetothecomet.SurfaceRide-Alongs.AlicerodealongonanassortmentofotherinstrumentobservationsespeciallyonlongstaresandtheTargetsofOpportunity(ToO),wherespecificinterestingsurfacefeatureswerestaredatandmostinstrumentsrecordeddatatoprovideacomprehensivestudyofthearea.TherewereafairamountofobservationsoptimizedforotherinstrumentsthatAlicedidnottypicallyridealongbecausetheywouldn’tyieldhighqualityAlicedata.Forinstance,observationsthatincludedhighscanratesorshortstaresoflessthan5minutesforfastmappingofthesurfacewouldsmeartoomuchsurfaceareatobeofmuchuseforAliceanalysis.Alicetypicallyused5-10minutehistogramsforsurfaceobservationsand10-20minutehistogramsforgasobservationstobalancemeasurementsignalandspatialresolution.

4.6AliceObservationTypes:CalibrationsItwasveryimportantforseveralRosettainstrumentsincludingAlicetocharacterizetheirperformancewithregularcalibrations.Inadditiontothetypicalinstrumentopticsdegradationandalignmentchanges,eachAliceobservationcontributedtoanon-uniformdetectorgainsageffectthatneededtobetrackedandaccountedfor.ModeratelybrightUVstarswereusedasstablecalibrationsourcesforAlice,howevertheytypicallywerefaroff-cometanditwouldtakealotoftimeto

Page 20: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 20

slewtoacalibrationstar’sposition.Sincealltheinstrumentteamspreferredtospendasmuchtimeaspossibleobservingthecomet,calibrationobservationswerecoordinatedtominimizeoff-cometpointingtime.OSIRIS,VIRTIS,andAlicewereabletocombinestellarcalibrationrequirementsreducingthetotalnumberofinstances.TheAliceinstrumentperformedseveraltypesofstellarcalibrationstotrackchangesinperformance:Bi-WeeklyStellarCalibrationswereusedtomeasuretheeffectivearea(instrumentsensitivity)byperiodicallystaringatcalibrationstarsandmeasuringchangesinresponseforthreerepresentativelocationsonthedetector.Bi-MonthlyFlatFieldCalibrationswereconductedasarasterscanalongthelengthoftheslitofacalibrationstartomeasurerelativesensitivitydifferencesacrossthe2Ddetector.Thissetofbi-weeklystellarandbi-monthlyflatfieldmeasurementsallowedfortheeffectiveareachangestobeappliedacrossthefulldetectorprovidingamethodofcorrectingfordetectorgainsagonaperpixelbasis.Bi-MonthlyCrossSlitScanCalibrationswereperformedthatconsistedofrasterscansperpendiculartotheslitofacalibrationstarusingpixellistmeasurementstopreciselydefinetheinstrumentfieldofview.Thiswasimportanttobeabletotrackandaccountfortheinstrumentflexureduetochangesinthermalenvironmentthroughoutthemission.Bi-MonthlyHighVoltage/DiscriminatorCalibrationswereperformedbystaringatacalibrationstarandmakingobservationswithasetofdetectorhighvoltage(HV)levelsanddiscriminatorlevels,settingsthatcanbeadjustedtochangethedetectorsensitivity.Theseinstrumentsettingscouldthenbeoptimizedtomitigategainsageffects.ThestandardoperationalhighvoltageanddiscriminatorvaluewerechangedseveraltimesduringthecourseofthemissionasshowninTable2.Thesechangesaretakenintoaccountinthecalibrateddata,butmaybeofinterestifworkingwiththerawAlicedata.

Table2:NominalAliceHighVoltageandDiscriminatorSettingsfortheRosettaMission

InitialSettings HV-3.8kV,Discriminator0.09V

2006Dec3 HV-3.7kV,Discriminator0.34V2007Feb23 HV-3.8kV,Discriminator0.09V2007Sep13 HV-3.9kV,Discriminator0.09V2014Apr2 HV-4.0kV,Discriminator0.09V

2014May12 HV-4.0kV,Discriminator0.45V2015June25 HV-4.1kV,Discriminator0.45V2016Feb23 HV-4.2kV,Discriminator0.45V

Page 21: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 21

Bi-WeeklyDarkCalibrationswerealsoperformedwherehistogramsweretakentomeasureandaccountforthedetectorresponsewiththeaperturedoorclosed.

4.7NCIRandOCIRContextImagesEventothetrainedeye,Alicehistogramscanbedifficulttointerpret,especiallywhenviewingpartiallyshadowedterrainandthevariableconcentrationsandstructuresofgasanddustcomingoffthecomet.Toaidintheinterpretationofhistograms,itwasveryusefulexamineNavigationCamera(NavCam)andOSIRISWide-AngleCamera(WAC)imagestakenaroundthesametimetoprovidecontexttothesceneasshowninFigure7.ThetimingoftheimagesplannedbytheSpacecraftandOSIRISteamswereoftennotwellcorrelatedtoimportantAliceobservations.Soinanotherexampleofcooperationwithinthemissiontoachievethebestsciencepossible,theAliceteamwaspermittedtoplanadditionalNavCamandOSIRISImagesRequests(NCIRsandOCIRs)withtheconstraintthattheimagedatavolumewascoveredbyAliceresourceallocations.TheNavCamwasusedsolelyforAlicecontextimaginguntilMay11th2016,wheredatavolumeconstraintsstartedtosignificantlyincrease.AtthatpointtherewasatransitiontouseOSIRISWACimages,whichcouldbecompressed,savingalargeamountofdatavolumetoberepurposedasadditionalAlicescienceobservations.

Figure7.ExampleofanAlicehistogram(left)of67PandaNavCamcontextimage[12]withanoverlaidAliceFOV(right)acquiredon08/18/2014(2014DOY230).Thecontextimagecanhelpidentificationofscenecharacteristicstocorrelatehistogramfeatures.

4.8HEETMeasurementsAsasecondarysciencepursuit,Alicewasperiodicallyconfiguredtomeasurethehigh-energyelectron,or“HEET”,componentofthespaceenvironment.TheAlicedetectorcouldsensepenetratingelectronsandwouldrecordtheminthedetectorcountratedata.ThiswasaccomplishedatlowdatavolumecostsincethecountrateisincludedintheAlicehousekeepingdatapacket.HEETmeasurementsweremadewiththeAliceaperturedoorclosed,thedetectorhighvoltageon,andatanelevated

Page 22: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 22

housekeepingrateof1Hzinanattempttocaptureshort-termelectrondensitychanges.

5MissionPlanningandProductDevelopment

5.1MissionPlanningCoordinationAtfirstglancetheprospectofbalancingtheneedsofthe21Rosettamissioninstrumentsseemsdaunting,especiallywitheachbasedatseparateinstitutionsscatteredacrossEuropeandtheUS,indifferenttimezones,andstaffedbyteamspassionateabouttheiranticipatedscience.Nonetheless,themissionwasaresoundingsuccessanddatawererecordedtosatisfytheAliceinstrumentsciencegoals.Thiswasachievedthroughtirelessoperationsdesign,development,andplanningsupportfromalltheinstrumentteamsandtheESAscienceoperationsteam.Additionally,thefreedomtoself-harmonizescienceplanningwithintheRosettasciencecommunityinsteadofbeingdirectedbymanagementledtoholisticallybalancedsolutions.Anobservationimportancehierarchybetweeninstrumentswasnotalwaysclearasmissionsciencegoalsweren’trequirementsororderedbypriority.However,teamsusuallycametoanagreementontheirownwhenscienceprioritiesweremadebasedondatasetuniquenessandcontinuity.Oftentheteamsmadecompromisestomergeobservationtypesforhighlydesiredperiodssuchasaddingperiodicstaresduringscans,adjustingscanrates,starelocations,etc.Fortunately,thistaskbecamemoremanageableasonlyasubsetofinstrumentteamsactivelyparticipatedinresourcenegotiationsincludingAlice,MIRO(MicrowaveInstrumentfortheRosettaOrbiter),OSIRIS,ROSINA(RosettaOrbiterSpectrometerforIonandNeutralAnalysis),RPC(RosettaPlasmaConsortium),VIRTIS,andsometimesthePhilaeLanderTeam.Theresourcesthattheremaininginstrumentstypicallyrequiredwerelowenoughthattheywereautomaticallygrantedortheywereabletoachievetheirdesiredobservationsbyridingalongonthepointingdesignedbytheotherteams.Therewereexceptionstothetypicalnegotiationprocess,thebiggestbeinghowtobalancethepotentialresourceneedsofthePhilaeLanderandits10instrumentsifandwhenitbecamefunctionalagaininthemonthsafterthelanding.Sometimes,thisledtoresourcesandschedulingtosearchfortheLanderorrecoveraLandersignaltakingpriorityoverotherRosettaspacecraftplans.Thatinturnresultedinlatechangestothetrajectorytooptimizecommunicationandviewopportunities,addedmultiple-caseplanning,droveadditionalpointingconstraints,andrequiredresourcestobereserved.Unfortunately,amongthemanycontactattemptstherewereonlybriefadditionalcontactswithPhilaeroughly7andthen8monthsafterlanding(seeTable1forthedates),thecontactswerenotsufficienttocommandextendedadditionallanderscienceactivities.

5.2Long,Medium,andShortTermPlanningPhasesEachinstrumenthaditsownmasterscienceplanthatdefinedmeasurementgoals,theirrelativeimportance,andobservationmethodstoaccomplishthem.Toachievethesegoalseachteamwouldfirstmakerequestsfortheneededresourcesatthe

Page 23: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 23

LongTermPlanning(LTP)phaseincludingspacecraftpointing,datavolume,power,andtelecommandcount.Thiswasdonewitharesourceandrequesttrackingspreadsheettypicallycovering4weeksofoperationsandwassubdividedintoshortblocksoftimedefiningspacecraftactivitiesorblocksavailableforinstrumentteamstorequest.Thistypicallyresultedin3-4hourinstrumentobservationblocksseparatedby30-70minutespacecraftactivityblocksthatinstrumentobservingmayormaynotneedtoavoidduetopropulsionandnon-optimalpointingactivities.Everyobservationblockfortheentiretwo-yearencounterwasreviewedandnegotiatedforbytheinstrumentandspacecraftteams.HarmonizationofplanstookplacewithRSGSliaisonscientistsmoderatingtheprocessfromESA’sESACfacilityinSpainwhilethevariousinstrumentteamsdialedinfromaroundtheglobe.Harmonizingtheobservationrequestsoftentookalotoftimeandcompromises,andoccasionallygotheatedwhendesignscouldn’tachieveeveryone’sneeds.However,itwasatestamenttointernationalcollaborationandcooperationthatmostnegotiationswereattainedsmoothlyandwithenoughtimetoimplement.AfterharmonizationtheliaisonscientistswouldhandofftheplantotheMediumTermPlanning(MTP)counterpartswherecommandingproductswouldbebuilt,refined,andvalidated.MTPperiodsweretypically4weekslong,correspondingtotheLTPplanningspreadsheetperiods.Finallytherewasopportunityfornon-standardoremergencyactivitiesandchangestobeaddedattheShortTermPlanning(STP)phase,typically1-weekduration.

5.3EvolutionofOperationsPlanningDuringthefirst9monthsofencounterthecometaryactivitywaslowandthespacecraftorbitaltrajectoryplanningwasverystable,excludingthevariousPhilaelandingscenarios.Thisallowedforlongdevelopmentprocessdurations,forexampletheLTPphasestarted6monthsbeforetheexecutionoftheplannedactivities,theMTPphasekickedoff2.5monthsbeforeexecution,andtherewereseveralweeksforSTPadjustments.ThisledtoconcurrentplanningofseveralMTPperiods,butplentyoftimeforleisurelyplanning.However,thisluxurywasshort-livedasthecometbecameactiveandtheorbitaltrajectoryneededtobeadjustedonamuchshortertimeframetokeepasafedistancefromthecometandparticularlyactiveareassuchasthecometneckandthesideofthecometpointedtotheSunwherethegasanddustdensitieswerehigher.Planningphaseswerehighlycompressedafterthispoint,butthemissionwasabletomaintaintheabilitytoplanobservationsthatcorrelatedtospecificcometphaseangles,locations,andothercharacteristics,whichresultedinmuchbetterformulateddatasetswhencomparedtoarbitrarypointingscheduling.Theremaining16monthsofthemissionplanningproceededatafranticpacewiththeLTPphasestarting2monthsbeforeexecutionandtheMTPandSTPphasesmergedandkickedoffamonthbeforeexecution.Unfortunately,lastminutechangestopointingattheSTPlevelbyotherinstrumentteamswerenotrareandusuallyrequiredascrambletoaccommodateinthecommandingforAliceandotherinstruments.However,theAliceteamwasappreciativefortheopportunitytomakeSTPlevelchangestothepointingaswelltooptimizesomeobservations,especiallystellarappulses,whicharediscussedinthe“AliceObservationTypes:GasObservations”Section.

Page 24: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 24

Thecompressionoftheplanningtimeframeimpactedallfacetsofoperationsfromobservationdesign,resourceharmonization,implementation,developmenttools,productreviewtiming,andproductvalidationtiming.Itrequiredthatprocessesandsystemsbedevelopedthatcouldbeefficient,adaptable,reliable,andmodular.AmongtheAliceteam,awikiwasusedforefficientcommunicationofproductstatusandSubversion(svn)wasusedforproductversiontracking.ModularPython,Perl,andbashscriptswereusedforproductdevelopmentandverificationthatallowedforquickadjustmentsandtestingasmissioninputsandformatschangedandnewcapabilitywasneeded.ESAmissionsimulationmodels(includingESA'sMappingAndPlanningPayloadScience(MAPPS)software[7]),SatelliteToolKit(STK)scenarios,andanAliceEngineeringQualificationUnitwerealsousedforproductvalidation.

6MissionPerspectives

6.1LessonsLearnedSummaryCooperationandjointplanningbetweenteamsleadtobetteroverallscience.ToOs,contextimages,starcalibrations,andothercasesofcorrelatingseveralinstrumentmeasurementsledtoamorecompleteunderstandingofthecometprocessesandobservedscenes.Transparencyintheoperationsplanningforallinstrumentteamshelpedwithunderstandingeachother’sgoalsandhelpedmaketheharmonizationprocessmoreefficient.Thiswasachievedbydocumentingobservingstyles,labelingobservationsinastandardizedway,andcollectingobservationrequestsinoneplaceforside-by-sidereviewandharmonizing.Itisimportanttoautomateplanningandcommandingasmuchaspossibletominimizemanualeffort.Thisleadstomoreefficientplanningandreducesoperationalrisk.Itwasfoundthatrollingoutcapabilityincrementallyanduseofopensourcesoftwarequickenedimplementationofautomationsoftware.ArecommendationforfutureAlice-likeinstrumentswouldbetoupdateflightsoftwaresoitisflexibleenoughtocreateadditionalinstrumentsequencesthatcombinesetsofcommandsusedregularlytoreduceriskincommandloadsandmakeoperationsdevelopmentmoreefficient.Intermsofpersonnelitwasfoundthatitwasworththeresourcestohavesomeonewhoisworkingonoperationsdevelopmentwithintimatefamiliaritythesystemsanditsneedswithsufficienttimetobuildandtestoperationstoolstoimprovetheprocess.Thereisalsostrongvalueinhavingaliaisonbetweenoperationsteamandscienceteamwhocanhelptranslaterequirements,constraints,jargon,etc.betweenthetwoteams.Havingainstrumentflexibleinpointing(madepossiblewithalargeFOVandlongexposuretimes)meanttheAliceinstrumentcouldtakeadvantageofobservation

Page 25: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 25

blocksthatwereoflittleusetootherinstruments,givingAlicemoreprimepointingthanitwouldhaveotherwisesecured.Implementinganongoingprocessofassessingoperationalconstraintsandassumptionshelptoidentifyareastooptimize.Forinstance,thegainsagratewasreassessedresultinginadjustmentsinBadDogavoidanceandridealongobservationplanning.Thefreedomtoself-harmonizescienceplanningwithintheRosettasciencecommunityinsteadofusingarbitraryschedulingorsolutionsbeingdirectedbymanagementledtoholisticallybalancedsolutionsandadditionalcollaborations-notjustcompromises.Beingclearwithcommunicationandschedulingdeadlineswasveryimportanttoreduceissuesforaninternationalmissionwithteammembersspanningmanytimezonesandnativelanguages,butrequiringmanyweeklymeetingsforplanningcoordinationandquick-turnaroundresponses.OneareaofcommunicationsthatcouldbeimprovedonRosettawasoccasionallyESAmissionsoftwareusedforproductdevelopmentandmodelingwouldchangewithoutaheadoftimenoticeimpactingongoingdevelopment.Thiswouldrequirechangestointerfaceanddevelopmentsoftwareinaveryshorttimeframe.Bettertransparencyintomissionsoftwarechangesbeforetheyareimplementedwouldhavereducedrushchanges,softwareworkaroundsandrollbacks,andriskofcommanderrors.Havingmission-commonvisualizationandresourcetrackingtoolsareimportanttoprovideasingleframeofreferenceforallteamsfacilitatingcompatiblesolutionstoend-to-endoperationsdevelopmentfromobservationdesignthroughimplementation.Participationinmeetingsisnecessaryforallteamsthatdesiretohaveavoiceindecisionsbeingmade.Revisitingdecisionscanwastealotofpeople’stime.

6.2AliceLogbookForfurtherAliceoperationaleventdetailspleaserefertotheRosettaAliceLogbookthatwillbeintheRosettaAliceArchive.ItcontainsdetailsforAliceevents,majorspacecraftevents,allobservationsbynameandbydate,andotherinformationvaluabletousingandunderstandingAlicedata.

7AcknowledgementsRosettaisanESAmissionwithcontributionsfromitsmemberstatesandNASA.WewouldliketothankthemembersoftheRosettaScienceGroundSegmentandMissionOperationsCenterteamsfortheirexpertanddedicatedhelpinplanningandexecutingtheAliceobservations.WewouldliketothankthededicatedscienceandengineeringstaffatSwRIforalltheircontributionsthroughtheyears.TheAliceteamacknowledgescontinuingsupportfromNASAviaJetPropulsionLaboratorycontract1336850totheSouthwestResearchInstitute.

Page 26: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 26

8References[1]S.A.Stern,D.C.Slater,J.Scherrer,J.Stone,M.Versteeg,M.F.A’Hearn,J.L.Bertaux,P.D.Feldman,M.C.Festou,JoelWM.ParkerandO.H.W.Siegmund,“ALICE:THEROSETTAULTRAVIOLETIMAGINGSPECTROGRAPH”,SpaceScienceReviews(2007)128,pp.507–527[2]Siegmund,O.W.H.,Stock,J.,Raffanti,R.,Marsh,D.,andLampton,M.,“UVandX-RaySpectroscopyofAstrophysicalandLaboratoryPlasmas”,Proceedingsfromthe10thInternationalColloquium,Berkeley,CA3–5February1992,inSilver,E.andKahn,S.(eds.),p.383.[3]Siegmund,O.W.H.,Everman,E.,Vallerga,J.,andLampton,M.,“OptoelectronicTechnologiesforRemoteSensingfromSpace”,ProceedingsoftheSPIE,SPIE,Bellingham,Washington,USA,1987Vol.868,p.17.[4]JoelWm.Parker,AndrewJ.Steffl,S.AlanStern.“ROSETTA-ALICETOPLANETARYSCIENCEARCHIVEINTERFACECONTROLDOCUMENT”RosettaPSADocumentNo.8225-EAICD-01,March2016Rev4Chg0[5]Cometon27March2016–NavCam,CopyrightESA/Rosetta/NavCam–CCBY-SAIGO3.0,Id358019,Released01/04/2016,http://www.esa.int/spaceinimages/Images/2016/04/Comet_on_27_March_2016_NavCam[6]Comet’sdustyenvironment,CopyrightESA/Rosetta/MPSforOSIRISTeamMPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA,Id345498,Released13/08/2015,http://www.esa.int/spaceinimages/Images/2015/08/Comet_s_dusty_environment[7]MikeAshman,MaudBarthélémy,LaurenceO'Rourke,MiguelAlmeida,NicolasAltobelli,MarcCostaSitjà,JuanJoséGarcíaBeteta,BernhardGeiger,BjörnGrieger,DavidHeather,RaymondHoofs,MichaelKüppers,PatrickMartin,RichardMoissl,ClaudioMúñozCrego,MiguelPérez-Ayúcar,EduardoSanchezSuarez,MattTaylor,ClaireVallat,“RosettascienceoperationsinsupportofthePhilaemission”,ActaAstronautica,Volume125,August–September2016,Pages41-64[8]JohnNoonan,EricSchindhelm,JoelWm.Parker,AndrewSteffl,MichaelDavis,S.AlanStern,ZuniLevin,SaschaKempf,MihalyHoryani,“AninvestigationintopotentialcausesoftheanomalisticfeatureobservedbytheRosettaAlicespectrographaround67P/Churyumov–Gerasimenko”,ActaAstronauticaVolume125,August–September2016,Pages3-10[9]AndreaAccomazzo,SylvainLodiot,VicenteCompanys,“Rosettamissionoperationsforlanding”,ActaAstronautica,Volume125,August–September2016,Pages30-40

Page 27: Rosetta Alice Ultraviolet Spectrograph Flight Operations ... · PDF fileRosetta Alice Ultraviolet Spectrograph Flight Operations and Lessons Learned 2 1 The Rosetta Mission and Comet

RosettaAliceUltravioletSpectrographFlightOperationsandLessonsLearned 27

[10]Rosetta’sjourneyaroundthecomet,CopyrightESA,Released:05/08/2016,http://www.esa.int/spaceinvideos/Videos/2016/08/Rosetta_s_journey_around_the_comet[11]BrianA.Keeney,S.AlanStern,MichaelF.A’Hearn,Jean-LoupBertaux,LoriM.Feaga,PaulD.Feldman,RichardA.Medina,JoelWm.Parker,JonP.Pineau,EricSchindhelm,AndrewJ.Steffl,M.Versteeg,andHaroldA.Weaver,“H2OandO2AbsorptionintheComaofComet67P/Churyumov-GerasimenkoMeasuredbytheAliceFar-UltravioletSpectrographonRosetta”,2017,MonNotRAstronSocstx1426.doi:10.1093/mnras/stx1426[12]Cometon18August2014–NavCam,ROS_CAM1_20140818T200718,CopyrightESA/Rosetta/NavCam–CCBY-SAIGO3.0,horizontallyinvertedtomatchAlicehistogramorientation,https://imagearchives.esac.esa.int/picture.php?/7204/categories/created-monthly-calendar-2014-8-18