16
Op#mal Es#ma#on of Starlight and Incoherent Light A.J. Riggs, Tyler Groff, and Jeremy Kasdin Princeton University February 12, 2015 1 Work supported by the NASA Space Technology Research Fellowship

Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Op#mal  Es#ma#on  of  Starlight  and  Incoherent  Light  

A.J.  Riggs,  Tyler  Groff,  and  Jeremy  Kasdin  Princeton  University  

February  12,  2015  

1  

Work  supported  by  the  NASA  Space  Technology  Research  Fellowship  

Page 2: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Overview:  High  Order  Wavefront  Sensing  &  Control  

Main  Goal:          Image  faint  exoplanets  &  disks.  

HOWFSC  Methodology:  a)  Use  DMs  to  provide  diversity  in  focal  plane.  b)  Es#mate  focal  plane  E-­‐field  from  intensity  measurements.  c)  Calculate  control  signal  and  apply  to  DMs.  d)  Repeat  (a)-­‐(c)  un#l  desired  contrast  is  reached.  

Main  Points:  1) Use  recursive  es)ma)on  for  faster,  more  robust  WFC.  2) Can  also  recursively  es)mate  incoherent  light  during  WFC.  

2  

Page 3: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Recursive  Wavefront  Es#ma#on  •  Observa#ons:  

–  Most  of  dark  hole  acquisi#on  (wavefront  correc#on)  #me  is  spent  ge\ng  last  order  of  magnitude  in  contrast.  

–  Measurements  are  dominated  by  readout  noise.  •  Op#mal  recursive  es#ma#on  (Kalman  filtering)  u#lizes  all  

measurements    –  Reduces  measurement  noise  and  limits  model  uncertainty.  –  Less  total  #me  is  required  for  correc#on:  

40 60 80 100 120 140 160 180 200 220 24010

−7

10−6

Total Image Count

Measu

redContrast

2−Pair Batch

2−Pair KF

1−Pair EKF

References:  Riggs  et  al.,  “Demonstra#on  of  Symmetric  Dark  Holes  Using  Two  Deformable  Mirrors  at  the  High-­‐Contrast  Imaging  Testbed”,SPIE,  2013.  

Groff  &  Kasdin,  “Kalman  filtering  techniques  for  focal  plane  electric  field  es#ma#on”,  JOSA-­‐A,  2013.  

Princeton  HCIL:  Best  Monochroma#c  Results  with  Ripple3  SPC    (Riggs,  February  3,  2015)    

3  

Page 4: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Recursive  WFE:  Experimental  Results  

40 60 80 100 120 140 160 180 200 220 24010

−7

10−6

Total Image Count

Measu

redContrast

2−Pair Batch

2−Pair KF

1−Pair EKF

Princeton  HCIL:  Best  Monochroma#c  Results  with  Ripple3  SPC    (Riggs,  February  3,  2015)    

Kalman  filtering  techniques  for  focal  plane  electric  field  es#ma#on  

100 200 300 400 500 600 700 800

10−8

10−7

10−6

Total Image Count

Contrast

2−Pair Batch

1−Pair Kalman

JPL  HCIT:  Best  Monochroma#c  Results  with  Ripple  SPC    (Riggs,  August,  2013)    In  Riggs  SPIE  88640T,  2013.  

4  

Page 5: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Recursive  Incoherent  Light  Es#ma#on  

•  Can  also  es#mate  incoherent  light  recursively  using  a  nonlinear  es#mator.  –  Currently  trying  extended  Kalman  filter  (EKF).  –  EKF  just  as  fast  (exposure  &  computa#onal  #me)  as  KF,  but  also  provides  less  noisy  incoherent  es#mate  

•  Reason  for  not  using  nonlinear  es#mator:  Correc#on  might  be  done  on  other,  brighter  star  –  What  if  there  is  zodi  or  exozodi?  Need  to  es#mate  incoherent  light  well  and  pre-­‐subtract  it  from  nominal  PSF  (or  use  just  es#mated  intensity  of  star)  

–  Helpful  if  any  correc#on  itera#ons  required  on  science  target  star.  

5  

Page 6: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Incoherent  Light  Es#mates  •  Recursive  incoherent  es#mate  is  less  sensi#ve  to  

measurement  noise  and  shot  noise.  

6  

x (λ/D)

y(λ

/D)

EKF: Starlight Estimate

−10 −5 0 5 10−2

0

2

−8

−7

−6

x (λ/D)

y(λ

/D)

EKF: Incoherent Estimate

−10 −5 0 5 10−2

0

2

−8

−7

−6

x (λ/D)

y(λ

/D)

KF: Starlight Estimate

−10 −5 0 5 10−2

0

2

−8

−7

−6

x (λ/D)

y(λ

/D)

KF: Incoherent Estimate

−10 −5 0 5 10−2

0

2

−8

−7

−6

•  Data  above  are  from  the  final  itera#on  of  correc#on  runs  in  Princeton’s  HCIL.  •  KF  and  EKF  data  above  are  from  separate  correc#on  runs  •  In  Princeton’s  HCIL,  unclear  if  incoherent  es#mate  is  stray  light  or  something  else.  

§  1-­‐sigma  readout  noise  at  8e-­‐8  contrast  (=5  ADU)  

Page 7: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

HOWFS  Comparison  Batch  Process   Kalman  Filter  (KF)   Extended  Kalman  Filter  (EKF)  

Pros   • Computa#onally  fastest  • No  tuning  

• Less  exposure  #me  • Uses  all  probed  images  for  recursive  es#ma#on  • Allows  for  a  dynamic  model  

• Less  exposure  #me  • Uses  all  images  recursively  • Recursively  es#mates  incoherent  light  • Allows  for  a  dynamic  model  • Allows  for  parameter  adap#ve  es#ma#on  

Cons   • More  exposure  #me  • Does  not  u#lize  previous  data  • Sta#c  model  only  

• Computa#onally  slower    • Must  be  well  tuned  

• Computa#onally  slowest  • Must  be  very  well  tuned  • Less  stable  

7  

Page 8: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Sensor  Fusion:  LOWFS  &  HOWFS  Main  ques#on:    

 How  best  to  combine  LOWFS  and  HOWFS  for  a  stable  PSF?  

Key  Points:  –  LOWFS  sampling  much  faster  than  HOWFS  –  Will  LOWFC  residuals  alter  PSF  above  allowable  contrast  level?  If  yes:  •  Major  problem  for  scheme  to  calibrate  on  different  star  •  Must  include  in  HOWFSC  

Possible  solu#ons:  1)  HOWFS  can  be  blind  to  LOWFSC  if  LOWFSC  residuals  are  

negligible.  2)  Include  known  LOWFC  residuals  and/or  extra  process  noise  in  

recursive  HOWFS.  

8  

Page 9: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Extra  Topics  Best  ways  to  speed  up  HOWFSC:  

–  Use  broadband  light.  –  Obtain  a  beker  system  model.  

1.  Broadband  HOWFSC  –  Crucial  for  HOWFS  to  be  fast  enough.    –  Currently,  no  alterna#ve  to  (monochroma#c)  pairwise  es#ma#on  and  

EFC.  –  Limited  filter  wheel  space  on  AFTA  

2.  Model-­‐based  es#ma#on  &  control  are  very  sensi#ve  to  accuracy  of  model  –  How  to  use  measurements  to  improve  linear  control  response  matrix?  –  How  to  obtain  DM  registra#on  and  ini#al  wavefront  at  DMs  without  

phase  retrieval  on  AFTA?  

9  

Page 10: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

References  

10  

•  EKF  reference:    •  Riggs  et  al.,  “Op#mal  Wavefront  Es#ma#on  of  Incoherent  Sources”,SPIE,  2014.  

•  Kalman  filter  references:    •  Groff  &  Kasdin,  “Kalman  filtering  techniques  for  focal  plane  electric  field  

es#ma#on”,  JOSA-­‐A,  2013.  •  Riggs  et  al.,  “Demonstra#on  of  Symmetric  Dark  Holes  Using  Two  Deformable  

Mirrors  at  the  High-­‐Contrast  Imaging  Testbed”,SPIE,  2013.  

•  Stroke  minimiza#on:  •  Pueyo  et  al.,  “Op#mal  dark  hole  genera#on  via  two  deformable  mirrors  with  

stroke  minimiza#on”,  Applied  Op#cs,  2009  •  Groff  &  Kasdin,  “Kalman  filtering  techniques  for  focal  plane  electric  field  

es#ma#on”,  JOSA-­‐A,  2013  

•  Pair-­‐wise  es#ma#on  and  EFC  •  Give’on  et  al.,  “Pair-­‐wise,  deformable  mirror,  image  plane-­‐based  diversity  

electric  field  es#ma#on  for  high  contrast  coronagraphy”,  SPIE,  2011  

Page 11: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Backup  Slides  

11  

Page 12: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Princeton  HCIL  Layout  

Starlight  Xpress    SXV-­‐M9  

x (λ/D)

y(λ

/D)

Initial Image

ï10 ï5 0 5 10

ï5

0

5

ï8

ï7

ï6

ï5

ï4

ï3

x (λ/D)

y(λ

/D)

Final Image

ï10 ï5 0 5 10

ï5

0

5

ï8

ï7

ï6

ï5

ï4

ï3

WFC  

12  

Diagram  from  [Groff  JOSA-­‐A  2013]    

Page 13: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Es#mator  Comparison:  Princeton  HCIL  Results  

50 100 150 200 25010

−7

10−6

10−5

Total Image Count

Measu

redContrast

Batch

2−Pair KF

1−Pair KF

2−Pair EKF

1−Pair EKF

0 10 20 30 40 50 60 7010

−7

10−6

10−5

Correction Iteration

MeasuredContrast

Batch

2−Pair KF

1−Pair KF

2−Pair EKF

1−Pair EKF

Exposure  #me  is  constant  for  all  images.    One-­‐sigma  measurement  noise  at  8e-­‐8  contrast.  

All  recursive  es#mators  are  faster  than  the  batch  process  es#mator.  

13  

Page 14: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Incoherent  Light  Es#mates  •  In  Princeton’s  HCIL,  unclear  if  incoherent  es#mate  is  readout  noise  or  stray  light.  §  1-­‐sigma  readout  noise  at  8e-­‐8  contrast  (=5  ADU)  

50 100 150 200 250

10−7

10−6

10−5

Incoherent Estimate

Total Image Count

Measu

redContrast

Batch

2−Pair KF

1−Pair KF

2−Pair EKF

1−Pair EKF

14  

Page 15: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

Example  Contrast  Correc#on  Curves  

0 5 10 15 20 25 30 35 40 45 50

10−7

10−6

10−5

10−4 2-Pair KF

Iterat ion

Contrast

Measured

Estimated

Incoherent Est.

Meas. Avg. Probe

Readout Std Dev

0 10 20 30 40 50 60 70 80

10−7

10−6

10−5

10−4 1-Pair EKF

Iterat ion

Contrast

Measured

Estimated

Incoherent Est.

Meas. Avg. Probe

Readout Std Dev

Princeton  HCIL:  3  Feb  2015  

15  

Page 16: Riggs Feb2015 LOWFS AFTA v4€¦ · 3,2015) 3. Recursive’WFE:’Experimental’Results’ 40 60 80 100 120 140 160 180 200 220 240 10−7 10−6 Total Image Count Measured Contrast

16