18
Risk Assessment Codes: Problem or Solution? Tom Pfi’er

Risk Assessment Codes: Problem or Solution? · What Do RACs Do? PURPOSES » Classifyindividualhazardintopredefinedbinsby$ severityandprobability. » Definethresholdsforriskacceptance

Embed Size (px)

Citation preview

Risk Assessment Codes: Problem or Solution? Tom  Pfi'er

T-­‐‑14-­‐‑00100  |  2

“I  abhor  the  use  of  RACs  and  even  worse,  the  misuse  of  RACs.  But  until  we  come  up  with  something  beIer,  it  is  the  best  thing  we  have.” ~ Pat  Clemens  Systems  Safety  Society  Convention,  2006

» It  is  time  for  us  to  move  to  beIer  tools.

Summary

T-­‐‑14-­‐‑00100  |  3

Guidance  in  Developing  Mishap  Risk  Assessment  Matrices All  systems  have  unique  risks.  A  mishap  risk  assessment  matrix  will  be  used  to  characterize  these  risks.  A  pre-­‐‑existing  matrix  may  be  used  or  a  uniquely  tailored  matrix  may  be  developed.  In  developing  and  tailoring  the  risk  matrix,  these  elements  must  be  considered: a.  Tailor  mishap  risk  assessment  matrices  to  each  system  or  class  of  

systems  based  on  the  expected  range  of  severity  of  potential  mishaps  and  the  range  of  probability  or  frequency  of  these  mishaps.

b.  Orient  the  severity  and  probability  (or  frequency)  axes  so  that  one  axis  increases  upward  and  the  other  increases  to  the  right  in  accordance  with  the  Cartesian  coordinate  system.

c.  Use  logarithmic  scales  on  each  axis  with  logical  and  proportional  ranges  for  mishap  severity  categories  and  mishap  probability  categories.

d.  Assign  the  four  levels  of  risk  acceptance  authority  (high,  serious,  medium,  low)  to  each  cell  of  the  matrix.

Desired Features of RAC

T-­‐‑14-­‐‑00100  |  4

What Do RACs Do?

PURPOSES »  Classify  individual  hazard  into  predefined  bins  by  severity  and  probability.

» Define  thresholds  for  risk  acceptance. »  Education:  communicate  risk  concept  and  expected  risks  from  individual  hazards.

T-­‐‑14-­‐‑00100  |  5

Purpose 1 Classify Hazards by Severity and Probability

PRO » Helps  point  toward    needed  mitigations

»  Educational

CON » Highly  subjective » Highly  granular    (typical  range  of  risk  is    factor  of  100  –  10,000)  

» Hazards  can  be  defined  in  a  way  to  alter  the  classification

T-­‐‑14-­‐‑00100  |  6

Purpose 2 Define Risk Acceptance Thresholds for Individual Hazards

PRO »  Somewhat  educational    (gives  decision  maker    notion  of  risk)

» Gives  agency  evidence  of  informed  decision  process

CON » Does  not  consider  correct  metric  (total  risk)

» Highly  granular  (typical  range  is  factor    of  100  –  10,000  in  risk)

»  Thresholds  move  in  directions  of  probability  or  severity,  not  risk

T-­‐‑14-­‐‑00100  |  7

Purpose 3 Education

PRO »  Identifies  and  categorizes  components  of  risk

»  Some  use  Cartesian  Coordinates  

» Gives  notion  of  individual  risk  level

CON »  Very  granular » Does  not  focus  on  risk » Does  not  address  how  safe  is  safe  enough

» One  size  does  not  fit  all

T-­‐‑14-­‐‑00100  |  8

Mishap Risk Assessment Matrix

T-­‐‑14-­‐‑00100  |  9

Generic Subjective Mishap Risk Assessment Matrix

Desirable Features •  Impossible  Category •  Cartesian  Coordinates •  Qualitative

T-­‐‑14-­‐‑00100  |  10

Multi-Purpose Aircraft Family Mishap Risk Assessment Matrix

Desirable Features • Multiple  Systems •  Log  Scales

•  Cartesian  Coordinates •  Quantitative

T-­‐‑14-­‐‑00100  |  11

Single Order of Magnitude Resolution Mishap Risk Assessment Matrix

Desirable Features •  Cartesian  Coordinates •  Order  of  Magnitude  Steps  (log  scale)

• Multiple  Measures •  Quantitative

T-­‐‑14-­‐‑00100  |  12

Half Order of Magnitude Resolution Mishap Risk Assessment Matrix

Desirable Features • Multiple  Measures •  Log  Scale  (1/2  Order  of  Magnitude)

•  Cartesian  Coordinates •  Requires  Calculations

T-­‐‑14-­‐‑00100  |  13

Total System Risk Assessment Criteria

Desirable Features •  Requires  Calculations •  Risk  is  Measure •  Cartesian  Coordinates

T-­‐‑14-­‐‑00100  |  14

Estimating Total System Risk is Easy

» A  conservative  estimate  can  be  defined  by  simple  addition. »  In  most  cases,  hazards  can  be  defined  to  combine  dependent  hazards  as  a  single  hazard,  thus  eliminating  dependencies.

» Detailed  methodology  is  contained  in  the  Risk  Summing  Guidebook.

Hazard Name Undesired Consequence Probability Risk (r) Reduction

Action Final Risk (r)

1

2

3

n

Total System Risk (R)

T-­‐‑14-­‐‑00100  |  15

IDEA #6: Total system risk is the preferred metric

n321

ni

1iiT rrrrrR ++++=≈ ∑

=

=

where: RT  =  Total  Risk

)ps (rAMR i

ni

1iii

ni

1ii

ni

1iiS ×=≈ ∑∑∑

=

=

=

=

=

=

where: RT  =  Total  Risk si  =  Hazard  Severity  for  the  ith  identified  hazard pi  =  Hazard  Probability  for  the  ith  identified  hazard ri  =  Risk  posed  by  the  ith  identified  hazard Ai  =  Identity  of  the  ith  asset  under  threat Mi  =  The  ith  system  Mission  or  Operational  Phase  under  

consideration RS  =  Total  System  Risk  =  the  risk  of  all  hazards,  for  all  life  cycle  

phases  for  all  elements  in  our  system

r2

r1

r3

r4

r5

rn

r1 Total Elimination Cost:

$22,000

r4 Intolerable Risk Elimination Cost:

$437,000

CCT1-02002

r  =  Partial  risk  =  Hazard  Severity  ×  Hazard  Probability

Notional

T-­‐‑14-­‐‑00100  |  16

URS for Total System Risk for US Populations – Transportation Systems

106

100

10-6

105

104

103

102

101

10-1

10-2

10-3

10-4

10-5

◄ All Automotive ◄ All Aircraft

◄ All Rail System ◄ All Rotary Wing

◄ All Watercraft ◄ All Fixed Wing Aircraft

◄ All Motorcycles ◄ Unmanned Aircraft ◄ All Bicycles

Annual Risk of Fatality

Total Annual System ► Risk of This System

All Systems, Multiple Types with Multiple Units

◄ All Automotive ◄ All Aircraft

◄ All Rail System ◄ All Rotary Wing

◄ All Watercraft ◄ All Fixed Wing Aircraft

◄ All Motorcycles ◄ Unmanned Aircraft ◄ All Bicycles

One System Type, All Units

◄ All Automotive ◄ All Aircraft

◄ All Rail System ◄ All Rotary Wing

◄ All Watercraft ◄ All Fixed Wing Aircraft

◄ All Motorcycles ◄ Unmanned Aircraft ◄ All Bicycles

One Unit

Historical Accident Data

T-­‐‑14-­‐‑00100  |  17

IDEA #8: Total System Risks are comparable to many other types of risk

Human Injury/ Illness Environmental Damage

Cost to Repair /Recover

Schedule Delays

Mission Damage

Adverse Program Publicity

Multiple Deaths > 30 > $100M or Clean-up Recovery Unachievable

> $100M or Recovery Not Possible

Factor of 100 Overrun

All Major Goals Aborted

> $100M or Irreparable Harm

Multiple Serious Injuries/Illnesses > 10

> $30M or Clean-up Cost

> $30M Factor of 30 Overrun

Half Major Goals Aborted

> $30M to Repair

Permanent Total Disability

> $10M or Clean-up Cost

> $10M Factor of 10 Overrun

> One Major Goal Aborted

> $10M to Repair

Permanent Partial Disability

> $3M or Clean-up Cost

> $3M Factor of 3 Overrun

One Major Goal Aborted

> $3M to Repair

Protracted Hospitalization > 3 wks

> $1M or Clean-up Cost

> $1M > 100% Overrun

All Minor Goals Aborted

> $1M to Repair

> 5 Man Weeks Lost Time

> $300K or Clean-up Cost

> $300K > 30% Overrun

Half Major Goals Aborted

> $300K to Repair

> 1 Man Week Lost Time

> $100K or Clean-up Cost

> $100K > 10% Overrun

> One Minor Goal Aborted

> $100K to Repair

OSHA Recordable Injury/Illness

> $30K or Clean-up Cost

> $30K > 3% Overrun

One Minor Goal Aborted

> $30K to Repair

Nuisance Contusion/Abrasion

> $10K or Clean-up Cost

> $10K > 1% Overrun

Some Goals Crippled

> $10K to Repair

None None None None None None

2009

T-­‐‑14-­‐‑00100  |  18

“I  abhor  the  use  of  RACs  and  even  worse,  the  misuse  of  RACs.  But  until  we  come  up  with  something  beIer,  it  is  the  best  thing  we  have.” ~ Pat  Clemens  Systems  Safety  Society  Convention,  2006

» It  is  time  for  us  to  move  to  beIer  tools.

Summary