51
Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS 1. Introduction 1.1 Historical Review 1.2 Definitions 1.3 Kinematic Structure 1.4 Coordinate Systems 2. Structure of IR 2.1 Construction + Drive Tech. 2.2 Actuators 3. Grippers 3.1 Construction of Grippers 3.2 Gripper Change Systems 4. Controls 4.1 Measurement Systems 4.2 Programming of IR online offline 4.3 Programming Languages 4.4 Collision Control 5. Sensors 5.1 ... 5.2 Optical Sensors 5.3 Video Technical Devices 5.4 ... Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López TUHH 2 - 2249 - 0 1700 J.D. Vancanson built music playing dolls 1805 H. Maillardet designed a picture painting doll 1946 G.C.Devol developed a controller which can store electrical signals, to use them later for the controlling of mechanical devices 1947 Patents for manipulation for the handling of radioactive materials 1952 Prototype of a NC-Mashine at MIT demonstrated 1954 C.W. Kenword received a patent for a 2-Arm-Robot 1959 First commercial robot (Planet Corporation) 1960 First Ultimate Robot (with hydraulic drive, numerical control) installed 1966 Tralfa developed and installed color spraying robot 1968 “Stakey”, a mobile robot is demonstrated at the Standard Research Institute 1971 First purely electrically actuated robot (Standford-Arm) 1973 Robot programming language - WAVE was developed 1975 First assembly operation by Olevettis SIGMA robots 1979 Development of SCARA robots at the Yamanashi university 1981 Direct Drive robot developed at the Carnegie Mellon University 1984 Several programming systems for development demonstrated 1985 World-wide development of mobile autonomous robots History of Robots Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López TUHH 2 - 2363 - 0 Robot Industrial robot Like humans Learning Universally substitutable Motion automata Freely programmable Handling/manipulation production task Robot and industrial robot in comparison Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López TUHH 9 -2248 - 3 Aerospace Nuclear science Under water technique Service industry Manufacturing, assembly technique Applications of Robot-technique 1

Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Lecture RoboticsProf. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López

CONTENTS• 1. Introduction• 1.1 Historical Review• 1.2 Definitions• 1.3 Kinematic Structure• 1.4 Coordinate Systems

• 2. Structure of IR• 2.1 Construction + Drive Tech.• 2.2 Actuators

• 3. Grippers• 3.1 Construction of Grippers• 3.2 Gripper Change Systems

• 4. Controls• 4.1 Measurement Systems• 4.2 Programming of IR

– online– offline

• 4.3 Programming Languages• 4.4 Collision Control

• 5. Sensors• 5.1 ...• 5.2 Optical Sensors• 5.3 Video Technical Devices• 5.4 ...

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2249 - 0

1700 J.D. Vancanson built music playing dolls1805 H. Maillardet designed a picture painting doll1946 G.C.Devol developed a controller which can store electrical

signals, to use them later for the controlling of mechanical devices 1947 Patents for manipulation for the handling of radioactive materials1952 Prototype of a NC-Mashine at MIT demonstrated 1954 C.W. Kenword received a patent for a 2-Arm-Robot1959 First commercial robot (Planet Corporation)1960 First Ultimate Robot (with hydraulic drive, numerical control) installed1966 Tralfa developed and installed color spraying robot1968 “Stakey”, a mobile robot is demonstrated at the Standard Research Institute1971 First purely electrically actuated robot (Standford-Arm)1973 Robot programming language - WAVE was developed1975 First assembly operation by Olevettis SIGMA robots1979 Development of SCARA robots at the Yamanashi university1981 Direct Drive robot developed at the Carnegie Mellon University1984 Several programming systems for development demonstrated 1985 World-wide development of mobile autonomous robots

History of Robots

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2363 - 0

Robot Industrial robot

Like humansLearning

Universally substitutableMotion automataFreely programmableHandling/manipulation production task

Robot and industrial robot in comparison

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 -2248 - 3

AerospaceNuclear scienceUnder water techniqueService industry

Manufacturing, assembly

technique

Applications of Robot-technique 1

Page 2: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2251 - 3

Autonomy of robot

by

Autonomy of robot

Automatic planning Automatic controlSupervision of performanceRecognition of a conflictDeletion of errors

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2247 - 6

Changing of production basis to flexible production

Requirements leading to Flexible Production Techniques

Short delivery timeIndividuality of productsHigh constant product qualityCompetitive prices

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0477 - 7

Human activity, mechanization and automation

Muscle, tendonsmechanization

Automation

Memory, mind and nerve(control technique)

Semi-Automation(partially functions

from hand)Fully Automation

(all function automatic)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

8 -0936 - 8

Definition of automatic machine

An automatic machine is an artificial system,which autonomously follows a program.

Coininsertion

Coin acceptance

Return coin

Goods delivery

yes no

2

Page 3: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 -1697 - 0

Definition of Industrial Robot (short version)

An Industrial robot is a multi-functional handling device, which is free programmable in several axes

and is able to move workpieces, tools or special devices in such a way,that a specific task will be executed properly.

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 -0479 - 0

Industrial robot

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

8 - 1518 - 9

Part of car body with weld points

11 points

30 points

21 points

clamp

Industrial robot

43 points

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0480 - 0

Systematic of the handling equipment

Handling equipment

Special devices for Universal devices

Manually controlled

- banker- magazine

- slides- chute- feed

- guide bars- swivel

grippers- turn

devices

- jaws- expanding

mandrel- stepped

clampingplates

- micro-manipulators- tele-manipulators- industrialmanipulators

-specialpurposeequipment

- loading portals

- iron handdelivery devices

- handling automata

- handlingsystem

-assemblyrobot

- spot weldingrobot

- loadingrobots

- arc weldingrobots

- paintingrobots

Storing Changeplace

Change direction Holding

Mater-Slave

devices

Pick and place

devices

Cam-controlledhandling equipment

Robot withpoint to

pointcontrol

Pathcontrolled

robots

Automatically controlled

Fixed operational sequence Programmable operational sequence

Rigidmovement

stop

Adjustablemovementlimitation

Adjustablemovementlimitation

Programmabledesired

position

3

Page 4: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1698 - 0

Definition of Industry Robot (complete version)

Industrial robots are universally applicable handling devices with severa

axes, whose movements, regarding motion sequence and paths or angles,

are freely (i.e. without mechanical intervention) programmable and if necessary

are sensor-led.

They are equipable with grippers, tools or other

production devices and can execute handling

and/or manufacturing functions

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0290 - 0

Structuring of the mobile Robots according to the type of the guidance

Robot

Stationary Mobile

Not bound to a fixed path Bound to a fixed path

sensor-led

manuallyled

sensor-led

track-bound

inductivelyled

opticallyled

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2826 - 0 Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2827 - 0

4

Page 5: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0564 - 0

Denotation of IR Axes

Robot in basic condition (axes parallel to three-dimensional

coordinate system)

Axes denotation (according to VDI 2861)Axes denotation (according to VDI 2861) Axes denotation (according to VDI 2861)

X horizontal main linear axis, parallel to the first axis of reference coordinate system

Y horizontal mail linear axis, parallel to the first axis of three-dimensional coordinate system

Z vertical main linear axis, parallel to the third axis of reference coordinate system

U linear axis parallel to the X-axis or any linear axisV linear axis parallel to the Y-axis or any linear axisW linear axis parallel to the Z-axis or any linear axisR turnable linear axis (radial axis)Q second turnable linear axis (radial axis) or any

axis

A main axis of rotation parallel to the X-axis or other main axis of rotation*

B main axis of rotation parallel to the Y-axis or other main axis or rotation*

C main axis of rotation parallel to the Z-axisD axis of rotation parallel to the X-axis or any axis

of rotation, preferably 1st rotational secondary axis*E axis of rotation parallel to the Y-axis or any axis

of rotation, preferably 2nd rotational secondary axis*F axis of rotation parallel to the Z-axis or any axis

of rotation, preferably 3rd rotational secondary axis*

S any axisT any axis

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0484 - 0

Motion possibilities of a body in space

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0631 - 0

Kinematic conception of IR working space

Kinematic chain

Joints Limbs

Linear joints

Rotationaljoints

Movablelimbs Frames

Kinematic concept

Variation of the joinSpace

Work space <=movement space

Collision region

Positioning accuracy/manufacturing costs

Mobility/flexibility/Control-expenditure

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2706 - 0

Modules of a robot

- Kinematics- Drives- Controls- Sensors

5

Page 6: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0565 - 0

Space layout for robots after VDI2861

Driving space

Safety spaceMovement space

Unusable spaceWork space

Extra work spaceMain work space

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0481 - 0

Characteristics and abilities of humans

Characteristics and abilities of humans

Information input

Data processing

Information storage

Information output

Direct communication withexternal world

Human to human

Genes

Sheer perception

Sheer action

Unconscious reaction

Conscious reaction

Reflex

Short time memory

Long-term memory

Speech

Scripts

Gestures, mimics/miming

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2368 - 0

Subsystems of Robots

Subsystems Subfunctions

Kinematics

Functional elements

Control

Drivers

Measuring device

Sensors

Generating the local allocation between workpiece/tool and manufacturing equipment

Access/supply workpiece

Secure position of workpiece while moving

To convert and supply the necessary energy to allmovement axes

Measuring the position, speed and acceleration of single axis

Acquisition of stochastic influences in the surrounding field of IRMeasuring physical magnitudesPattern and position recognition

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0483 - 0

Structure of a workplace with robot

Manufacturingequipment

andorganization

Information

Energy

Material

Measuring system

Control

Drives

Kinematics

Sensors

Information

Energy

Material

System-boundaries of the workplace System-boundaries

of the PHG

6

Page 7: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1553 - 0

Function of the subsystems

Subsystem Task

Control - Program execution, memory, controlling,monitoring

- Logic combination, manufacture with equipment,peripheral device,

- Other controlsDrives - To convert and transfer the necessary energy to all

movement axes

Kinematics - Spatial correlation of workpiece/tool andmanufacturing equipment

- Start points, travel along of pathsGripper - To grasp and release objects

- Secures the object during movement

Path- and speedacquisition

- Acquisition of stochastic influences from thesurrounding field

Sensors - Acquisition of stochastic influences from thesurrounding field

- Pattern and position recognition

Translation joint Rational joint Movebable limbs Frame

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0630 - 7

Parts of a kinematic chain

Kinematic Chain

Joints Limbs

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1243 - 0

Kinematics of industrial robots

Translational arm

Portal

Folding arm

Bending arm

Cantilever arm

Rotational arm

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2408 - 0

b Possibility of movement bmax= 6

u Restrictions of movement for a joint umin= 1

f Joint degree of freedom f = b – u

F Structural degree of freedom F = ∑ f

7

Page 8: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0485 - 0

Kinematic chains

1

12

2

233

34

4

(i-1)

(i-1)i

i

open kinematic chain

closed kinematic chain

1223

34

45

51

1

2

3

45

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0486 - 0

Multiple-drives system in serial arrangement

1, 2, 3 - parts of the open kinematic chain

I, II - closed kinematic chain

A12, A23 - actuators for joints 12 and 23

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0487 - 0

Structures with F=1

z

y

x

z

y

x

R T

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0488 - 0

Structures for F=2

TR

RR

RT

TT

8

Page 9: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0489 - 0

Structures for F=3

TTT TTR TRT RTT

RRT RTR TRR RRR

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0490 - 0

Structure variation for F=3

TTTTTRTRTRTTRRTTTRTRRRRR

P P P PP PPP

P

PP

Jointstructure

Axesstructure 1 2 3 4 5

P

Space-describingstructure

structures withparallel translationalaxes, or three parallelaxes of rotation

structures witha translational axesorthogonal relativeto two parallel axesof rotation orwith an axes ofrotation orthogonalto two orthogonaltranslational axes

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0491 - 0

Positioning with RRR- and TTT-Structure

Z

X

Y

X

Z

Y

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0500 - 0

Industrial robot with TTT-Axes

3

1

1

2

2

3

9

Page 10: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1952 - 0

Linear axes for handling device

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0501 - 0

Industrial robot with TTR-Axes

3

1

3

2

1

2

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0502 - 0

Industrial robot with TRR-Axes

31

12

3

2

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1695 - 0

Definition SCARA

Rigid (vertical)

Folding wall

Flexible(horizontal)

Rigid

Flexible

SCARA = Selective Compliance Assembly Robot Arm

10

Page 11: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1953 - 0

SCARA-Robots

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1954 - 0

Swivel (rotating) arm robot SR 800

Axis 1 Axis 2 Axis 3

Axi

s 3

Arm 1 Arm 2

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0503 - 0

Industrial robot with RRR-Axes

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0504 - 0

Special designs of industry robots

33

2

12

1

11

Page 12: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1858 - 0

2D-displaceable robot

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2624 - 0

Modular handling and positioning system with direct drives

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1889 - 0

Kinematic relation for robot arm

Robot base coordinate system

Effector coordinate system

Effector positionDirect kinematicproblem

(Forward transformation)

Inverse kinematicproblem

(Backwardtransformation)

Effector position(Absolute cartesian coordinates)

Joint vector G(Robot coordinates)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2037 - 0

Coordinate system of an IR

IndicesW : Global cartesian coordinate systemM : Assembly coordinate systemR : Robot coordinate systemTCP : Tool coordinate system1; 2; 3 : Joint coordinate system

12

Page 13: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1925 - 0

Industrial robot with RRR-Axes

NPK: reference point offset correction

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1926 - 0

Transformation of cartesian position data in axis information

Backward-transformation

Forward-transformationXwYw Tool coordiante system Θn : Angle between axesZw

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2379 - 0

Arm configuration at joint robots

LEFT and ABOVE RIGHT and ABOVE

LEFT and DOWNRIGHT and DOWN

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1927 - 0

Determination of the axis positions for 3-axis industrial robots

3-axis industrial robotsa) with cartesian work space b) with cylindrical work space c) with spherical work space

• 3 linear joints • 1 rotational joint • 2 rotational joint• 3 linear points • 3 linear points

• Position of the effector • Position of the effector • Position of the effector

• Axis positions • Axis positions • Axis positions2

1

3

sss

zyx

P ==

1

12

12

sincos

sss

zyx

P θθ

==

122

122

122

cossinsincossin

ssss

zyx

P+

==θ

θθθθ

xszsys

===

3

2

1

222

1

1 arctan

yxs

zsxy

+=

=

222

2

11

1

arccos

arctan

yxs

ssz

xy

+=

−=

=

θ

θ

13

Page 14: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1928- 1

Kinematics of a rotational joint robot

Axis 1 Axis 2

Axis 3

Axis 4

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2253 - 0

Positioning for axis 1 and 2

With the application of the cosine law the position angles of axis 1 and 2 follow

with

and

with s1, s2 as characteristic data of the kinematic chain

221

221 cos

sinarctanarctanuss

usxyu

+−=

)sin(sin)cos(cos

)sin()cos(

sincos

21211

21211

21

2121

1

111

uususuusus

yx

p

uuuu

sn

uu

sn

++++

==

++

=

=

21

22

21

22

2

22

2arccos

cos)180cos(cos

ssssyxu

uu−−+

=

−=−=γ

221

221 cos

sinarctanarctanuss

usxyu

+−=

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1929 - 1

Kinematics of a 6-axis folding arm robot

Axis 1

Axis 2

Axis 3

Axis 4

Axis 5

Axis 6

Origin

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1931 - 1

Backward transformation for a 6-axis folding arm robot

a) Graph of the transformations for6-axis robots

b) Position of the joint coordianate system

Matrix of transformation:T6= A1 · A2 · A3 · A4 · A5 · A6

c) Joint parameters according to Hartenberg-DenavitJoint Variable θ l d α1 θ1 θ1 0 d1 π/22 θ2 θ2 l2 0 03 θ3 θ3 0 0 π/24 θ4 θ4 0 d4 -π/25 θ5 θ5 0 0 π/26 θ6 θ6 0 d6 0

Coordinate systems

14

Page 15: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1930 - 1

Ambiguites of the transformation at 6-axes folding arm robot

Axis 4 and 6

Axis 3 and 5

Swiveling range and arm’s position

ROTATION

OVER HEADÍNG MOVEMENT

Orientation of the axis

Orientation of the axis

Arm right

Arm left

positive

positive

negative

negative

Ende Abschn. 1

• Es folgen Reservebilder.

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1549 - 0

Hierarchy of need

Need levels Satisfaction by

Self realization- Realization of one’s own potential- Enlargement and learning progress- Rise of responsibility

Prec

edin

g so

cial

dev

elop

men

t

Self esteem- Professional competence- Independence- Authority to decide

Social contact- Security in the community- Human contact- To be approved

Security need- Long period backup of income forsatisfaction of physiologic needs

- Safety of workplace

Physiology need- Nutrition - Apartment- Clothing

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 -0640 - 0

Num

ber o

f util

ized

robo

ts

Development of industrial robots in Germany 15

Page 16: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2828 - 0 Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2829 - 0

Beginn Abschnitt 2

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2766 - 9

Demands on Robots structure

(distance, form, given points)(cycle time, acceleration, speed)

(weight, inertia, function)

pathtimeforce

exact description: geometricalcinematicaldynamical demandson the robots structure

Necessary

path- time and force- specification have animportant influence on robots structure

flexibility is an additional importantdemand on robots

16

Page 17: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0492 - 0

Basic structure of Multi-drives system

D1

D2

D3

C

A1

A2

T1

T2

T3

D1

A3

T1

C

T3

A1

D3

D2

T2

A2

parallel serial

D - Drive element, T - Transmission element, A - Actuator, C - Control element, F - frame

F

A3

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0642 - 0

Influence of handling tasks on IR-structure

Palletization of workpieces

Differnt structures for solvingpalletizing tasks

Simplified co-operatin structure

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1875 - 2

Transmission for robot axes of rotation

Spur gears Planetary gears

Harmonic drive AkimCyclo

Duplex worm gear Toothed belt transmission

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0301 - 0

Method of operation of the Harmonic drive

An elliptical body(wave generator)

deforms a flexible,interlocked bodyover the balls andthe bearing cup(flexible spline)

The turn of thewave generator

causes adisplacement of the

meshing region

... results in a fullrotation of the

wave generator atorsion of the

flexible splinesin accordance withthe number of teeth

different...

Since the numberof teeth at thecircular spline

and flexible splineis different...

17

Page 18: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1051 - 6

Electrical equipment with industrial robots

Advantages Disadvantages- extremely precise - it can be arranged easily in such a way that no movements would easily occur in the case of energy disturbance

- automatic control loops- small noise- inexpensive through standardized components

- strength of three-phase drives

- bad strength and/or power density- frequently cooling equipment often

necessary- adjustable three-phase current drives are complex

- unfavorable dynamic behavior- almost always mechanical transmission necessary

Electrical equipment with industrial robots

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1052 - 6

Pneumatic equipment with industrial robots

Advantages Disadvantages- cheap- easy to install- pneumatic contacts are usuallyavailable

- precise positioning by stops ispossible

- simple control- very reliable- small maintenance costs- not influencable through electrical fields

- limited stokes- reprogramming of the firm installed control units is expensive

- only limited number of programs arepractical

- uncontrolled movement is possible- control chain- noise- air supply is partially problematic(cleanness, constant pressure level)

Pneumatic equipment with industrial robots

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1053 - 0

Hydraulics at Industrial robots

Advantages Disadvantages

- very good strength and/or powerdensity

- good dynamic behavior- closed-loop control systems are practicable

- very reliable- standardized elements are

available

- hazard with circuit break (in particular in the case of high pressure hydraulics)

- oil must be well filtered- leakage- temperature dependence- combustibility of the hydraulic fluid- within some areas not applicable(food industry, hospitals, clean room)

- without mechanical additional equipment there is no automatic locking

Hydraulics at Industrial robots

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

8 - 1358 - 9

Block diagram of a drive regulation for a direct drive (Slo-Syn)

DC BUSLOGIC

DIRECTDRIVE

MOTOR/RESOLVER

FAULT PROTECTION

SYSTEM CONTROLLER

PHASE CONTROLLER

MOTIONCONTROLLER

FEEDBACKINTERFACEDECODER

I/O

I/O

POWER SUPPLY

AMPLIFIER

serialRS232

EXTERNAL PARAMETERS

PROGRAMMEDCOMMANDS

RS374

POSITIONANOLOG REF

TORQUEVELOCITY

LED INDICATORSOVER TEMP

FEEDBACK LOSSOVER CURRENTGROUND FAULT

REGEN. LOAD DUMPLINE VOLTAGE OUT OF RANGEFAIL SAFE BRAKE INERGIZED POSITIONER/CONTROLLER POWER AMPLIFIER

POWER

A

B

C

DRIVE INHIBITBRAKE CONTROL

LINE INPUT

CONTROLOUTPUT

POSITION FEEDBACK

18

Page 19: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2767 - 9

Features of Direct drives in Industrial robots

high dealock torques

high positioning accuracy

high dynamics

good maintainability and low wear

good controlability with synchronus drives

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1356 - 0

Evaluation of different drive concepts for direct drives

Synchronous Asynchronous Reluctancedrives drives motors

Dynamics

Overload range

Positioning

Rotary speed region

Degree of efficiency

Torque weight

Standard outlay

Temperature behavior

Drive costs

Converter costs

= good = middle = bad

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1355 - 0

Characteristics of different direct drives

0 20 40 60 80 100 120 140 160

Revolutions per minute RPM n[min-1]

400

300

200

100

Torq

ue

M[N

m]

Permanent-exited direct current motor(INDRAMAT MHT 140)

Reluctance motor(MEGATORQUE 18”)

Three-phaseasynchronous drive(AMK EBM 200)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1357 - 0

Design of a digital drive control

digital digital(analog)

analog/digital

Static frequency changerComtrol

Drive controller Service part

RPMregulator

Positionregulator

Currentregulator

Transducer

Reference positionvalue

+XS +NS +IS

Real positionvalue-XI

Real RPMvale-nI

M

][

-II Real current value

19

Page 20: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Ende Abschnitt 2

• Es folgen Reservebilder.

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0493 - 0

Components of pneumatic Servo-Drive Systems

3 1 2 4Drive

Measurementsystem

Servo-valve

Gripper or other switching valve

Control

Brake

NC (Numerical Modul) - Drive modul

Beginn Abschnitt 3 Greifer

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2633 - 7

Main functions of a gripper

Main functionsof a gripper Auxiliary functions

Execute a position-securing force on a workpiece

GrippHoldRelease

CenteringOrientingExecuting additionalmovementsCollecting information about workpieces

20

Page 21: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Handlingobject

Handlingequipment

Peripheraldevice

Handlingfunction Environment

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0497 - 0

Factors of influence on gripper construction

AmountMassMaterialTemperatureHandle areas

DimensionsSensitivityFormsMoment of inertiaTolerance

Mounting-position

Storing positionPositioning-

accuracyProcess forcesAccessibilityPreparation timeInset-Withdrawal-

forces

FunctionsLot sizeCycle time

ContaminationMoistureVibrationsTemperature

Position-accuracy

AccelerationType of energyConnection-

dimensionControlPay load

Factors of influence on the gripper construction

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2376 - 6

Interfaces of a gripper arangement

Form

clo

sure

inte

rfac

e

Interface

Inte

rfac

e

Movementsetting

Clamping device for manufacturing equipment

Process

Orders,supply, store setting

Gripper system

Handledobject

Effect part

Grabequipment

Effect part

Environmental influences

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2- 0494 - 0

Degrees of freedom between object and gripper

Object

Ball

Cylinder

Disk

f = 5 f = 4 f = 3

f = 4 f = 2

f = 3

f - degree of freedom

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0495 - 0

industrial robot workpiece

controlflange

drive

gripper

kinematicshold system

sensors

Gripper with its Subsystems 21

Page 22: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0568 - 0

Factors of influence on grippers

Factors of influenceon grippers

Number of grippers- single gripper- multiple gripper

Gripp area- inside- outside

Type of closure- press fit- form closure

Gripper movement- circular- parallel

Gripper principle

Mechanically- scissors gripper- pliers gripper- vice gripper

Fluid- vacuum gripper- sucker- bellow gripper

Magnetically- electromagnet- adjustable permanentmagnet

Other- electrostatic gripper

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0506 - 5

Systematics of the grippers

Singlegripper

Order criterionDual

gripperMultiplegripper

Doublegripper

Turretgripper

1 n2

Press fit/Form closure

Form closurePress fitMaterialclosure Press fit

magnetically fluid electricaladhesive fluid mechanically

elastic finger

flexiblefinger

rigitfinger

circular circular/parallel

transla-tional

2 3 4

central parallel

1

outer inner inner/outerinner outer

- adhesivegripper

- permanentmagnet withmouldedelement

- mechanically selected permanent magnet

- permanent electromagnet- electromagnet- magnet cushionwander field gripper

- vacuumcap

- sucker

- electro-staticgripper

- extension thorn- bending spring

- extension sleeve

- knee joint

- vice - knee joint

- all possiblecombinations

- Number of grippablebodies

- Number of availablegrab area at the body

- Type of closure

- Gripper principle

- Types of fingers

- Jaw movement

- Number of fingers

- Finger movement

- Grab direction

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0496 - 0

operation

number ofworkpieces

1 workpieces

2 workpieces

n workpieces

to only activatetogether

to activateseparately

single gripper

dual gripper

multiple gripper

double gripper

turret gripper

Kinds of the grippers

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2317 - 4

Hold principles of grippers

Hold principles of grippers

Hold by press Hold by form closure

Hold by Friction forces

Hold byNegative

pressure forces

Hold byMagnetic

forces

Hold byIntermolecular

forces

Hold by pairs of form

items

Hold bythroatiness

hooking

- Direct clamping e.g. with compressed air subjected diaphragm

- Indirect clampingby active pressingof mobile items

(gripper finger)- Indirect clamping

by under effectof gravity forceself-lockingmechanisms

- Adhesion suctionapparatus

- Vacuum suctionapparatuses admitted by a vacuum pump

- Venturi nozzle andvacuum suction apparatus (vacuumgeneration throughoverpressure)

- Permanent magnets- Permanent magnets

with electrical field displacement

- Electromagnets

- Adhesion foils - Rigid formelements on the gripper form negative copy from shape of thewokpiece elements

- Flexible modelingjaws are modeled at part form elements

- Pricing of needlesinto the handlingobject

(e.g. textiles,foam material, etc.)

22

Page 23: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0498 - 0

Gripper with adhesive tape

consumption adhesive tapefresh adhesive tape

pressure bodies

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0507 - 0

Gripper with electromagnet

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0505 - 0

Mechanical enclosure gripper

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0499 - 0

Pneumatic bending finger 23

Page 24: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0508 - 0

Rotational movement with linear drive

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2377 - 0

Center displacement with scissors grippers

γ = Angle of prismα = Gripper opening angleG = Center of gravity

of the object∆X = Displacement

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0509 - 0

Kinematics for grippers

1 2 3 4

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0510 - 0

Parallel guidance of gripper jaws 24

Page 25: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0511 - 0

Actuators for gripper functions

Actuator for gripper functions

MO

VEM

ENT

ENER

GY

Drive

ENER

GY rotation

linear

electrical

pneumatic

hydraulic

Actuator for gripper Drive movement1 Electrical drive1.1 Stepping motor rotation1.2 Direct current motor rotation

2 Pneumatic drive2.1 Pneumatic cylinder linear2.2 Pneumatic motor rotation2.3 Swivel cylinders (low number of revolutions rotation

per minute, limited rotation angle)

3 Hydraulic drive3.1 Hydraulic cylinder linear3.2 Hydraulic motor (unlimited rotation angle) rotation3.3 Swivel cylinders (limited rotation angle) rotation

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2323 - 9M

valuationcriteration

pneumatic hydraulic electro-magnetic

electro-motor

High grab force

controllability

transfer ofenergy

sensitivenessagains dirt

Maintenance

Emergencystop behavior

Size

costs

favorable unfavorablemiddle

Advantages and disadvantages of different gripper actuators

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2325 - 9

Flexibility levels of gripper

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0512 - 0

Resetting procedure for gripper

manual resetting automatical resetting

Conversionof forms

Conversion orregulation onform elements

Resetting withelement changing

Resetting withoutelement changing

- Cutting- Casting

- Adjust oflamellapackages

- Adjust ofprisms

- Change ofgripper jaws

- Change ofgripperkinematics

- Change ofcompletegripper

- Magneticpowdergripper

- Vacuumgranulatesgripper

- Many jointsdriven bycables

- A parallelpair of gripperjaws withtactile sensorsin the gripperjaws

Copying withpassive elements(without senors)

Copying withactive elements(with senors)

25

Page 26: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0559 - 0

Interfaces of gripper

Jaws Fingers Transmission Drive Hhg

HhgDrive

DrillMilling Cutterpencil grinderetc.

Interface

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2254 - 0

Aspects of selection of grippers

Aspects of selection of grippers

1. High power factor (large relation of grab strength to gripper mass)

2. Practicable mechanical and electrical interfaces for lever link and gripper jaws

3. The size spectrum of the grab objects adapted or adaptable gripper stroke/shift with

acceptable closing and open- hours

4. Grab force protection with power failure

5. Small friction losses in transmissions and guidance

6. Possibilities for the kinematic supplement around wrist rotational and sliding axis (short-stroke)

7. Sensitive setting options for jaw movements and forces

8. As contactless query of the end positions of gripper jaws as possible

9. Integrated guidance of supply lines for energy and information

10. Insensitivity in relation to oscillations and impacts or absorption in the end positions

11. Great maintenance intervals

12. High service life

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1034 - 0

Gripper changing system

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2255 - 0

Operation types for gripper change devices

Operation types for gripper change devices

1. Self Actuationuses the movement possibilities of the handling equipment itself(easy, small; actuating forces by IR)

2. Internal Actuationby external drive in the handling equipment (large, heavy; only once necessary

3. External Actuationactuator mounted to the magazine frame(high reliability, smallest influence on IR)

26

Page 27: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0513 - 0

Change mechanism for permanent electromagnet

1. Stator2. positioning bolt3. housing4. Bushing5. Electromagnet6. Proximity switch

3 4 5

6

2 1 1 2

3

45

6

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0514 - 0

Support element with ball (sphere) adapter

clampedreleasedTool

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0515 - 0

Turret Gripper

Drive

parallel

Conical

Star-shaped

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2322 - 0

Sensors for Grippers

Sensors for grippers

Switching Sensors Measuring sensors

- Switch formovement by mechanical one

(e.g. limit switch)

- Attendance supervision andposition test

- Light barriers- Inductive proximityswitches

- Capacitive proximity switches

- Position measure-ment with linear potentiometer

- Gripper force measurement withstrain gages

- Multidimensional force measurement by strain gages

- Pattern recognition bytactile surface sensors

- Distance measurement by ultrasonic

- Distance measurementby laser triangulation

- Position measurement by video processing

touching contactless touching contactless

ExamplesExamples ExamplesExamples

27

Page 28: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1520 - 0

Function of robotic control

Description of the environment and the function

Single drivesRobot limbs

Open and/or closed loop control

Strategic model

Coordinate transformation

Internal measurement

External measurement

Individual feed back control

Stan

dard

aut

omat

ic

cont

rol

Rob

ot c

ontro

lA

rtific

ial

inte

llige

nce

p(t)

x(t)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0520 - 0

Control types

point-to-point control

simple straightcut control

straight cutcontrol

expanded

continuouspath control

tool applicationproblemControl typesDuring tool movement notin mesh

During tool movementin mesh

During tool movementin mesh

During tool movementin mesh

DrillSpotwelding

Rotation (cylindrical)Milling machines(parallel to axis)

Rotation (conical)Milling machines(any straight lines

RotationMilling machinesflame cutting(any line)Path interpolator (according to 2

order or higher degree equation

Path interpolator no necessary

Path interpolator no necessary

with gear switching orlinear interpolar

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0566 -0

Field of application for control with flexible handling facilities

Ranges of path control for handling and assembly

Prescribed path movement

Jerk-free movementwhile carrying heavy

loads

Synchronization with moving object

Following straight lines with non carte-sian handling facilities

Work task Workpiece Peripheral equipment Kinematics

Influence of

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0439 - 0

Linear interpolation Circular interpolation

Parabolic interpolation

Interpolation method

Approximation of a trajectoryby linear interpolation

28

Page 29: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0413 - 0

Hierarchy of control

Info

rmat

ion

capa

city

Computer integrated Manufacturing

Direct Numerical Control

Computerized Numerical Control

Numerical Control

Beginn Abschnitt 4 „Steuerungen“

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1519 - 0

Present implementation of the control tasks

SimulationHuman as a strategist

Path generationCoordinate transformation

individual automaticcontrollers

single drivesrobot members

Internal measurement Control

+ p(t)soll

++

x(t)soll

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2008 - 7

Direct programming Indirect programmingReal robot system and system

environment necessaryComputer model of robot system and model of the system arenecessary

Manufacturing equipment is not available during programming

Programming in production planning department

Tests of the user programat the real system

Tests of the program throughsimulation

Limited accesses to operational informational systems

Full integration of operational information systems possible

Quality of the user programs dependson the experience of the programmer

Support of the programmer by intelligent computer-based aids

FEATURES OF DIRECT AND INDIRECT PROGRAMMING PROCEDURES

29

Page 30: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0520 - 0

Control types

point-to-point control

simple straightcut control

straight cutcontrol

expanded

continuouspath control

tool applicationproblemControl typesDuring tool movement notin mesh

During tool movementin mesh

During tool movementin mesh

During tool movementin mesh

DrillSpotwelding

Rotation (cylindrical)Milling machines(parallel to axis)

Rotation (conical)Milling machines(any straight lines

RotationMilling machinesflame cutting(any line)Path interpolator (according to 2

order or higher degree equation

Path interpolator no necessary

Path interpolator no necessary

with gear switching orlinear interpolar

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0525 -0

Types of programming classified for application

Memory content Function

Manualprogramming

Teach-in

Programming withprogramminglanguages

102

104

>106

handling

Welding, painting,coating, palletizing

assembling

object

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0524 - 0

programming

information input

control with

memorycomparison between desired

and actualamplifiers

gripper

driving mechanism with

drive

sensor

position measuring system

Internal and external data processing

external data processing

internal data processing

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0517 - 0

Control structure of industrial robot

Control panelReadout

Memory

Power modulExcitation of drivers

Input/Output

Information processingSequence control

Displacement andvelocity measurement

system

Actuators

Sensoricsperipheral devicesother controls

30

Page 31: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0521 - 0

overview of robotic motion measuring systems

motion measuringsystem:

digital-incremental(rotational)

functioning

electromechanical : collector with brushes

photoelectrical - grid scanned by photodiode

inductive - index plates of permanentmagnet with Hall generator

synchro transmitters

digital-incremental(translational)

photoelectrical - glass rod with photodiode

linear alarm unit

application as

digital-absolute(rotational)

analog-absolute(rotational)

rotary potentiometer, inductive synchro transmitter spiral potentiometer

electro mechanical - coded disc with brushesphotoelectrical- coded glass disc with photodiodeinductive – index plates of permanent

magnet with Hall generator

optical angle coderinductive angle coder

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0439 - 0

Linear interpolation Circular interpolation

Parabolic interpolation

Interpolation method

Approximation of a trajectoryby linear interpolation

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0413 - 0

Hierarchy of control

Info

rmat

ion

capa

city

Computer integrated Manufacturing

Direct Numerical Control

Computerized Numerical Control

Numerical Control

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0410 - 0

Functions of a DNC system

Bas

ic fu

nctio

nsEx

tend

ed fu

nctio

ns

NC program management

NC data distribution

NC data correction

NC data creation

Data input and processing

Control functions for the flow of materials

Subfunctions of the manufacturing control

31

Page 32: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0517 - 0

Control structure of industrial robot

Control panelReadout

Memory

Power modulExcitation of drivers

Input/Output

Information processingSequence control

Displacement andvelocity measurement

system

Actuators

Sensoricsperipheral devicesother controls

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 9 - 2090 - 2

Declaration of section

Program name Mandatory

alternative

alternative

Variable declaration

Value instruction

Mandatory....Movement instruction.... ....

Comment line

Comment line

Statement part

;Mainprogram startMain program

;Main program end

Comment lineSubroutine

Statement part

alternative

;subroutine startUP <Name> (Parameter)Variable declarationValue instruction

....Movement instruction

....

RSPRUNG

Program end END Mandatory

Stop

Program structure of BAPS

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0369 -0

Micro computer

Computation

RAMInput/output

Control

MPU Microprocessor

CPU Central processing unit

MC Micro computer

Control

Micro processor

Accumulator Statussignal

Com-putation

Command-decoder

RegB

RegD

RegC

RegE

Program-counter

internal data bus

External data bus

Reset Control signals Adress bus

Construction Information flow

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0409 -0

Block diagram of MPS085 control (Jungheinrich system)

CentralComputer

12K Eprom4K RAM

Memory16K Eprom

4/8/16 K RAMInterface Interface 32 digital

Input32 digital

output8 analogIn/Output

AxesComputer

4K Eprom0,5K RAM

AxesComputer

4K Eprom0,5K RAM

AxesComputer

4K Eprom0,5K RAM

AxesComputer

4K Eprom0,5K RAM

AxesComputer

4K Eprom0,5K RAM

AxesComputer

4K Eprom0,5K RAM

4 QuadrantPower

Controller

4 QuadrantPower

Controller

4 QuadrantPower

Controller

4 QuadrantPower

Controller

4 QuadrantPower

Controller

4 QuadrantPower

Controller

power supplycomputer

220 V~

power supplycontroller

380 V~

Terminal catridge

printerManual

programmingdevice

Axes 1 Axes 2 Axes 3 Axes 4 Axes 5 Axes 6

basic axes hand axes

R M T G R M T G R M T G R M T G R M T G R M T G

32

Page 33: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1823 - 1

Classification of measuring systems

According to the measurement principle:

analog digital

absolutemeasuring

ciclicallyabsolute absolute

incremental(as relative

measurement)

in a similar physical size(as resistance test)

after the determination of the measured value:

According to the type mounting of the measuring system:

carriage

Direct-measuring

measurement embodiment

carriage

indirect-measuring

measuring spindle

measuring system

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1822 - 5

Measuring systems

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0519 - 0

Segment disk

A B

cut A-B

Segment disk

photoelectric cellsoutputsegment disk

coding lampparabolic reflector

photo transistor

lens apertureGa As Diode

code disk

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2791 - 9

Prinzip der optischen Abtastung von Strichgittern

5

4

3

2

176

1 Glasmaßstab2 Strichgitter3 Spur mit Referenzmarken4 Optik5 Lichtquelle6 Fotoelement7 Abtastplatte

Teilungsperiode

33

Page 34: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

8 - 1515- 9

Principle of the incremental angular sensor

light emitting diode

Lens

lens aperturelens aperture

photo transistor

Division Disk

Voltagesupply

amplifier andSchmitt-triggers

digitaloutput

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2792 - 0

Impulsfolgen und deren Auswertung beieinem mehrkanaligen Inkrementalgeber

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

8 - 1516 - 9

Principle pattern of a resolver

Generation of theexciter voltage

Interval timers

Recipient Converters

Phase shift

Givers Electronics

Digital signal

URUM

Time

Vol

tage

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1056 - 0

Position systems

Control unit(program)

Control unit(program

Control unit(program

Control unit(program

Performancecontrol

Performancecontrol

Attitudecontrols

Attitudecontrols

ServoAmplifier

Performancecontrol

Servo motor

Stepping motor

Stepping motor

Stepping motor

34

Page 35: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0444 - 0

Measuring systems

digital incremental measuring system

digital absolute measuring system

similar-absolute measuring system

- small manufacture expenditure

- simple comparators - not expensive- simple zero shift

- absolute measure-indicated

- simple actual value-displays

- stationary zero point- security against

measuring/ transfererrors

- simple measuring system

- simple zero point- simple comparators- absolute measuring

procedure

- no zero point- error propagation- procedure of point

of reference

- expensive- complex- trouble-prone

- A-D-converter is necessary for difficultdigital display

Advantages

Disadvantages

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0518 - 0

Control interfaces

Offline program

Factory networks

CAD

Data protection

Operation

Teach - In

Sensor technology+peripheral device

Power supply

Inputs + Outputs Measuring system

RobotControls

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1493 - 0

Programming process for Industrial Robots

Programming process for Industrial Robots

Direct programming (On-line) Indirect programming (Off-line)

- following acourse (Play-back)

- Driving to and storing of important pathpoints(Teach-in)

- Off-line programming ofprogram execution

- On-line geometry datarecording

- Automatic sensor ledprogramming

- Sensorcontrolled handGuidance

- Implicit- Explicit

- Graphicprogramming

- CAD adaptation

Learning process

Sensor led programming

Hybrid process

Programlanguages

Interactivegraph

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0523 - 0

Programming process for Industrial Robots

Programming of handling systems

Direct programming“Online”

Indirect programming“Offline”

Movement ofHandling System

Video displayinput

Problem orientedprogramming

Machine orientedprogramming

Playback Teach -in

NC-ProgramEditor

Dialog“User’s

Guidance”

e.g.DIN 66026

e.g. ROBEX

35

Page 36: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

GO

TO

Communicationinstructions

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0649 - 0

Program structure elements for IR

Geometry Instructions

FlowInstructions

Func

tions

Des

crip

tion

item

s Program structure elements

Control andmonitoringinstructions

Poin

t in

stru

ctio

ns

Path

inst

ruct

ions

Stra

ight

line

in

stru

ctio

ns

Surf

ace

and

spac

ein

stru

ctio

ns

P1

P2

y

x

z

Stop

s

Logi

cal

inst

ruct

ion

Loop

s

Sens

or

inst

ruct

ions

Inpu

t in

stru

ctio

ns

Dis

turb

and

err

orin

stru

ctio

ns

Emer

genc

y st

op

Out

put

inst

ruct

ion

Handling sequence

WRITEKNR.

RT

READKNR.

WIDTHF ?!

SENS1/OFF

SENS3/ON

STOP

Basic instructions

ET 1

BG 1

ET 2

Lage

r

M

M

Assembling SequenceBG 2

BG 3

ET 3

M

1 2 3 4

A B C0 1 010

0 11 1

YzMm>^sXYz

object

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0524 - 0

programming

information input

control with

memorycomparison between desired

and actualamplifiers

gripper

driving mechanism with

drive

sensor

position measuring system

Internal and external data processing

external data processing

internal data processing

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0567 - 0

Programming process for Industrial Robots

manualprogramming Play back Teach in Sensor led Computer

aided

Wrenches

HandleControl console

punched Tape

no computer isnecessaryhigh accuracy ispossible

quick and sampleprogrammingwithout programminglanguages

exact starting ispossibleprocedure in Cartesianscoordinate is possibleRe-programming(update) in steps is alsopossible

hardly describablepaths can be simply

programmedRow materialinaccuracies can besettled

Possible to simulatethe program off-linepartially uniformprogramming languagesimple correctionno deadlock ofthe robots

difficultre-programming

Process expertise isnecessaryCorrection onlypossible by newprogramDifficulties inOptimizationLarge storage

locally programmingstop the system

Sensor and timeare necessary for entry

Exact informationabout toolRobot and surroundingfield are necessaryoptimization locallyCounting expenditure

on-line off-line

Principle

Advantages

Disadvantages

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2228 - 3

Cross Section Distributor

Diode Plug

Plug

OutputFunction

Input: Program Step

36

Page 37: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0525 -0

Types of programming classified for application

Memory content Function

Manualprogramming

Teach-in

Programming withprogramminglanguages

102

104

>106

handling

Welding, painting,coating, palletizing

assembling

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0526 - 0

Punched card information input for IR

Com

man

d N

o.

Func

tion

1 Horizontal forward rate2 Horizontal feed rate3 vertical lifting4 vertical lifting5 rotating clockwise left6 rotating clockwise right7 close gripper8 Open gripper9 gripper turn left10 gripper turn right11 gripper stroke off12 gripper stroke on13 Intermediate deadlock forwards14 Intermediate deadlock

backwards15 End of Cycle16 Reserve17 Time 0.5 s18 Time 1 s19 Time 2 s20 Time 4 s

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1490 - 9

Teach-In Programming

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1489 - 9

Play-back-programming

Roboter Program frame

37

Page 38: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0707 - 0

Teach-In programming system

Programming hand device

Decoding Positionmemory

Path calculation

Transformation

Position input

K

+

Computer

Monitor

Keyboard

Cartesiancoordinates

Cartesiancoordinates

Robot coordinates

Auto

Teach

Position input

Teach coordinates

- -

Sensor

Tachometer

Resolver

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0657 - 9

Hand Control Panel

DisplayPKT-Point name with TI positionof the individual axltes programactively notes error messagesVelocity when driving with HGBFast -small jumpSlow - big jump1 reference point2 procedures in space coordinates3 Axis coordinates, machine coordinates4 gripper coordinates

1 transfer of the positions into the pointmemory + Fktt

2 switching to terminals with Fktt3 START operates F1-F8 off4 Fktt for transfer and switching

Operational task

Emergency Stop

Functional stateskeys for axles 1-8

Agreement keySTATUS: Position shows with the TEACHENSTOP: Program is still available, continues

after start

PKT- point name shift

Fktt = function keyTI = teach in

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0527 - 6

Program recording and replay with the teach in procedure

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2256 -6

Advantages of teach-in-procedures

Without deeper understanding for processes by the shop personnel, ownwork programs for running process can be created after a short training period;

program correction can be carried out subseqently during the programtest and require no new programming;

introduction and deletion of individual statements as well as the modificationof parameters are basic function of all considerable teach-in-systems;

collision problems can be prevented to a large extent with this way of programming site;

input of false coordinate is excluded by the derivative of the position of the robot axles.

38

Page 39: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2257 -6

Disadvantages of teach-in-procedures

In the case of small lot sizes,the proportionate programming times areeconomically no more justifiable;

programming of complicated lines and the optimization of complexprocessing steps are time-consuming processes, those presuppose a

the common programming of the pathes and of the frame program achievesin large sized user programs with conditioned branches a degree of

a separation of the movement programming and the creation of the

meaningful only in those cases if both systems are parts of an integrated system, so that no problems can occur with a subsequent program correction.

great intuition of the programmer;

complexity, wich is nearly unmanageable in most cases;

program framework, i. e. the logical program flow function is

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1498 - 0

Automatic sensor-led programming

Sensor for distanceand orientation

Conducting(Guidance) feed

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0655 - 0

Programming system

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1496 - 7

Pilot actuated hand guidance 39

Page 40: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0709 - 5

Components of an external programming system

Control

EDITORCreation of thework program

CompilerCreation of an control

independent user program

PostprocessorControl specific

user program

Data bases- Description of the handlingequipment

- Environmental description

Data bases

- Description of the control

Handling equipment

programming system

control system

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2569 - 5

Pros and cons. of external programming

- Reduction of the idle times of robot andperipheral equipment

- comfortable program preparation becauseof computer aid and higher programminglanguages

- easy alteration of programs

- good documentation possible

- Subroutine technique;program jumps possible

- easy alteration of programs

- simple inclusion of external data inputs

Advantages Disadvantages- Complex system configuration

- Missing standardized interfaces

- Problems due to variety of IR-controls

- Lacking of clearness

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0529 - 0

Arrangement of equipment with the storage of pictures

SensorIndustrial

robotcontrol

Workpiece hopperwith separation

Subsequenttreatment

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2008 - 7

Direct programming Indirect programming

Real robot system and system environment necessary

Manufacturing equipment is not available during programming

Tests of the user programat the real system

Limited accesses to operational informational systems

Quality of the user programs dependson the experience of the programmer

Computer model of robot systemand model of the system are necessary

Programming in production planning department

Tests of the program throughsimulation

Full integration of operational information systems possible

Support of the programmer by intelligent computer-based aids

Features of direct and indirect programming procedures40

Page 41: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0710 - 5

Language structure of industrial robot

Programming languages of industrial robot

Elementarymovement-oriented

Program flow-oriented

World-model-orientedJob-oriented

problem-oriented

direct movement instruction

elementary programflow functions

descriptions of movementfunctionsimple and composeddescription of program flowdescription of robotgeometrydescription of work space

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0656 - 9

Basic elements of the language BAPS

Main program program first statement of a programdeclaration end last statement of a programSubroutine UP name first statement of a programdeclaration RSPRUNG last statement of a program

go absolute movingtrough point... points without delayto point ... points exactly start

Movement shift incremental movinginstruction points without delay

points exacly startlinear linear interpolationPTP point to point proceed

WDH number MAL beginning of the repetitonRepetition with repetition number

WDH_end end of the repetition Caused statement if condition

then statement condition fulfilldelse statement condition not fulfilld

Branch instruction bransch label WAIT value retention time in 0,1 sWAIT UNTIL condition waiting for a condition to be fulfilled

Delay and stop PAUSE program stops, restart necessarilystop end of program

Definition input: X=name X,Y number of the input or outputinput/output output: y=nameValue assignment variable=value i.e. ventil =1 (valve on)

V=value velocity in mm/sVelocity/acceleration A=value acceleration in mm/s2

V_PTP = value velocity für PTP in %Arithmetic, logical +,-,*,/, und, oder, nichtand comparison <, >, <=, >=, <>, =Comment ;

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 9 - 2090 - 2

Declaration of section

Program name Mandatory

alternative

alternative

Variable declaration

Value instruction

Mandatory....Movement instruction.... ....

Comment line

Comment line

Statement part

;Mainprogram startMain program

;Main program end

Comment lineSubroutine

Statement part

alternative

;subroutine startUP <Name> (Parameter)Variable declarationValue instruction

....Movement instruction

....

RSPRUNG

Program end END Mandatory

Stop

Program structure of BAPS

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1491 - 8

BAPS programming system 41

Page 42: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1492 - 4

Assembly task

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1497 - 4

PROGRAM MONTAGEINPUT 9=TAKEN ;Binary input sensor at clamp 9=conveyorINPUT 13 = GRIPPER_ON ;Exit signal on clamp 13

DISTANCE = (0,0,100) ;Difference vector with Z=100DRIVE TO OSC_CONV ;Arm movement to the osc. conveyorGRIPPER_ON = 0 ;Close the gripperDRIVE TO OSC_CONV+DISTANCE ;Move to a position above the conveyorWHEN TAKEN = 0 THEN ;The readout on the display:

PAUSE „PART not taken“ (display text);if the pieve was not taken

DRIVE OVER DRILL+DISTANCE ;Reaching the insertion positionDRIVE LINEAR WITH V=10 TO DRILL ;Insert the pin with small velocityGRIPPER_ON = 1 ;Open the gripperWAIT 0.5 ;wait for 0.5 sec

DRIVE OVER DRILL+DISTANCE TO OSC_CONV*DISTANCEEND

Example of a program in BAPS

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0711 - 0

Interfaces for external programming systems

Compiler(processor)

Post processor

codeinterpreter

robot control

Input dataprogramming system

control system

Teach-In sensorsPeripheral device

IRDATA, VDI 2863

VDI 2864

control system

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0852 - 0

Automatic generation of a robot program from CAD data

Direct coupling

CAD System

42

Page 43: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 2380 - 4

Methodology for the programming of assembly robots

- Performances- Sequence ofoperations

- Movement patterns - Resources- Test functions- Flow ofinformation

Structuring of theassembly function

- Program design- Process logic- Control function- Communication- Modularization- Structuring of the

program flow- Coding

Determination of geometricalinformation

- Checking of thetask execution

- Collision control- Optimizationof movements- Testing of strategiesduring troubles

Testing and optimization- Space points

movements- Assembly strategies- Synchronization- Coordination- Velocities- Times

Conversion of the assembly function

User program

Specifications

Modification

Creation of user programs for assembly robots

Automatic operation

Phase 1 Phase2 Phase 3 Phase 4

Specifications Iterative processes

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2643 - 0

Collision

Collision is defined as the temporaland spatial unintentional crash

of 2 bodies, whereby at the momentof meeting at least one body has

a kinetic energy different than zero

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1060 - 0

Variables which influence collisions

Collision objects Collision pointsof time

Collision spaces

Spatial properties

Collision

Temporalbehavior

Collision causes

WER? WANN?

WO? WARUM?

Graphic visual

Visual assessment

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1059 - 0

Methods of the collision control

COLLISION CONTROL

OFFLINE ONLINE

CAD-Functions

Boolean Connection

Mathematical

Algorithms

Direct

Robot external sensor data

Indirect

Robot internal sensor data

CAD Model

CAD Model

MathematicalModel

Real environment

Simple mathe-matical model

MathematicalModel ... Selected

points

Description of environmentDescription of robots

43

Page 44: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Exact model (3rd step)

Mean model (2nd step)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1058 - 0

Methods for the collision test during off-line programming

Test method

mathematical graphic visual use of CAD functions

Rough model (1st step)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1057 - 0

Strategy for an automatic collision test

Call of the collision test

Information retrieval

Collision test,1st step

Collision ?

Collision test, 2nd step

Collision ?

Collision test, 3rd step

Collision ?

Output of theinformation about

free collision

Output of collisioninformation

Leave of the collision test

no

no

no

yes

yes

yes

Mathematical test

Simple model Simple algorithms- 1 wrapping body - Gravitation points per axle comparison

- fewer wrapping - Distance to thebody for the straight lineenvironment

Mathematical test

Mean model Mean algorithms- several wrapping - Calculation focal

body per axle straight line- some wrapping - Piercing points

body for the - Line segmentsenvironment

Graphic visual test

Exact model Exact model- CAD model in - Use of CADaccordance with auxiliary modeling by the functionsuser

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0228 - 0

Analogy of the automatic control loops of industry processes and human

Processenvironment

MachinesSensor

Information processing

Environment

LimbsSensoryperception

Brain

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 2258 - 0

Sensors

Sensor system = sensor + transducer + amplifier (+ evaluation)Problems in production, for the direct application of sensors:1. Production runs are not always 100% automizable

the remainder workstation are unsatisfactory for humans, since

2. Not sufficiently flexible devices are for automation for the order.one-sided load of humans through check or difficult assembly work.

3. The actual process,but also the peripheral mechanism do not onlyhave to be automated.

From this result 3 principal reasons for the use of sensors withassembling and handling functions:

1. Monitoring of the process variables (forces, length etc.), around processerrors if necessary promptly to detect.

2. Log (and analysing) from process variables, over from it trends´s able to derive

3. Correct the process variables and a monitoring of the correction.

44

Page 45: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0530 - 0

Subsystems of a sensor

SENSOR

- with contact- without contact

- Analog-Digital- Digital-Analog- Pulse count

- Linear- Nonlinear

- Measurement - result

Receivers Transducers Amplifiers Analysis

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0521 - 0

Overview of robotic motion measuring systems

motion measuringsystem:

digital-incremental(rotational)

functioning

electromechanical : collector with brushes

photoelectrical - grid scanned by photodiode

inductive - index plates of permanentmagnet with Hall generator

synchro transmitters

digital-incremental(translational)

photoelectrical - glass rod with photodiode

linear alarm unit

application as

digital-absolute(rotational)

analog-absolute(rotational)

rotary potentiometer, inductive synchro transmitter spiral potentiometer

electro mechanical - coded disc with brushesphotoelectrical coded glass disc with photodiodeinductive – index plates of permanent

magnet with Hall generator

optical angle coderinductive angle coder

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0672 - 0

Modulation procedure

Carrier pulse Harmonious carrier

(Primary)(Signal function)

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0412 - 0

Properties of the different signal representation methods

Amplitude analog Digital Frequency-analogMeasured signal is transferredto an amplitude valueDisturbances of the measuredsignal by electricalinterferenceMultiplexer, filter, sample-hold-circuit and analog/digitalconverter requiredCycle-time of the sensor-sampling will be stronglyinfluenced by the multiplexersample-hold-circuit and A/D-converterParallel instrumentation ofmultiple signal-channels isvery expensiveCentral multiplexer and A/D-converter diminish thereliability of the system

Measured value is transferredto a data-work of a certainlengthDisturbance-free transfer viadata-protection using suitablecodesGreater bandwidth neededMeasured signal in computer-compatible form availableDigitally optimized systemconceptEasier connection of alldigital system components tothe computer via busProcess disturbances of thebus lead to failure of thecomplete systemRestrictions of the dynamicproperties

Measured value will beconverted into a frequencyand/or period-length of pulse-durationPrecise and non-sensitive todisturbance signal transferOffset voltages and –flowscause no loss of accuracySimple and cheap digitizingusing a counter circuitThere can be afrequency/digital converterassigned to every measuringchannelLow-cost instrumentation ofmultiple parallel signal-channelsExtended reliabilityRestricted dynamic properties

45

Page 46: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0584 - 0

Distance-measuring systems for Industrial Robots

Sensors

Optical

Acoustical

Inductive

Capacitive

Tactile

Distance range Sensibility against malfunction

Distance in mm

Tem

pera

ture

Ligh

ting

Dust

Noise

Vibr

ation

Elec

trica

l fiel

ds

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0533 - 0

Possibilities of applications for Industrial Robots with tactile sensors

Sensor without contact and tactile sensors

Recognition andcorrection of

position errors

- Assembly (putting partstogether, joining)- Finding of bore holes- Recognition ofsurfaces and edges- Positioning of thegripper to the object- Getting a workpieceout of the bunker-storage

Carrying out ofsimple movements

- Inserting of a pininto a bore hole

- Latching cranksand joints

- Adjustment- Testing the

movability ofassembled modules

Recognition ofsequence-disturbances

- Collisions- Overloading- Errors of the

contour of theworkpiece

Making programming easier

- Tracking-controlfor following edges

- Force-reduction bypath-programming

- Gripping-forcecontrol

Recognition and classification of workpieces

- Recognition of3-dimensionalpatterns

- Organize- Qualification of weight

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0532 - 0

constructions of tactile sensors

tactile sensors

measuring of single variables(force, moment, route,...)

strain gages piezo-sensorpneumatic converters,capacitive sensorspotentiometers

automated insertion- andassembly processes

position-recognition in automatedmanufacturing and assembly installations

pattern recognition

analog position- andcomposition measuring

2-dimensional

pressure-sensitiveplastics-matrix

inductive pin-matrix

inductive sensor-pinsembedded threads

3-dimensional

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0624 - 0

Schematic insertion process 46

Page 47: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0534 - 0

Passive-insertion support

Gripperconnection

Workpiece

RCC-rotationalpart

Translationalpart

Rotational part

Remotecenter

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0535 - 9

6-Components sensor for robotarms

x

yz

Px+

Qy+

Qx+Qy-

Py-

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 1890 - 1

MOS - Condensator

metal (transparent) layer (gate)p-

type

silic

on

SiO2

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0536 - 0

Operating modes of glass-fiber conductors

Principle of glass-fiber

Transmitted light

Reflex

47

Page 48: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0537 - 0

localization of cast burr

Signal

fiber-glass cross-sectionalarea converter

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0538 - 0

Tube of a TV camera

converter layer

transparentfront plate

(signal plate)focusing coil

steering coil

electronic beam

cathodepicture signal

scene

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0258 - 0

object detection with a semiconductor - diodes row

diodes row

conveyor belt

movement direction

workpiece

photo electrode

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0539 - 0

CCD - picture sensor

transfer

integration

transfer electrode

photo electrode transfer electrode

sensor range transport range

sensor range transport range

48

Page 49: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 1891 - 0

Potential sequence by 3-phase CCD

G1 G2 G3 G1 G2 G3

p-ty

pe si

licon

SiO

2

L1L2L3

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 2- 1072- 0

Information processing in CCD

Column A B C D

Row

1

2

3

4

Horizontal analog transfer register

P=Photosite Vertical analog transfer register

P V P V P V P V

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 2- 0702- 0

Luminosity (light) signal digitilization of an image line

tT0

U

1111111011011100101110101001100001110110010101000011001000010000

bright

dark

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

2 - 0540 - 0

Rotation-independent feature criteria

single point center of gravity length contour form contour

surfacesilhouette

number ofsurface hole

moment ofinertia

circumscriptionrectangle

49

Page 50: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 2- 0701- 0

Polar check for workpiece identification

Workpiece

Center of gravity ofthe surfaceAngle of reference

Angular sequence

Measurement circle

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0703 - 6

Computer components of an image preprocessing system

pre-processing

picturestorage

micro-processor

arithmetic-processor

ROM/RAMprogram anddata memory

Interface

camera

terminal

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH

9 - 0626 - 4

optical workpiece identification sensors

Scene for workpiece identification sensorsrecognition only with existing systems

more workpieces in imagearea trial partly in contact

more workpieces in imagearea trial partly not in contact

one workpiece in image area

camera

camera

camera

recognition so far only in trial partly possible

workpieces in disorder and oneupon the other in the memory

one layer workpieces in trial partlyupon the other

camera

camera

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 2- 1859- 0

Triangulation process

Measuring amplifier PSI

Lase

r lig

ht so

urce

Row of diodes

Optic

MR - measurement regionMD - Measurement distance

MR

MD

50

Page 51: Robotik Bilder Rall - elopez.fime.uanl.mxelopez.fime.uanl.mx/@materias/732/Robotik Bilder Rall.pdf · Lecture Robotics Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. López CONTENTS •

Prof. Dr.-Ing. K. Rall & Prof. Dr.-Ing. E. LópezTUHH 2- 1860- 0

Control of securing with laser scanner

PSI

Lasermeasuring

head

Measurement region

Wantedpattern

Read in outline

Ring gap

Montage holeMontage hole

51