28
1 Robo$que miniature et collabora$ve pour assemblage ultra précis Philippe Lutz AS2M/FEMTO-ST 1 2016 La robotique dans l’Usine du Futur - 9 juin 2016 – CNRS - Paris

Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

1

Robo$queminiatureetcollabora$vepourassemblageultraprécis

PhilippeLutzAS2M/FEMTO-ST

1

2016

La robotique dans l’Usine du Futur - 9 juin 2016 – CNRS - Paris

Page 2: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

2

FEMTO-ST

FEMTO-ST - CNRS institute, Besançon, France A wide range of technical competencies in ENGINEERING SCIENCES •  A MULTIDISCIPLINARY research institute •  A high level MICROFABRICATION TECHNOLOGY facility •  A culture of INNOVATION : from basic research to industrial partnership

Automation and Robotics department Members: 26 associate, full-professors or CNRS scientists, 9 engineers and 2 administrative staff 33 PhD students, 6 post-docs, and about 20 MSc students. Budget: Indicative annual consolidated budget: 3,3 M€ /year included 1,4 M€ /year on contracts Publications: 35 articles and 45 communications in conf. each year

Exploit dynamics in

micro-nanoscale

Improve

dexterity of systems

Improve

intelligence of systems

Prognostics

Robotics

Automation

Mechatronics

Artificial Intelligence

In-vitro robotics

Micromechatronics

Nanorobotics Biomedical microrobots

Health management

Robotic micro-assembly

Robotic nanomanipulation

Non-linear control

Microsystems design

Micro-nano-handling

Lifetime prediction

Microactuators

Smart systems

Hybrid microsystems

Cell sorting

Microsurgery

High precision

Predictive maintenance Intelligent systems

Nanodevices

Page 3: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

3

Scien<ficchallengesBackground:automa<on,robo<cs,mechatronics,ar<ficalintelligence

Interna0onalposi0onningOneofthelargestteaminmicrorobo<csinEuropeRecognisedworksonPronositc&HealthManagementattheinterna<onallevel

Ac$vi$es:AdvancedcontrolNoncontactµmanipula<onPercep<ondynamics

Exploitthemicro-nanoscaledynamicbehaviours

Improvemicrorobotdexterity

Improveintelligenceofsystems

Ac$vi$es:MicrohandlingdexterityMicroassemblyoprera<onsSurgicalmicrorobots

Ac$vi$es:Dataanalysis&clusteringPronos<c&HealthmanagementMaintenanceop<misa<on

Page 4: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

4

… and also FEMTO-ST facilities including 800m2 clean rooms for MEMS fabrication and characterisation

TechnicalplaUormsandequipmentsµROBOTEX platform (sci. instrumentation for µ-nanorobotics) - 2 electronic microscopes - SEM & SEM–FIB (focused ion beam) - 1 environemental room (temperature and humidity control) - 3 interferometers and several high precision position sensors - 2 micro-nano-force measurement equipments - 2 home-made micromanipulation robots (SAMMI-PRONOMIA) - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

Intelligent Systems platform (sci. instrumentation for prognostics) Equipements for testing bearing aging, cuting tools aging, fuell cells aging, MEMS aging…

4

Page 5: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

5

Challengesforminiaturerobo<cs

Page 6: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

6

Robo<csandscaleeffect

EPFL

Evolution of the robotic joints

- 1961 : the first robot ‘UNIMATE’ launched in General Motors

- 80’s : development of compliant joint to improve precision

Throughput and velocity growing impact of robot inertia when the object size reduces:

type robotmass Objectmass ra<o

automobile 600kg 30kg 20

Micro-electronics 10kg 5g 2000

Micro-assembly 100g 5pg 2.1013

Inertia of the robots reduces the throughput in micro-assembly

Page 7: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

77

•  Nouvellegénéra<ondemicrorobotscompactsetintégrés

Systèmesmicromécatroniques:Approcheparmicro-assemblageetop<queintégrée

Page 8: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

8

Proposedapproaches

Objectives - reach huge throughput in pick-and-place µ-operations (100Hz to 1kHZ) - develop a new microscale paradigm:

« assemble smaller to assemble cheaper »

Proposedapproach-Robo<csolu<onisveryinteres<ngwhenhumancan’tact-  AssociateHumanandrobottogetdexterity,accessibilityandprecision-  Designmicrobottoactinthe«microworld»

- Dexterous, precise and smart microhandling - principle: manipulation using multifingered gripper - advantages: local rotation of the object, high blocking force - challenge: develop handling strategies available in microscale

- Non contact manipulation - principle: exploitation de forces à distance - advantages: no mechanical interia of the power transmission - challenge: high speed control and 3D positionning

Possible architectures

Page 9: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

9

Dexterous,preciseandsmartmicrohandling

Page 10: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

10

Dexterousetprecisemicromanipula<on

Why developing dexterous micromanipulation ? •  Micro-assembly plays an important role in the

development of new technologies due to theminiaturiza<onofsystemsandcomponents

•  Fields of applica<ons are very large such as health,defenseandtelecommunica<on

•  Most of the micro-assembly are done by hand ortele-operated

•  Exis<ngmicro-manipulators lackof speed,flexibility,

andautonomy

Page 11: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

11

Why dexterous micromanipulation are problematic ? •  Precise rota<ons are difficult to perform at

microscale

•  Miniaturize the robo<carms fromthemacroscale isnot a feasible solu<on because of backlash andeccentricity

•  Adhesionphenomenaarepreponderantthusobjectss<cktoeachother

Developing specific techniques is required

Dexterousetprecisemicromanipula<on

Page 12: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

12

Automa0cmicro-assemblybasedonvision Objective: -  Automating complex micro-assembly tasks -  Control the final position of an object based on vision

Mainresults:Automatedassemblysuccessfullyperformed

Method: -  CAD based model tracking -  Streoscopic feedback

Page 13: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

13

Tac<lemicrogripper

•  Displacement resolution: nm range •  Displacement range: 100 µm

•  Dynamics of the actuator: 1 kHz

•  Sensor resolution: 100 nN •  Sensor range: 2mN

•  Dynamics of the sensor: 8.52 kHz

TSFM performances

Piezoelectric actuator

Piezoresistive force sensor

Page 14: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

14

AutomatedMicroassemblybasedonforce

Robo<cmicro-assemblyusing2DOFForcebasedcontrol

Page 15: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

15

Robo<cmicroassemblyandforcecontrol

Principle:forcecontrolforassistedassembly

Page 16: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

16

DexterousMicromanipula<on

How to perform autonomous dexterous micromanipulation ?

•  Developingamicro-handsystem

•  Using in-hand manipula<on which take advantageofaccuratemicro-posi<oner

•  Developing specific micromanipula<on strategiesthankstoadhesionphenomena

Trajectories for dexterous micromanipulation with or without adhesion

Page 17: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

17

DexterousMicromanipula<on

Example of dexterous micromanipulation without using adhesion:

Example of dexterous micromanipulation using adhesion:

Page 18: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

18

Nanoscalerobo<cassembly

Page 19: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

19

Nano-assemblyinscanningelectronicmicroscope

2realhighprecisionrobotsinaSEM-FIB

Page 20: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

20

Nanoscaleassemblies

Page 21: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

21

Conclusion:enhancerobo<cperformanceswithcollabora<vestrategieswithhuman

-  Use the microrobot dexterity -  Automatized when and where it is necessary -  User-friendly HMI interface to have a very well adapted

feedback coupling

•  Robot to help augmented human operator to increase his precision and hability

-  Smart gripping system (4 DoF instrumentized gripper) -  Haptic interface with high fidelity, stability and transparency -  Bilateral control with different kind of control modes -  Virtual reality system -  Acceptability by the users

•  Scientific challenges for a new collaborative microrobotic platform

Page 22: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

2222

PRODUCTSANDSERVICES

Extremerobo<cmicromanipula<onforhightechnologyapplica<ons

Page 23: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

23

Thecompany 23

PERCIPIOROBOTICSdesigns,buildsandsellssmartrobo<csystemsfor:

-Cobo<cmicro-assembly-Helpinextrememicromanipula<on-Automatedmicromanipula<on-Automatedmicro-assembly

Femto-STIns<tute’sspinofffoundedin2011:

-15yearsofknow-howonworldclassresearch-Supportfromfrenchinnova<onagencies-ValuableIPontechnologiesandsoiware

Teamof8engineersandPhD,4techniciansinmechanics,microtechnics,cleanroomfabrica<on,soiwaredesignandrobo<cs.

Page 24: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

24

CoreProducts 24

•  Highestflexibility•  Highaccuracy(50xTP80fromStaubli)•  Easy-to-use,plug-and-produce•  Automa<onready

Robo$cgripper,handlingpartsfrom5µmto5mminsizewith1µmaccuracy

Embbededhighprecisionrobotintabletopmachineformicro-assembly

•  Principleoftweezers•  Highaccuracy(100xmanualtweezers)•  Highstroke(10xthanbestcompe<tor)

Page 25: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

25

CoreTechnology 25

•  Piezoelectricbidirec<onalbenders(patented)•  Integratedinnovatedmagne<cposi<onsensors(patented)•  Fast-mountend-effectorswithwiderangeofshape(patented)

Page 26: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

26

Chronogrip 26

Easy-to-use,tabletophighaccuraterobotformicrohandlingandmicro-assembly

Page 27: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

27

CoreAc0vity 27

FromR&Dprojecttosystemdesign&produc<on

Processupgrade

Micro-assembly

Customer’sapplica<on

Luxurywatchindustry Lab-on-chip

Op$calm

icro-systems

Complexpackaging

Page 28: Robo$que miniature et collabora$ve pour assemblage ultra ... · - 6 real-time control boards and several acquisition boards - 3 high speed cameras and several cameras or microscopes…

28

KnowhowandR&Dservices 28

•  10yearsofunderstandingmicrohandlinginnumerousapplica<ondomains•  Widerangeofdesignsandprinciplesmasteredtoperformmicro-assembly

100µmproteincrystal25µmglasssphere

Watchcomponentwith0,5mmshaL

7µmcarbonfiber

40µmsiliconpart

•  Analyzeobjectshandlingprocessaspartofaproduc<onflow•  Designoradaptmicro-assemblyfrommanualtorobo<zedprocess