40
Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Embed Size (px)

Citation preview

Page 1: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 1

710.088 ROBOT VISION 2VO 1KU

Matthias Rüther

Page 2: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 2

Administrative Things

VO: Tuesday 14:30-16:00 HS i11

Strongly coupled with KU!!

www.icg.tu-graz.ac.at/courses

Exam: Written Exam Oral Exam if Requested

KU: Groups of three students Each group does the same project Effort: ~1week per student

Page 3: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 3

Time Table

Page 4: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 4

Literature

• Sciavicco, L., Siciliano, B., Modelling and Control of Robot Manipulators 2nd Ed., Springer, 2000

• Sonka M., Hlavac V., Boyle Image Processing, Analysis and Machine Vision, Chapman Hall, 1998

• Hartley R., Zissermann A., Multiple View Geometry in Computer Vision, Cambridge, 2001.

Page 5: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 5

Student Project

Solve a Computer Vision Problem– From Hardware selection over 3D Measurement to Live Test

Page 6: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 6

Goal

Measure 3D Geometry of Electrical Discharges

Impact Area

C1

C2 C3

C4

Page 7: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 7

Tasks

Workpackage 1: select hardware, acquire images, segment flash

(xi, yi)

Page 8: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 8

Tasks

Workpackage 2: camera calibration and pose estimation

Impact Area

C1

C2 C3

C4

RW, TW

R21, T21

R31, T31

R41, T41

K1

K2K3

K4

Page 9: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 9

Tasks

Workpackage 3: correspondence & triangulation

(xi, yi) (xj, yj)

3D

Page 10: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 10

Organization

The Project is divided in three workpackages which have to be delivered during the term:– 30.3.2007

– 1.6. 2007

– 22.6. 2007

Each group (3 students) does all three workpackages.

The workpackages build on top of the previous ones. After submission, the workpackages are published.

Each group is allowed to use previous workpackages of any other group.

Page 11: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 11

Example

WP1:

WP2:

WP3:

Group 1 Group 2 … Group n

NO Collaboration during workpackage

Group 1 Group 2 … Group n

Group 1 Group 2 … Group n

YES

Each group may reuse previous workpackages of other groups

Page 12: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 12

Rules

No collaboration between groups during a workpackage. Copying groups are removed from the KU.

Every group member is held responsible for every task in every workpackage.

Code reuse has no influence on the grade.

Each group must deliver at least two workpackages.

A “Sehr Gut” on the Project gives a 25% Bonus on the Lecture exam on 3.6.2007.

Page 13: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 13

Robotics

What is a robot?"A reprogrammable, multifunctional manipulator designed to move

material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks"

Robot Institute of America, 1979

… in a three-dimensional environment.

Industrial– Mostly automatic manipulation of rigid parts with well-known shape in a

specially prepared environment.

Medical– Mostly semi-automatic manipulation of deformable objects in a

naturally created, space limited environment.

Field Robotics– Autonomous control and navigation of a mobile vehicle in an arbitrary

environment.

Page 14: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 14

Experimental/Industrial/Commercial Robots

Page 15: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 15

Industrial Robots

Page 16: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 16

Challenging Environments

Page 17: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 17

Service and Assistance

Page 18: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 18

FRIEND Project

Page 19: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 19

Robot vs Human

Robot Advantages:

– Strength

– Accuracy

– Speed

– Does not tire

– Does repetitive tasks

– Can Measure

Human advantages:

– Intelligence

– Flexibility

– Adaptability

– Skill

– Can Learn

– Can Estimate

Page 20: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 20

Robotics: Goals and Applications

Goal: combine robot and human abilities.

Applications: – Automation (Production)

– Inspection (Quality control)

– Remote Sensing (Mapping)

– Man-Machine interaction („Cobot“)

– Robot Companion (Physically challenged people)

– See [Brady, M. et. al. (eds). „Robot Motion: Planning and Control“]

Page 21: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 21

Statistics

Yearly installations of industrial robots, 2003-2004 and forecast for 2005-2008

Page 22: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 22

Statistics

Estimated operational stock of industrial robots 2003-2004 and forecast for 2005-2008

Page 23: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 23

Statistics

Number of robots per 10,000 production workers in the motor vehicle industry 2002 and 2004

Page 24: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 24

Statistics

Service robots for professional use. Stock at the end of 2004 and projected installations in 2005-2008

Page 25: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 25

Statistics

Service robots for personal and domestic use. Stock and value of stock at the end of 2004 and projected installations in 2005 -2008

Page 26: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 26

What can Computer Vision do for Robotics?

Accurate Robot-Object Positioning

Keeping Relative Position under Movement

Visualization / Teaching / Telerobotics

Performing measurements

Object Recognition (see LV „Bildverarbeitung u. Mustererkennung“, „Bildverstehen“, „AK Computer Vision“)

Registration

Visual Servoing

Page 27: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 27

Computer Vision

What is Computer Vision?

"Computer Vision describes the automatic deduction of the structure and the properties of a (possible dynamic) three-dimensional world from either a single or multiple two-dimensional images of the world" [Nalva VS, "A Guided Tour of Computer Vision"]

Measurement– Measure shape and material properties in a 3D environment. Accuracy

is important.

Recognition– Cognitive systems interpret a 3D environment (object classification,

categorization). Systems are allowed to fail to a certain extent (similar to humans).

Navigation– Navigation Systems orient themselves in a 3D environment.

Robustness and time are important.

Page 28: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 28

Shape from Stereo

Page 29: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 29

Shape from Stereo

Page 30: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 30

Shape from Focus

Page 31: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 31

Shape from Structured Light

Structured Light Sensor

                                                                             

                                                             

                                                         

Figures from PRIP, TU Vienna

Page 32: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 32

Shape from Shading

Page 33: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 33

Navigation

SLAM: Simultaneous Localization and Mapping. – Where am I on my map?

– If the place is unknown, build a new map, try to merge it with the original map.

Visual Odometry: calculate the relative motion of the camera between two frames. Summing up the motion gives the camera path. Error propagation!

Visual Servoing: move to / maintain a relative position between robot end effector and an object.

Tracking: continuously measure the position of an object within the sensor coordinate frame.

Page 34: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 34

SLAM

Mapping:

Page 35: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 35

SLAM

The final map:

Page 36: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 36

SLAM

Navigation:

Page 37: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 37

Visual Odometry

Page 38: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 38

Visual Servoing

Page 39: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 39

Tracking

Page 40: Robot Vision SS 2007 Matthias Rüther 1 710.088 ROBOT VISION 2VO 1KU Matthias Rüther

Robot Vision SS 2007 Matthias Rüther 40

Registration

Registration of CAD models to scene features:

Figures from P.Wunsch: Registration of CAD-Models to Images by Iterative Inverse Perspective Matching