4
1174 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-19, NO. 3, MAY 1983 RING OSCILLATOR EXPERIYENT USING A HWFLE CIRCUIT N. Kotera, A. Asano, Y. Harada, and U. Kawabe Central Research Laboratory, Hitachi, Ltd. Kokubunji, Tokyo 185, Japan Abstract A ring oscillator circuit composed of Josephson junction devices has been designed and tested for the first time. Nine huffle circuits, each of which includes two Josephson junctions of an in-line gate type, are combined to form an inverter ring. The r i n g oscillator has produced oscillations with 1.8- to 5.2-11s periods using DC power sources. Inverter and f l i p - f l o pl o g i co p e r a t i o n sa r ea l s oo b s e r v e dw i t ht h e single huffle circuit. Toe operating margins were investigated and found to be reasonable as a result of comparing experimental threshold curves and a theoretical- prediction. Introduction DC-powered Josephson logic circuits have an advantage over AC-powered ones in that the powering system is simple. In addition, circuit system design is parallel with conventional semiconductor logic circuits. So far three representative DC-powered Josepqsgn circuits have been proposed: huf le circuits -, current-steering flip-flop circuit3 , and constant, voltage driven flip-flop circuits . Among these, huffle circuits match the present fabrication technology in terms of the junction current density, and have the potential for driving transmission lines with terminating resistors. Some experiments have been reported to date on such huffle circuits as current-switched Jaws-huffle circuits, and h-stage chain circuits in which cross-typejunctionsareusedastheswitchingdevice. However, magnetical1.y switched devices are superior to current switched devices when the signal isolation betweeninputsandoutputs is considered. Tn this paper, a ring oscillator circuit has been investigated for a DS-powered josephson logic circuit in which a huffle circuit with magnetically switched in-line gate junctions is adopted. The 9-stage ring oscillatoroperationhasbeenexperimentallyaffirmed and the circuit operating margin studied for flip-flop logic operation. The limits to circuit hang up, and r e s i s t i v e - l o a d d r i v a b i l i t y a r e discussed. s Circuit Design and Fabrication The huffle circuit is designed to have a pair of in-line gate junctions, GI and G2. To facilitate flip-floplogicoperationas well assingleinput NOR (inverter) operation, two control lines are provided in each junction, as Fig. 1 shows. Tn the huffle circuit, the two separate input lines, Il and 1 can be used for the flip-flop operation. The common?;nput line, IIN , in the circuit is used for inverter operation. In that case, TI and I2 y e used a s independentSiaslines to shift the operatlng points. Use of the common input line is advantageous for avoiding a hung up phenomenon in which both switching devices, GI and G2, are in the voltage state and the circuit does not respond to input signals. Constant current sources with different polarity, I (+I and Z (-), are connected at source resistors, R . GBipolar current output, I can then be obtaineg through a circuit resistor, ‘1:’ and an inductive output line, denoted L in Fig. 1. G Manuscript received November 30, 1982. ‘OUT1 L RS Fig. 1. Huffle circuit configuration including two in-line gate junctions. Parameters are: L = 57 pH, R = O.h$L, and Rs = 6 9. Fig. 2. Photomicrograph of the fabri.cated huffle circuit. Vinimum line width is 5 pm. Junction windows a r e 25 pm square. The circuit is fabricated by means of conventional Pb-alloy technology, with a minimum l i n e width of 5 pm. %e junctions are fsrrned with Pb-In-Au and Pb-Si materials. The resistor material is Au-Tn . The junction size is 23 pm square and the supergurrent density is 750 A/cm . As a consequence in-line gate junctions have a gain greater than one. The obtained resistors, R and RS, have values of 0.6 and 5 a, respectively. A photomicrograph of the fundamental huffle circuit is shown i n Fig. 2. ExperimentalResults Flip-Flop L0gi.c Operation Two junctions in the single huffle circuit had similar current-voltage and threshold characteristics, withLn a differenceofonly 5 $. Rfter switching, the junction resistance, was estimated to be 5 8. The resistance of p a i r e d ::’and R was 0.54sL. To test the flip-flop logic Operation, the input was applied alternately at I1 and 12. Input levels were set to be 0 and 7 mA wheregatecurrent was I (+) I I (-) = 3.5 mA. Flip-flop operation was @hen af9irmed by detecting the voltages, V(G1) and V(52). across a coupleofcircuitresistors, R. a s shown in Fig. 3. M)18-9464/83/0500-1174$01.00 0 1983 IEEE

Ring oscillator experiment using a huffle circuit

  • Upload
    u

  • View
    224

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Ring oscillator experiment using a huffle circuit

1174 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-19, NO. 3, MAY 1983

R I N G OSCILLATOR EXPERIYENT USING A HWFLE C I R C U I T

N. K o t e r a , A. Asano, Y. Harada, and U. Kawabe

Cen t ra l Resea rch Labora to ry , H i t ach i , L td . Kokubunji , Tokyo 185, Japan

A b s t r a c t

A r i n g o s c i l l a t o r c i r c u i t composed of Josephson j u n c t i o n d e v i c e s h a s b e e n d e s i g n e d and t e s t e d f o r t h e f i r s t t i m e . Nine h u f f l e c i r c u i t s , e a c h o f w h i c h i n c l u d e s two J o s e p h s o n j u n c t i o n s of a n i n - l i n e g a t e t y p e , a r e combined t o form an i n v e r t e r r i n g . The r i n g o s c i l l a t o r h a s p r o d u c e d o s c i l l a t i o n s w i t h 1.8- t o 5.2-11s p e r i o d s u s i n g DC power sou rces . Inve r t e r and f l i p - f l o p l o g i c o p e r a t i o n s a r e a l s o o b s e r v e d w i t h t h e s i n g l e h u f f l e c i r c u i t . Toe o p e r a t i n g m a r g i n s were i n v e s t i g a t e d and found t o b e r e a s o n a b l e a s a result o f comparing experimental threshold curves and a t h e o r e t i c a l - p r e d i c t i o n .

I n t r o d u c t i o n

DC-powered J o s e p h s o n l o g i c c i r c u i t s h a v e an advan tage ove r AC-powered o n e s i n t h a t t h e p o w e r i n g system i s s i m p l e . I n a d d i t i o n , c i r c u i t s y s t e m d e s i g n is p a r a l l e l w i t h c o n v e n t i o n a l s e m i c o n d u c t o r l o g i c c i r c u i t s .

So f a r t h r e e r e p r e s e n t a t i v e DC-powered Josepqsgn c i r c u i t s h a v e b e e n p r o p o s e d : h u f l e c i r c u i t s ’ -, c u r r e n t - s t e e r i n g f l i p - f l o p c i r c u i t 3 , and constant, v o l t a g e d r i v e n f l i p - f l o p c i rcui ts . Among t h e s e , h u f f l e c i r c u i t s m a t c h t h e p r e s e n t f a b r i c a t i o n t e c h n o l o g y i n t e r m s o f t h e j u n c t i o n c u r r e n t d e n s i t y , a n d h a v e t h e p o t e n t i a l f o r d r i v i n g t r a n s m i s s i o n l ines w i t h t e r m i n a t i n g resistors.

Some e x p e r i m e n t s h a v e b e e n r e p o r t e d t o d a t e on s u c h h u f f l e c i r c u i t s as cur ren t -swi tched Jaws-huff le c i r c u i t s , a n d h - s t a g e c h a i n c i r c u i t s i n w h i c h c r o s s - t y p e j u n c t i o n s a r e u s e d a s t h e s w i t c h i n g d e v i c e . However, m a g n e t i c a l 1 . y s w i t c h e d d e v i c e s a r e s u p e r i o r t o c u r r e n t s w i t c h e d d e v i c e s when t h e s i g n a l i s o l a t i o n be tween i npu t s and ou tpu t s i s c o n s i d e r e d .

Tn t h i s p a p e r , a r i n g o s c i l l a t o r c i r cu i t has been i n v e s t i g a t e d f o r a DS-powered j o s e p h s o n l o g i c c i r cu i t i n which a h u f f l e c i r c u i t w i t h m a g n e t i c a l l y s w i t c h e d i n - l i n e g a t e j u n c t i o n s i s adopted . The 9 - s t a g e r i n g o s c i l l a t o r o p e r a t i o n h a s b e e n e x p e r i m e n t a l l y a f f i r m e d and the c i r c u i t o p e r a t i n g m a r g i n s t u d i e d f o r f l i p - f l o p l o g i c o p e r a t i o n . The limits t o c i rcui t hang up, and r e s i s t i v e - l o a d d r i v a b i l i t y a r e d i s c u s s e d .

s

Circui t Des ign and Fabr i ca t ion

The h u f f l e c i r c u i t is d e s i g n e d t o h a v e a p a i r o f i n - l i n e g a t e j u n c t i o n s , GI and G2. To f a c i l i t a t e f l i p - f l o p l o g i c o p e r a t i o n a s well a s s i n g l e i n p u t NOR ( i n v e r t e r ) o p e r a t i o n , two c o n t r o l l i n e s a r e p r o v i d e d i n e a c h j u n c t i o n , a s F i g . 1 shows. Tn t h e h u f f l e c i r c u i t , t h e two s e p a r a t e i n p u t l i n e s , Il and 1 can be used for t h e f l i p - f l o p o p e r a t i o n . The common?;nput l i n e , IIN , i n t h e c i r c u i t i s used for i n v e r t e r o p e r a t i o n . I n t h a t c a s e , T I and I2 y e used a s i n d e p e n d e n t S i a s l i n e s t o s h i f t t h e o p e r a t l n g p o i n t s . Use of t h e common i n p u t l i n e is advantageous for a v o i d i n g a hung up phenomenon i n w h i c h b o t h s w i t c h i n g d e v i c e s , G I and G 2 , a r e i n t h e v o l t a g e s t a t e and t h e c i r c u i t d o e s n o t r e s p o n d t o i n p u t s i g n a l s . C o n s t a n t c u r r e n t s o u r c e s w i t h d i f f e r e n t p o l a r i t y , I ( + I and Z (-), a r e c o n n e c t e d a t source resistors, R . GBipolar c u r r e n t o u t p u t , I c a n t h e n b e o b t a i n e g t h r o u g h a c i r c u i t r e s i s t o r , ‘1:’ a n d a n i n d u c t i v e o u t p u t l i n e , denoted L i n F i g . 1.

G

Manuscr ip t received November 3 0 , 1982.

‘OUT1 L

R S

F i g . 1. H u f f l e c i r c u i t c o n f i g u r a t i o n i n c l u d i n g two i n - l i n e g a t e j u n c t i o n s . P a r a m e t e r s a r e : L = 57 pH, R = O.h$L, and Rs = 6 9.

F i g . 2. P h o t o m i c r o g r a p h o f t h e f a b r i . c a t e d h u f f l e c i r c u i t . Vinimum l i n e w i d t h i s 5 pm. J u n c t i o n windows a r e 25 pm square .

The c i r c u i t i s f ab r i ca t ed by means o f conven t iona l Pb-a l loy technology, wi th a minimum l i n e w i d t h o f 5 pm. %e j u n c t i o n s a r e fsrrned with Pb-In-Au and Pb-Si m a t e r i a l s . The r e s i s t o r m a t e r i a l is Au-Tn . The junction s i z e i s 23 pm s q u a r e and t h e s u p e r g u r r e n t d e n s i t y i s 750 A / c m . As a consequence i n - l i ne ga t e j u n c t i o n s h a v e a g a i n g r e a t e r t h a n o n e . The o b t a i n e d r e s i s t o r s , R and RS, h a v e v a l u e s of 0.6 and 5 a, r e s p e c t i v e l y . A photomicrograph of the fundamenta l h u f f l e c i r c u i t i s shown i n F i g . 2.

Expe r imen ta l Resu l t s

F l i p - F l o p L0gi.c O p e r a t i o n

Two j u n c t i o n s i n t h e s i n g l e h u f f l e c i r c u i t had s i m i l a r c u r r e n t - v o l t a g e and t h r e s h o l d c h a r a c t e r i s t i c s , withLn a d i f f e r e n c e o f o n l y 5 $. Rfter s w i t c h i n g , t h e j u n c t i o n r e s i s t a n c e , w a s e s t i m a t e d t o b e 5 8. The r e s i s t a n c e of p a i r e d ::’and R was 0.54sL. To test t h e f l i p - f l o p l o g i c O p e r a t i o n , t h e i n p u t was a p p l i e d a l t e r n a t e l y a t I1 and 12. I n p u t l e v e l s w e r e set t o b e 0 and 7 mA w h e r e g a t e c u r r e n t was I (+) I I (-) = 3.5 mA. F l i p - f l o p o p e r a t i o n was @hen af9irmed by d e t e c t i n g t h e v o l t a g e s , V ( G 1 ) and V(52). a c r o s s a c o u p l e o f c i r c u i t r e s i s t o r s , R . a s shown i n F i g . 3.

M)18-9464/83/0500-1174$01.00 0 1983 IEEE

Page 2: Ring oscillator experiment using a huffle circuit

1175

F i g . 3, O s c i l l o s c o p e t r a c e s h o w i n g f l i p - f l o p l o g i c o p e r a t i o n . The v o l t a g e s , V ( G 1 ) and V ( G 2 ) , swing from 0 t o t l . 9 mV i n c o r r e s p o n d e n c e w i t h t h e i n p u t c u r r e n t s , Il and 12.

w2 b o a - IO 0 IO

INPUT 1 1 ,I2 ( m A ) c3

F i g . 4 , Measured limit o f c i r c u i t o p e r a t i o n f o r i n p u t s I1 and 12, and magn i tude o f ga t e cu r ren t . The measured th reshold curve of t h e d e v i c e i s a l s o shown. The hung-up phenomenon occurs beyond IG = 3.75 mA.

I G '

The o u t p u t c u r r e n t was e s t i m a t e d t o b e 3 . 2 mA or 90 % o f t h e g a t e c u r r e n t l e v e l . The v o l t a g e 'J(G1) was 1.9 mV .

By c h a n g i n g t h e i n p u t c u r r e n t l e v e l s i n I1 and I2 s e p a r a t e l y a t a f i x e d g a t e c u r r e n t , IG, t h e o p e r a t i n g r e g i o n f o r t h e h u f f l e c i r c u i t was c l a r i f i e d i n t h e manner shown i n F i g . 4, w h e r e t h e h a t c h e d r e g i o n s a r e s u i t a b l e t o c i r c u i t o p e r a t i o n . The measured th reshold c u r v e is a l s o shown i n t h e f i g u r e , and t h i s c u r v e a g r e e s well w i t h t h e o p e r a t i n g p o i n t limit. Beyond a g a t e c u r r e n t o f 3.75 mA, b o t h d e v i c e s , G1 and G2, b e c a m e l a t c h e d i n t h e v o l t a g e s t a t e , and t h e hung up phenomenon o c c u r r e d .

The c i r c u i t g a i n , d e f i n e d a s IOUT/IIB, c a n b e d e d u c e d t o b e 1 . 5 f r o m F i g , 4 , I f I and are set a t -6.5 and' 4.5 mA, r e spec t ive ly . ' and &e i n p u t c u r r e n t a t 1 . 5 mA, t h e o u t p u t is e x p e c t e d t o b e 2.3 mA. D i s s i p a t e d power w i t h a g a t e c u r r e n t o f 2 . 5 mA is approximate ly 79 FW, where Joule l o s s due to r e s i s t a n c e s , R and RS, h a s b e e n t a k e n i n t o c o n s i d e r a t i o n .

I n v e r t e r a n d R i n g O s c i l l a t o r O p e r a t i o n s

I n v e r t e r l o g i c o p e r a t i o n was observed when t h e i n p u t c u r r e n t was a p p l i e d t o t h e c m m o n i n p u t l i n e , IIN, and when t h e DC b i a s c u r r e n t s , I1 = -7 m A and I = 3.5 mA. were s u p p l i e d t o t h e b i a s l i n e s . The D Z g a t e c u r r e n t was 3 mA. The c i r c u i t o p e r a t i o n mode is s c h e m a t i c a l l y shown i n , F i g . 5. The i n p u t c u r r e n t a p p l i e d a t ITN is c o u p l e d w i t h t h e d e v i c e s , G1 and G 2'

z t W

u t

.L'n? I I I

W O I ' ' I I I " I I

a II O I2 (3 TOTAL I N P U T

I I

l-

F i g . 5. Operation mode f o r t h e i n v e r t e r . DC b i a s c u r r e n t s , I, and 12, are s u p p l i e d and b i p o l a r i n p u t c u r r e n t is a p p l i e d a s shown b y t h i c k a n d t h i n a r r o w .

D C POWER MON I TOR (+I ?

F i g . 6. S c h e m a t i c i n t e r c o n n e c t i o n o f 9 - s t a g e r i n g o s c i l l a t o r .

s i m u l t a n e o u s l y a n d i n t h e same d i r e c t i o n , e i t h e r p a r a l l e l or a n t i p a r a l l e l t o the g a t e c u r r e n t .

When t h e i n p u t was p a r a l l e l , a s shown b y t h i c k a r r o w s i n F i g . 5, d e v i c e s G and G were r e s p e c t i v e l y i n t h e s u p e r c o n d u c t i n g and i n Zhe v o l t a g e s t a t e . R e s u l t a n t l y , t h e o u t p u t c u r r e n t was n e g a t i v e and d i r e c t e d i n w a r d t o w a r d s t h e c i r c u i t . When t h e i n p u t was a n t i - p a r a l l e l , t h e o u t p u t was p o s i t i v e and d i r e c t e d o u t w a r d . The c i r c u i t f u n c t i o n was s i n g l e - i n p u t NOR. If t h e d i r e c t i o n o f . t h e g a t e c u r r e n t was r e v e r s e d , t h e c i r c u i t f u n c t i o n became

e x p e r i m e n t a l l y a f f i r m e d i n 4- and 5 - s t a g e c h a i n s . s i n g l e - i n p u t OR. 'Chis i n v e r t e r o p e r a t i o n w a s

F o r p e r f o r m a n c e o f t h e r i n g o s c i l l a t o r o p e r a t i o n , DC b i a s c u r r e n t s w e r e i n i t i a l l y s u p p l i e d , a n d l a t e r t h e Dc g a t e c u r r e n t was i n c r e a s e d g r a d u a l l y . The s c h e m a t i c i n t e r c o n n e c t i o n o f t h e + s t a g e r i n g o s c i l l a t o r i s shown i n F i g . 6. O s c i l l a t o r o p e r a t i o n was monitored a t a c i r c u i t r e s i s t o r i n t h e p r e d e t e r m i n e d h u f f l e c i r c u i t .

3.15 mA, t h e v o l t a g e o s c i l l a t i o n shown i n F i g . G7 was When I 1 = -5 mA, I2 3.5 mA and IG(+) = I (-) =

d e t e c t e d a t t h e m o n i t o r t e r m i n a l . The o s c i l l a t i o n p e r i o d , T , was 5 n s a t a f r equency o f 187 MHz which i m p l i e s t h a t t h e c i r c u i t d e l a y , T , was around 0.27 ns . The c i r c u i t d e l a y i s simply deduced from T = T/18 f o r t h e 9 - s t a g e r i n g o s c i l l a t o r .

By chang ing t he DC b i a s c u r r e n t s , I1 and 12, a s well as t h e DC g a t e c u r r e n t , I (+) z IG(-), t h e p e r i o d , T , was var ied f rom 1 .8 to g.2 n s a s shown i n F i g . 8. The c o r r e s p o n d i n g c i r c u i t d e l a y , T , r a n g e d from 0 . 1 t o 0 .45 ns . Under a c o n s t a n t DC power

k e p t c o n s t a n t f o r more t h a n an hour . Sys temat ic s o u r c e , o s c i l l a t i o n was s t a b l e and pe r iod cou ld be

measurement was made a t t h r e e k i n d s of DC b i a s

Page 3: Ring oscillator experiment using a huffle circuit

1176

- T I M E F i g . 7. O s c i l l o s c o p e t r a c e s h o w i n g 9 - s t a g e r i n g o s c i l l a t o r o p e r a t i o n o f h u f f l e c i r c u i t . O s c i l l a t i o n per iod is 5 n s ( a b s c i s s a : 5 ns /d iv . ) .

1 0 7 ' 1 c n fn U

0.4

0.2 > a -I

0' I I I ' I 0 2.6 3.0 3.4

G A T E C U R R E N T I G ( m A )

Fig . 8. O s c i l l a t i o n p e r i o d o f r i n g o s c i l l a t o r measured a s f u n c t i o n o f DC g a t e c u r r e n t , IG. From l o w e s t c u r v e t o h i g h e s t , DC b i a s c u r r e n t s a r e : (I,, I?) = ( -7, 3.5) , ( -7 , 3 . 0 ) . and (-5, 3.5) i n u n i t s o f mB. Deduced c i r c u i t d e l a y i s a l s o shown.

c o n d i t i o n s : ( I1 ' I ) = ( -7 , 3.5). ( I1 , 12) = ( -7 , 3 . 0 ) . and (I1, 12? =. ( - 5 , 3 . 5 ) . U n i t s h e r e a r e mA. and a g r a p h i c d e s c r l p t l o n i s provided in F ig . 8. As e x p e c t e d , t h e p e r i o d d e c r e a s e d when t h e g a t e c u r r e n t was i n c r e a s e d .

The c i r c u i t d e l a y i s b a s i c a l l y d e t e r m i n e d b y t h e r a t i o L/R. S i n c e t h e o u t p u t l i n e i n d u c t a n c e , L, is d e s i g n e d t o b e 67 pH, the expec ted Va lue O f Tis around 110 p s . The e x p e r i m e n t a l r e s u l t s a g r e e f a i r l y w e l l w i t h t h i s . I n d u c t a n c e i n t h e h u f f l e l oop composed o f t w o i n - l i n e g a t e j u n c t i o n s and two c i r c u i t r e s i s t o r s was e s t i m a t e d t o b e 10 pH d u r i n g d e s i g n . The i n d u c t a n c e d o e s n o t g r e a t l y a f f e c t c i r c u i t r e s p o n s e .

Discuss ion

The Hung Up L i m i t Theory, and I ts Correspondence with Experiment

c o n s i d e r t h e c a s e where device G i s superconduct ing I n t h e h u f f l e c i r c u i t shown i n F i g . 1. l e t ' s

b u t d e v i c e G2 is i n t h e v o l t a g e s t a t e . A prob lem tha t d e v e l o p s i s whether device G i s r e t u r n e d t o the s u p e r c o n d u c t i n g s t a t e when d e v i g e GI i s s w i t c h e d i n t o t h e v o l t a g e s t a t e . A t t h e moment, t h e i n p u t f o r G has a l r eady been r emoved , and t he i npu t fo r G1 hag newly been appl ied to . It must be assumed tha t the

1

time c o n s t a n t , L/R, i s much g r e a t e r t h a n t h e d e v i c e swi tch ing time. I f t h e d e v i c e G2 f a i l s t o r e t u r n t o t h e s u p e r c o n d u c t i n g s t a t e , b o t h d e v i c e s a r e i n t h e v o l t a g e s t a t e , and t h e c i r c u i t h a s become hung up.

A t t h e i n s t a n t when d e v i c e 'GI h a s j u s t b e e n s w i t c h e d , v o l t a g e a p p e a r s a c r o s s t h e d e v i c e . As long a s RJ+2R 2 2R where R i s t h e n o r m a l r e s i s t a n c e of the junct io!N'device, %e v o l t a g e t h a t a p p e a r s is e q u a l t o t h e g a p v o l t a g e , V (2 .8 mV i n e x p e r i m e n t s ) . I n t h e e a r l y s t a g e s o f t h e s w i t c h i n g , t h e e f f e c t o f t h e i n d u c t a n c e , L, c an be i gnored . Thus, d e v i c e G j u s t s e e s t h e l o a d r e s i s t a n c e R +2R. where device G 1

i s e q u i v a l e n t t o r e s i s t a n c e R ~ . J~ v o l t a g e p u l s e w i t 2 a magn i tude o f V /(2R/R +1) is t h e r e f o r e a p p l i e d i n s t a n t a n e o u s l y t o 8 e v i c e 6,.

I n d e v i c e G2, a n e g a t i v e v o l t a g e -Vo, i s main ta ined th roughou t , because G2 was i n t h e s t e a d y v o l t a g e s t a t e , t h e v a l u e o f which i s

G

A t t h e i n s t a n t o f GI s w i t c h i n g , t h i s v o l t a g e p u l s e is superimposed on G2. If

t h e r e is a c h a n c e t h a t d e v i c e G may be under zero a p p l i e d v o l t a g e . T h i s i n e q u a l i t y i s a n e c e s s a r y c o n d i t i o n f o r d e v i c e G2 t o r e t u r n t o t h e s u p e r c o n d u c t i n g s t a t e , i .e. t o a v o i d t h e hung up phenomenon. By s u b s t i t u t i n g ( 1 ) i n t o ( 2 ) . we g e t

2

Under a r easonab le a s sumpt ion o f

R J / R N N = 10, ( 4 )

Eq. ( 3 ) c a n e a s i l y b e s o l v e d , a n d t h e l i m i t i n g

I I I I I

x

0 0.5 I. 0

CURRENT RATIO IG / A J C F i g . 9. A n a l y t i c a l l y c a l c u l a t e d l i m i t i n g c u r v e f o r occurence o f hung-up phenomenon ( s o l i d l i n e ) . Computer s i m u l a t i o n r e s u l t s a r e a l s o shown. Crosses c o r r e s p o n d t o where hung-up phenomenon occur s . So l id circles c o r r e s p o n d t o where hang-up d o e s n o t a p p e a r .

Page 4: Ring oscillator experiment using a huffle circuit

g a t e c u r r e n t , T , c a n b e d e r i v e d a s a f u n c t i o n o f t h e c i r c u i t r e s i s t a g c e , R.

The l i m i t i n g c u r v e i.s c a l c u l a t e d n u m e r i c a l l y , a n d shown b y t h e s o l i d l i n e i n F i g . 9. I n t h e f i g u r e , R N N I G / V G ranges f rom 0 t o 0 . 6 . The a b s c i s s a c a n b e rewrr t ten by the approximate Ambegaokar-Bara tof f ' s r e l a t i o n ,

RNNAJC = 0.6VG, (5 )

where A i s t h e j u n c t i o n a r e a , and J t h e s u p e r c u r r e n t d e n s i t y . As i s shown i n F i g . 9. g h e l i m i t i n g c u r v e is wel l approximated by the s imple equat ion R I = 0.8V . R e s u l t a n t l y , t h e n e c e s s a r y c o n d i t i o n ( 3 ) For avo ig ing t he hung up phenomenon can be g iven by

RIG &0.8VG. ( 5 )

Using t he expe r imen ta l va lues R 0 .6 and V = 2.8 mV, we c a n d e t e r m i n e t h e maximum g a t e c u r r h t va lue o f 3 .7 mA. T h i s t h e o r e t i c a l p r e d i c t i o n a g r e e s well wi th t he expe r imen ta l va lue o f 3 .75 mA shown i n F i g . 4.

I n o r d e r t o c o n f i r m t h e a n a l y t i c a l e x p r e s s i o n i n ( 6 ) . computer s imula t ions were unde r t aken o f t he c i r c u i t o p e r a t i o n . The hung up phenomenon occurred beyond t h e limits o f ( 6 ) a s shown b y t h e c r o s s e s i n F ig . 9. The s o l i d c i rc les i n d i c a t e t h a t t h e c i r c u i t d o e s n o t e n t e r a hung-up s t a t e . Under t h e c o n s t r i c t i o n o f R I G = 0.5VG. it was f o u n d t h a t t h e hung up phenomenon wlll n o t o c c u r .

Cons ide ra t ions Rega rd ing t he T ime Cons tan t , L/R

Tn o r d e r f o r c i r c u i t h a n g up t o b e a v o i d e d , t h e o u t p u t l i n e i n d u c t a n c e , L. s h o u l d n o t b e t o o s m a l l . If t h e time c o n s t a n t , L/R, is s m a l l e r t h a n t h e b u i l d up time f o r t h e v o l t a g e p u l s e , t h e d e v i c e i n t h e v o l t a g e s t a t e c a n n o t h a v e a n o p p o r t u n i t y t o r e t u r n t o t h e s u p e r c o n d u c t i n g s t a t e .

The b u i l d up time can be approximated by the sum of two RC time c o n s t a n t s , ( R C +R C ) , where CJ is t h e c a p a c i t a n c e of t h e i n - l i n e g a t e J u n c t i o n , and R i s g iven by 2RRJ/(2R+R ) C 2R. In the example , R i N C J c o r r e s p o n d s t o t h e gime f o r a v o l t a g e , V G , t o a p p e a r a t d e v i c e G , , w h i l e R C i s t h e t i m e f o r a v o l t a g e p u l s e t o b e b u i l t up 'a$ d e v i c e G2., Thus , t he f o l l o w i n g e q u a t i o n i s n e c e s s a r y f o r a v o r d a n c e o f t h e hung up phenomenon,

N N J P J

, ( L / R ) / C J ( R N N + R p ) >> 1. ( 7 )

I n t h e e x p e r i m e n t , t h i s c o n d i t i o n was wel l s a t i s f i e d . T h e r e f o r e , t h e c i r c u i t d e l a y time was m o s t l y t h o u g h t t o b e d e t e r m i n e d b y t h e t i m e c o n s t a n t L/R.

C i r c u i t A p p l i c a t i o n

I n t h i s s t u d y , a s i m p l e i n - l i n e g a t e j u n c t i o n was used fo r t he swi t ch ing dev ice . However, it i s d e s i r a b l e t o u s e i n t e r f e r o m e t e r d e v i c e s f o r a p p l i c a t i o n . to i n t e g r a t e d c i r c u i t s b e c a u s e d e v i c e impedance can then be des igned to be much h i g h e r . The c i r c u i t d e l a y i s t h u s e x p e c t e d t o b e much s m a l l e r . If a two-input 1-2-1 i n t e r f e r o m e t e r is a d o p t e d , a two-input NOR c i r c u i t i s obta ined . Such a c i r c u i t f u n c t i o n i s e n o u g h f o r c o n s t r u c t i o n o f a n y of l o g i c f u n c t i o n s .

I n o r d e r t o c l a r i f y w h e t h e r t h e h u f f l e c i r c u i t c a n d r i v e a r e s i s t i v e l o a d o r n o t , we conducted computer s imula t ions by add ing a load r e s i s t o r , r , connec ted in series t o t h e i n d u c t a n c e , L. It was found t h a t t h e c h o i c e of r = R = R / 2 l e a d s t o a good r e s u l t . T h e r e f o r e , t h e h u f f l e c i r c u i t i s p r o m i s i n g f o r f u t u r e a p p l i c a t i o n s t o J o s e p h s o n l o g i c s y s t e m s .

N M

1177

Conclusion

( 1 ) Ring o s c i l l a t o r o p e r a t i o n was demonst ra ted us ing Josephson j unc t ion dev ices . To b r i n g t h i s a b o u t , a DC-powered h u f f l e c i r c u i t was des igned t o form a 9 - s t a g e i n v e r t e r r i n g . 'he o s c i l l a t i o n p e r i o d could be changed from 1 .9 t o 8 . 2 n s i n e x p e r i m e n t s . ( 2 ) F l i p - f l o p l o g i c o p e r a t i o n was observed expe r imen ta l ly , and ope ra t ing po in t limits were c l a r i f i e d . ( 3 ) T t was f o u n d t h a t t h e o p e r a t i n g m a r g i n was de te rmined by t he t h re sho ld cu rve , and t he hung up f o r m u l a t h a t was a r r i v e d a t a n a l y t i c a l l y .

References

1. A.F. Hebard, S.S. Pei. L.N. Dunkleberger, and T.A. F u l t o n , " A DC-Powered Josephson F l ip-Flop ," TEEE Trans . Magn., Vol. MAG-15, pp. 408-1 1 , January 1979.

2. T.A. F u l t o n , S.S. Pei . and L.N. Dunkleberger , "Josephson Junct ion Current-Switched Logic C i r c u i t s , " I E E E Trans. Yagn., Vol. MAG-15. pp . 1876-7'3, November 1'379.

3. A. Moser, lfLogic Gates with Shaped Josephson J u n c t i o n s , " I E E E J. o f S o l i d - S t a t e - C i r c u i t s , Vol.

4. W . Raechto ld , I r A Flip-Flop and Logic Gate with Josephson Junc t ions ,? ' I E E E ISSCC D i g e s t o f Technica l Paper , No. FAM14.2, pp. 164-55 and 227, February 1975.

SC-14, pp. 572-79, August 1979.

N o t e t h a t t h e h u f f l e c i r c u i t d e s c r i b e d h e r e is e x a c t - l y t h e same as t h e "Complementary Josephson Junction C i rcu i t " r epor t ed by W. Baechto ld , T . F o r s t e r , W. Heu- be rge r and T.O. Mohr i n E l e c t r o n i c s Letters, 2 , 2 0 3 , May 1975.