57
HD155121F RF Transceiver IC for GSM and PCN Dual band cellular systems ADE-207-265A (Z) 2nd Edition May 1999 Description The HD155121F is a RF transceiver IC for GSM and PCN dual band cellular systems, and integrates most of the low power silicon functions of a transceiver. The HD155121F incorporates two bias circuits for RF LNAs, two first mixers, a second mixer, a programmable gain amplifier, and an IQ demodulator for the receiver, and an IQ modulator and offset PLL for the transmitter. Also, on chip are dividers for the phase splitter. Moreover the HD155121F includes control circuits to implement power saving modes. These functions can operate down to 2.7 V and are housed in a 48-pin LQFP SMD package. Hence the HD155121F can form a small size transceiver handset for dual band by adding a dual PLL frequency synthesizer IC, power amplifiers and some external components. The HD155121F is fabricated using a 0.6 μm double-polysilicon Bi-CMOS process. Functions Receiver(Rx) Low Noise Amplifier (LNA) bias circuit First mixer IF amplifier and second mixer Programmable Gain Amplifier (PGA) IQ demodulator with 90 degree phase splitter Transmitter(Tx) IQ modulator with 90 degree phase splitter Offset PLL Down converter Phase comparator TXVCO driver Others IF dividers Power saving control circuit IFVCO

RF Transceiver IC for GSM and PCN Dual band cellular · PDF fileThe HD155121F is a RF transceiver IC for GSM and PCN dual band cellular systems, ... supply voltage ... two LNA bias

  • Upload
    hahanh

  • View
    219

  • Download
    1

Embed Size (px)

Citation preview

HD155121F

RF Transceiver IC for GSM and PCN Dual band cellular systems

ADE-207-265A (Z)2nd Edition

May 1999

Description

The HD155121F is a RF transceiver IC for GSM and PCN dual band cellular systems, and integrates mostof the low power silicon functions of a transceiver. The HD155121F incorporates two bias circuits for RFLNAs, two first mixers, a second mixer, a programmable gain amplifier, and an IQ demodulator for thereceiver, and an IQ modulator and offset PLL for the transmitter. Also, on chip are dividers for the phasesplitter. Moreover the HD155121F includes control circuits to implement power saving modes. Thesefunctions can operate down to 2.7 V and are housed in a 48-pin LQFP SMD package.

Hence the HD155121F can form a small size transceiver handset for dual band by adding a dual PLLfrequency synthesizer IC, power amplifiers and some external components.

The HD155121F is fabricated using a 0.6 µm double-polysilicon Bi-CMOS process.

Functions

Receiver(Rx)

• Low Noise Amplifier (LNA) bias circuit

• First mixer

• IF amplifier and second mixer

• Programmable Gain Amplifier (PGA)

• IQ demodulator with 90 degree phase splitter

Transmitter(Tx)

• IQ modulator with 90 degree phase splitter

• Offset PLL

Down converter

Phase comparator

TXVCO driver

Others

• IF dividers

• Power saving control circuit

• IFVCO

HD155121F

2

Features

• Highly integrated RF processing for hand-portables

• Operating supply voltage

VCC : 2.7 to 3.6 V

Phase comparator and TXVCO driver circuit : 2.7 to 5.25 V

• Current consumption

Rx mode (GSM) : 53 mA + LNA current

Rx mode (PCN) : 52 mA + LNA current

Tx mode (GSM) : 36 mA

Tx mode (PCN) : 37 mA

Idle mode :1 µA

• Operating temperature : –20 to +75 degree

• LQFP 48pin SMD (Low Profile Quad Flat Package)

• Wide operating frequencies

Rx RF GSM : 925 - 960 MHz

PCN : 1805 - 1880 MHz

1st IF : 225 MHz

2nd IF : 45 MHz

Tx RF GSM : 880 - 915 MHz

PCN : 1710 - 1785 MHz

IF GSM : 270 MHz

PCN : 135 MHz

• Offset PLL architecture for Transmitter

• High dynamic range Programmable Gain Amplifier (PGA)

HD155121F

3

Pin Arrangement

1

2

3

4

5

6

7

8

9

10

11

12

MIX1INB1

MIX1IN1

RFOUT

RFIN1

RFIN2

VCCPLL

GNDPLL

VCOIN2

VCOIN1

VCCCOMP

PLLOUT

ICURAD

36373839404142434445464748

(Top View)

1413 24232221201918171615

35

34

33

32

31

30

29

28

27

26

25

IFLO

BAND

IFVCOO

IFVCOI

VCCIF

GNDIF

IFIN

IFINB

LE

SDATA

CLK

MIX2O

QIN

B

QIN

IINB

IIN

MO

DLB

VC

CIQ

GN

DIQ

QO

UT

B

QO

UT

IOU

TB

IOU

T

MIX

2OB

MIX

1IN

2

MIX

1IN

B2

PO

ON

TX

PO

ON

RX

2

PO

ON

RX

1

MIX

1OU

TB

MIX

1OU

T

VC

CM

IX1

GN

DM

IX1

RF

LOIN

VC

CD

IV

GN

DD

IV

HD155121F

4

Pin Description

Pin No. Pin Name Description

1 MIX1INB1 Negative input for Mixer1 (GSM)

2 MIX1IN1 Positive input for Mixer1 (GSM)

3 RFOUT Bias for the collector of LNA transistor

4 RFIN1 Bias for the base of LNA transistor (GSM)

5 RFIN2 Bias for the base of LNA transistor (PCN)

6 VCCPLL VCC for OPLL

7 GNDPLL GND for OPLL

8 VCOIN2 TxVCO signal input (PCN)

9 VCOIN1 TxVCO signal input (GSM)

10 VCCCOMP VCC for phase comparator

11 PLLOUT Current output to control and modulate the TxVCO

12 ICURAD Phase comparator output current setting

13 QINB Negative input of Q signal for modulator

14 QIN Positive input of Q signal for modulator

15 IINB Negative input of I signal for modulator

16 IIN Positive input of I signal for modulator

17 MODLB VCC for modulator load bias

18 VCCIQ VCC for IQ modulator and demodulator

19 GNDIQ GND for IQ modulator and demodulator

20 QOUTB Negative output of Q signal for modulator

21 QOUT Positive output of Q signal for modulator

22 IOUTB Negative output of I signal for modulator

23 IOUT Positive output of I signal for modulator

24 MIX2OB Negative output for Mixer2

25 MIX2O Positive output for Mixer2

26 CLK Clock for serial data

27 SDATA Serial data for Gain control

28 LE Load enable for serial data

29 IFINB Negative input for Mixer2

30 IFIN Positive input for Mixer2

31 GNDIF GND for Mixer2 and PGA

32 VCCIF VCC for Mixer2 and PGA

33 IFVCOI Base of IFVCO transistor

34 IFVCOO Emitter of IFVCO transistor

HD155121F

5

Pin Description (cont)

Pin No. Pin Name Description

35 BAND Band control (Low: GSM, High: PCN)

36 IFLO Output of IFVCO or Input of IF Local

37 GNDDIV GND for Divider and IFVCO

38 VCCDIV VCC for Divider and IFVCO

39 RFLOIN Input for RF Local

40 GNDMIX1 GND for Mixer1

41 VCCMIX1 VCC for Mixer1

42 MIX1OUT Positive output for Mixer1 (GSM/PCN)

43 MIX1OUTB Negative output for Mixer1 (GSM/PCN)

44 POONRX1 Power save control for LNA and Mixer1

45 POONRX2 Power save control for Mixer2, PGA and demodulator

46 POONTX Power save control for modulator and OPLL

47 MIX1INB2 Negative input for Mixer1 (PCN)

48 MIX1IN2 Positive input for Mixer1 (PCN)

HD155121F

6

Block Diagram

1 12

36 35 34 33 32 31 30 29 28 27 26 25

1314

1516

1718

1920

2122

24

48

from

Sys

tem

con

trol

ler

(180

5MH

z)

(180

5MH

z)

(171

0MH

z) Tx.V

CO1

Tx.V

CO2

1172MHz(Rx: 1580MHz, Tx: 1575MHz)

from

VC

O

4746

4544

4342

4140

3938

37

23

MIX1IN2 QINB

QIN

IINB

IIN

MODB

VCCIQ

GNDIQ

QOUTB

QOUT

IOUTB

IOUT

MIX2OB

MIX1INB2

POONTX

POONRX2

POONRX1

MIX1OUTB

VCCMIX1

VCCDIV

RFLOIN

MIX1OUT

GNDMIX1

GNDDIV

MIX

1IN

B1

MIX

1IN

1

RF

OU

T

RF

IN1

RF

IN2

VC

CP

LL

GN

DP

LL

VC

OIN

2

VC

OIN

1

VC

CC

OM

P

PLL

OU

T

ICU

RA

D

IFLO

BA

ND

IFV

CO

O

IFV

CO

I

VC

CIF

GN

DIF

IFIN

IFIN

B

from System controllerfromSystem controller

LE SD

AT

A

CLK

MIX

2O

RIC

UR

AD

947M

Hz

947M

Hz

902M

Hz

45M

Hz

225M

Hz

(225

MH

z)

270M

Hz

(135

MH

z)

45M

Hz

(45M

Hz)

270M

Hz

(135

MH

z)

45M

Hz

(45M

Hz)

540

MHz

1172

MH

z(1

580/

1575

MH

z)

(158

0/15

75M

Hz)

1172

MH

z

GS

M: 2

70M

Hz

PC

N: 1

35M

Hz

225M

Hz

(225

MH

z)

Tun

e

to B

ase

band

from

Bas

e ba

nd

from Antenna

Cur

rent

mod

edr

iver

LNA

Bia

sci

rcui

t

2 3 4 5 6 7 8 9 10 11

Vre

f(P

LL)

Ser

ial

inte

rfac

e

1/2

(90d

eg)

from

Band

SW

Vre

f(D

iv.R

x)(D

iv.T

x)

1/2

(90d

eg)

Vre

f(L

NA

)

Vre

f(P

GA

)

Vre

f(I

F)

Vref

(IFVC

O)

Vre

f(M

od)

Vre

f(M

ix1)

Vre

f(D

emod

)

1/2

1/6

HD155121F

7

Configuration

LNA

HD

1550

17T

LPF

LPF

RF

filte

r

RF

filte

r

PA

Mod

ule

1710

to 1

785

MH

z

1710

to 1

785

MH

z

925

to 9

60 M

Hz

880

to 9

15 M

Hz

880

to 9

15 M

Hz

1805

to18

80 M

Hz

Loop

filte

rP

hase

Det

ecto

r

Ser

ial d

ata

inte

rfac

e

IFV

CO

GS

M: 5

40 M

Hz

PC

N: 5

40 M

Hz

GS

M: 2

70 M

Hz

PC

N: 1

35 M

Hz

GS

M: 2

70 M

Hz

PC

N: 1

35 M

Hz

HD

1551

21F

45 M

Hz

45 M

Hz

LC

IFS

AW

filte

r

RF

SA

Wfil

ter

LNA

RF

SA

Wfil

ter

225

MH

z

I & Q

Dem

o.

I & Q

Mod

I QI

B.B

.B

lock

Q

90 d

egS

hift

÷2

90 d

egS

hift

÷2

RF

VC

O

PLL

2

S/W

PLL

1

Dua

lsy

nth.

bias

circ

uit

bias

circ

uit

PG

A

Mix

er1

Mix

er2

Mix

er1

GSM

PCN

: 115

0 to

118

5 M

Hz

: Rx.

158

0 to

165

5 M

Hz

/Tx.

157

5 to

165

0 M

Hz

÷2

÷6

270

MH

z

PC

N: 2

70 M

Hz

GS

M: 5

40 M

Hz

HD155121F

8

Functional Operation

The HD155121F has been designed from system stand point and incorporated a large number of the circuitblocks necessary in the design of a digital cellular handset.

Receiver Operation

The HD155121F incorporates two LNA bias circuits for external RF transistors, whose NF and power gaincan be better selected.

This circuit amplifies the RF signal after selection by the antenna filter before the signal enters the firstmixer section. The RF signal is combined with a local oscillator (LO) signal to generate a wanted first IFsignal in the 130 - 300 MHz range. The first mixer circuit uses a double-balanced Gilbert cell architecture,which has open collector differential outputs. If, at 225 MHz, a 800 Ω LC load is connected to the mixer’soutputs then a SSB NF of 9.0 dB (GSM), 9.1 dB (PCN) with a gain of 9.5 dB (GSM), 8.5 dB (PCN) isrealizable. The corresponding input compression point is –10.5 dBm (GSM), –12.5 dBm (PCN), whichallows the device to be used within a GSM and EGSM and PCN system.

A filter is used after the first mixer to provide image rejection and the conditioned signal is then passedthrough an intermediate amplifier, before being down converted to a second IF in the range of 26 - 60MHz.

The second mixer can generate a 45 MHz second IF, if a 270 MHz second local signal is used. The secondmixer also uses the Gilbert cell architecture, but with internal resistive differential outputs of 300 Ω. Ifamplifier and second mixer has a SSB NF of 6.0 dB, a power gain of 13 dB and a input compression pointof –22 dBm. In order to improve the blocking characteristics of the device an external LC resonator acrossthe differential outputs of the second mixer is recommended.

First mixer and second mixer can switch the power gain. Switching gain step of first mixer is 12 dB, andsuch step of second mixer is 16 dB.

The signal is then passed to the PGA circuit, which has a dynamic range of more than 80 dB (–42 dB - +56dB typ.) and is controlled by digital serial data, which is generated by the microprocessor. This gain step is2 dB.

The signal is then down converted by a demodulator to I and Q. Internal divider circuits convert the IFLOsignal to the same frequency as the second IF before passing this local signal through a phase splitter /shifter in order to generate the in phase and quadrature phase IQ components. The phase accuracy of theIQ demodulator is less than +/–1 degree and the amplitude mismatch is less than +/–0.5 dB. In order toaccommodate different baseband interfaces the HD155121F IQ differential outputs have a voltage swing of1.6 Vpp and DC offset of less than +/–60 mV. Within each output stage a second order Butterworth filter(fc = 210 kHz) is used to improve the blocking performance of the device.

In order to allow flexibility in circuit implementation the HD155121F can configured to use either a single-ended or balanced external circuitry and components.

HD155121F

9

Transmitter Operation

The transmitter chain converts differential IQ baseband signals to a suitable format for transmission by apower amplifier.

The common mode voltage range of the modulator inputs is 0.8 V to 1.2 V and they have 2.0 Vppdifferential swing. The modulator circuit uses double-balanced mixers for the I and Q paths. The Localsignals are generated by dividing the IFLO signals by 2, and then passed to the modulator through a phasesplitter / shifter. The IF signals generated are then summed to produce a single modulated IF signal whichis amplified and fed into the offset PLL block. Carrier suppression due to the mixer circuit is better than 31dBc. If the common mode DC voltage of the I and Q inputs is adjusted, carrier suppression is better than40 dBc easily. Side band suppression is better than 35 dBc without adjustment.

Within the offset PLL block there are a down converter, a phase comparator and a VCO driver. The downconverter mixes the first local signal and the TXVCO signal to create a reference local signal for use in theoffset PLL circuit. The phase comparator and the VCO driver generate an error current, which isproportional to the phase differential between the reference IF and the modulated IF signals. This current isused in a second order loop filter to generate a voltage, which in turn modulates the TXVCO. In order tooptimize the PLL loop gain, the error current value can be modified by changing the value of an externalresistor - ICURAD. In order to accommodate various control range of TXVCOs, the offset PLL circuit hasbeen designed to operate with a supply voltage up to 5.25 V.

HD155121F

10

Operation Modes

The HD155121F has necessary control circuitry to implement the necessary states within the dual bandsystem. Also provided is a power saving mode which reduces the current consumption of the device bypowering down unnecessary function blocks. Three pins are assigned for power saving mode control,POONRX1, POONRX2 and POONTX. Also one pin is assigned for switching operational band, BAND.Table 1 shows the relationship between the pins and the required operating mode. These pins arecontrolled by the system controller.

As per GSM requirements the Tx and Rx sections do not operate simultaneously. For the receiver there is acalibration mode in which the LNA bias circuit and first mixer are switched off. During this period thegain of the PGA can be adjusted. Also the DC offsets of the IQ demodulator are measured andsubsequently canceled.

In order to change between the Rx and Tx modes a state called “warm-up” is used to ensure that the localsignals are not unduly affected. This method of switching between Tx and Rx ensures that lock is achievedfirst time.

Power saving is implemented through use of the idle mode. All function blocks of the HD155121F areswitched off until such time as the system controller commands the device to power up again.

Table 1 Operating Modes with Power Saving

Mode Receive Calibrate Warm-up Transmit Idle

Band GSM PCN — — GSM PCN —

POONRX1 (44) H H L L L L H

POONRX2 (45) H H H L L L L

POONTX (46) L L L L H H Don’t care

BAND (35) L H Don’t care Don’t care L H Don’t care

Rx block LNA bias (GSM) ON OFF OFF OFF OFF OFF OFF

LNA bias (PCN) OFF ON OFF OFF OFF OFF OFF

1st Mixer (GSM) ON OFF OFF OFF OFF OFF OFF

1st Mixer (PCN) OFF ON OFF OFF OFF OFF OFF

2nd Mixer ON ON ON OFF OFF OFF OFF

PGA ON ON ON OFF OFF OFF OFF

I/Q demodulator ON ON ON OFF OFF OFF OFF

Tx block Offset PLL OFF OFF OFF OFF ON ON OFF

I/Q modulator OFF OFF OFF OFF ON ON OFF

Oscillator IF VCO ON ON ON ON ON ON OFF

block Divider (Rx) ON ON ON OFF OFF OFF OFF

Divider (Tx) OFF OFF OFF OFF ON ON OFF

1st local buffer ON ON ON ON ON ON OFF

IF local buffer ON ON ON ON ON ON OFF

Total current 53 mA 52 mA 34 mA 9.0 mA 36 mA 37 mA 1 µA

HD155121F

11

Absolute Maximum Ratings

Any stress in excess of the absolute maximum ratings can cause permanent damage to the HD155121F.

Item Symbol Rating Unit

Power supply voltage (VCC) VCC –0.3 to +4.0 V

Power supply voltage (VCCCOMP) VCCCOMP –0.3 to +5.5 V

Pin voltage VT –0.3 to VCC+0.3 (4.0 Max) V

Maximum power dissipation PT 400 mW

Operating temperature Topr –20 to +75 °C

Storage temperature Tstg –55 to +125 °C

HD155121F

12

Electrical Characteristics

DC Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified.)

Item Mode Min Typ Max Unit Test Condition Note

Power supply voltage (VCC) 2.7 3.0 3.6 V

Power supply voltage (VCCCOMP) 2.7 3.0 5.25 V

Power supply current (Rx.) GSM — 53.0 74.0 mA VCC = 3.0V, VCCCOMP = 3.0V, 2

PCN — 52.0 73.0 mA Mixer1, 2 = Gain1,PGA = bitNo26

Power supply current (Tx.) GSM — 36.0 50.0 mA VCC = 3.0V, VCCCOMP = 3.0V 2

PCN — 37.0 52.0 mA

Power supply current (Warm-up) — 9.0 12.5 mA VCC = 3.0V, VCCCOMP = 3.0V 2

Power saving mode supply current — 1.0 10.0 µA VCC = 3.0V, VCCCOMP = 3.0VHigh level = VCC, Low level = 0Vat mode control pin and serialdata pin (POONRX1, RX2, TX,BAND, CLK (no clock signal),SDATA, LE)

2

Power up time (Rx.) — 1.5 5.0 µsec from PS mode 1

Power up time (Tx.) — 0.2 0.5 µsec from PS mode 1

Power on control voltage range(POONRX1, POONRX2, POONTX)

2.3 — — V

Power off control voltage range(POONRX1, POONRX2, POONTX)

— — 0.8 V

I/Q common-mode output voltage 1.15 1.35 1.55 V

I/Q maximum output swing(Single ended)

0.8 1.06 — Vp-p VIOUT, VIOUTB,VQOUT, VQOUTB

I/Q output DC offset voltage –60 0 60 mV VIOUTDC – VIOUTBDC,VQOUTDC, VQOUTBDC

I/Q common-mode input voltage 0.8 1.0 1.2 V 1

I/Q input swing (Single ended) 0.8 1.0 1.2 Vp-p VIIN, VIINB, VQIN, VQINB 1

Serial data VH (CLK, SDATA, LE) 2.3 — — V

Serial data VL (CLK, SDATA, LE) — — 0.8 V

Band control VH (BAND) 2.3 — — V

Band control VL (BAND) — — 0.8 V

Input current(POONRX1, POONRX2, POONTX,BAND, CLK, SDATA, LE)

–10 0 10 µA

Note: 1. These values are not tested in mass production.2. Power supply current does not include the LNA bias current.

HD155121F

13

AC Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified.)

• LNA Bias circuit specifications

Item Mode Min Typ Max Unit Test Condition Note

LNA transistor bias current GSM 4.7 5.6 — mA

PCN 4.7 5.6 — mA

Frequency GSM 925 — 960 MHz 1

PCN 1805 1880 MHz

Power gain GSM — 19.4 — dB RF = 940 MHz 1

PCN — 13.4 — dB RF = 1842 MHz

Noise figure GSM — 1.6 — dB RF = 940 MHz 1

PCN — 1.6 — dB RF = 1842 MHz

3rd order input intercept point GSM — –6.0 — dBm 1

PCN — –2.0 — dBm

3rd order output intercept point GSM — 13 — dBm 1

PCN — 11 — dBm

1dB input compression point GSM — –14.5 — dBm 1

PCN — –9.5 — dBm

1dB output compression point GSM — 3.9 — dBm 1

PCN — 2.9 — dBm

Output (RF) Z GSM — 50 — Ω Output (GSM RF) 1

PCN — 50 — Ω Output (PCN RF)

Input (RF) Z GSM — 50 — Ω Input (GSM RF) 1

PCN — 50 — Ω Input (PCN RF)

Note: 1. These AC characteristics are shown for reference only and do not form part of the HD155121Fcomponent specification.

HD155121F

14

• Mixer1 specifications (Differential output load between pin42 and pin43 = 800 Ω)Item Mode Min Typ Max Unit Test Condition Note

Frequency (RF) GSM 925 — 960 MHz 1

PCN 1805 — 1880 MHz

Frequency (LO) GSM 1125 — 1260 MHz 1

PCN 1505 — 1680 MHz

Frequency (IF) — 200 225 300 MHz 1

RFLO input level — –8.0 — — dBm

Conversion gain 1 GSM 6.5 9.5 12.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 2

PCN 5.5 8.5 11.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz

Conversion gain 2 GSM –5.5 –2.5 0.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 2

PCN –6.5 –3.5 –0.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz

Noise figure 1 GSM — 9.0 10.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2

PCN — 9.1 10.6 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz

Noise figure 2 GSM — 15.0 16.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2

PCN — 16.0 17.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz

3rd order inputintercept point 1

GSM –3.0 –1.0 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz,LO = 1165MHz, IF = 225MHz

1, 2

PCN –6.0 –4.0 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,LO = 1617MHz, IF = 225MHz

3rd order inputintercept point 2

GSM 1.0 3.0 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz,LO = 1165MHz, IF = 225MHz

1, 2

PCN –3.0 –1.0 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,LO = 1617MHz, IF = 225MHz

3rd order outputintercept point 1

GSM 6.5 8.5 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz,LO = 1165MHz, IF = 225MHz

1, 2

PCN 2.5 4.5 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,LO = 1617MHz, IF = 225MHz

3rd order outputintercept point 2

GSM –1.5 0.5 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz,LO = 1165MHz, IF = 225MHz

1, 2

PCN –6.5 –4.5 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,LO = 1617MHz, IF = 225MHz

1dB input GSM –12.5 –10.5 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 2

compression point 1 PCN –14.5 –12.5 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz

1dB input GSM –8.5 –6.5 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 2

compression point 2 PCN –10.5 –8.5 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz

1dB output GSM –4.0 –2.0 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2

compression point 1 PCN –7.0 –5.0 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz

1dB output GSM –12.0 –10.0 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2

compression point 2 PCN –15.0 –13.0 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz

Note: 1. These values are not tested in mass production.2. The loss (2.2 dB) of test circuit at Mixer1 output is calculated.

HD155121F

15

• Mixer2 specificationsItem Mode Min Typ Max Unit Test Condition Note

Frequency (IF1) 200 225 300 MHz 1

Frequency (LO2) 240 270 360 MHz LO2 = IFLO/2 1

Frequency (IF2) 40 45 60 MHz 1

IFLO input level –10 — — dBm

Conversion gain 1 10.5 13.0 15.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2

Conversion gain 2 –5.5 –3.0 –0.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2

Noise figure 1 — 6.0 7.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2

Noise figure 2 — 12.0 13.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2

3rd order inputintercept point 1

–15.0 –13.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz,LO = 540MHz, 2ndIF = 45MHz

1, 2

3rd order inputintercept point 2

–11.0 –9.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz,LO = 540MHz, 2ndIF = 45MHz

1, 2

3rd order outputintercept point 1

–2.0 0.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz,LO = 540MHz, 2ndIF = 45MHz

1, 2

3rd order outputintercept point 2

–14.0 –12.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz,LO = 540MHz, 2ndIF = 45MHz

1, 2

1dB inputcompression point 1

–24.0 –22.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2

1dB inputcompression point 2

–21.0 –19.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2

1dB outputcompression point 1

–12.0 –10.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2

1dB outputcompression point 2

–24.0 –22.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2

Isolation 50 — — dB between Mixer1 output and Mixer2 input 1, 2

Note: 1. These values are not tested in mass production.2. The loss (3.6 dB) of test circuit at Mixer2 output is calculated.

HD155121F

16

• PGA and IQ Demodulator specifications (terminated by 10 kΩ at IQ demodulator output)

Item Mode Min Typ Max Unit Test Condition Note

Input frequency 40 45 60 MHz 1

Gain range — 98 — dB 1

Gain linearity –0.8 — 0.8 dB (in any 20dB window) 1

Gain step — 2 — dB 1

Noise figure 1 — 10.9 14 dB IF2 = 45MHz, bitNo46 1, 2

Noise figure 2 — 21.2 24 dB IF2 = 45MHz, bitNo26 1, 2

Noise figure 3 — 53.4 60 dB IF2 = 45MHz, bitNo6 1, 2

Gain 1 47.0 51.5 56.0 dB IF2 = 45MHz, bitNo46 2

Gain 2 7.0 11.5 16.0 dB IF2 = 45MHz, bitNo26 2

Gain 3 –33.0 –28.5 –24.0 dB IF2 = 45MHz, bitNo6 2

i/p CP 1 –70.5 –66 — dBm IF2 = 45MHz, bitNo46 2

i/p CP 2 –37 –34 — dBm IF2 = 45MHz, bitNo26 2

i/p CP 3 –14 –11 — dBm IF2 = 45MHz, bitNo6 2

IQ phase accuracy — 0.2 1.0 deg. Baseband = 67.7kHz

IQ amplitude mismatch — 0.1 0.5 dB Baseband = 67.7kHz 2

Output DC offset voltage 0 — | 60 | mV | IOUT–IOUTB | and| QOUT–QOUTB |Load out = 10kΩ

IQ maximum output swing(Single ended)

0.8 1.06 — Vp-p Baseband = 67.7kHzIOUT, IOUTB,QOUT, QOUTBLoad out = 10kΩ

I/Q common modeoutput voltage

1.15 1.35 1.55 V

Note: 1. These values are not tested in mass production.2. The loss (3.6 dB) of test circuit at PGA input is calculated.

HD155121F

17

• IQ Modulator and Offset PLL specifications (IFLO is supplied by signal generator equipment)Item Mode Min Typ Max Unit Test Condition Note

Frequency (RF) GSM 880 — 915 MHz 1

PCN 1710 — 1785 MHz

Frequency (LO) GSM 1150 — 1185 MHz 1

PCN 1530 — 1665 MHz

Frequency (IF) GSM — 270 — MHz

PCN — 135 — MHz

RFLO input level –8 — — dBm

IFLO input level –20 –10 — dBm

VCOIN1 & VCOIN2 input level –25 –15 –10 dBm 1

Carrier suppression ratio 31 40 — dBc All ‘1’ GMSK (Differential encode: off)(Baseband = 67.7kHz)

Side-band suppression ratio 35 40 — dBc I/Q input swing = 1.0Vp-p,I/Q common modeinput voltage = 1.0Vdc

Phase accuracy GSM — 1.0 2.5 RMS 200kHz BW 1

GSM — 3.0 7.5 peak 200kHz BW

PCN — 1.0 2.4 RMS 200kHz BW

PCN — 3.0 7.0 peak 200kHz BW

Modulation spectrum GSM — –34.0 — dB 200kHz offset 1

PCN — –34.5 — dB 30kHz bandwidth

Spectrum analyzer condition GSM — –68.0 — dB 400kHz offset 1

Detector mode: positive peak PCN — –67.0 — dB 30kHz bandwidth

GSM — –71.0 — dB 600kHz to 1.8MHz offset 1

PCN — –70.0 — dB 30kHz bandwidth

GSM — –71.5 — dB 1.8MHz to 3MHz offset 1

PCN — –72.0 — dB 100kHz bandwidth

GSM — –74.0 — dB 3MHz to 6MHz offset 1

PCN — –74.0 — dB 100kHz bandwidth

GSM — –76.0 — dB 6MHz upward offset 1

PCN — –76.0 — dB 100kHz bandwidth

Isolation of the 1st local input toTxVCO input

— 43 — dB 1

IQ input swing (Single ended) 0.8 1.0 1.2 Vp-p IIN, IINB, QIN, QINB 1

I/Q common mode input voltage 0.8 1.0 1.2 V IIN, IINB, QIN, QINB 1

PLLOUT output current ratio — 1:0.5 — IPLLOUT GSM : IPLLOUT PCN 1

Phase detectoroffset current ratio

0.30 0.35 0.45 offset current / output currentIIN = 1.5V (DC), IINB = 0.5V (DC)QIN = 1.5V (DC), QINB = 0.5V (DC)

1

Note: 1. These values are not tested in mass production.

HD155121F

18

• IQ Modulator and Offset PLL specifications (IFLO is supplied by signal generator equipment) (cont)

Item Mode Min Typ Max Unit Test Condition Note

Tx noisein Rx band

GSM — –155.1 — dBc/Hz 925MHz to 935MHz- 10MHz up from Txband

1

GSM — –164.1 — dBc/Hz 935MHz to 960MHz- 20MHz up from Txband

PCN — –156 — dBc/Hz 1805MHz - 20MHz up from Txband

PCN — –162 — dBc/Hz 1850MHz - 65MHz up from Txband

Lock up time GSM — 35 80 µsec 1

PCN — 65 80 µsec

Note: 1. These values are not tested in mass production.

• IFVCO specifications

Item Mode Min Typ Max Unit Test Condition

Bias current 0.9 2.0 2.5 mA

HD155121F

19

Rx Gain Control Stage

The PGA amplifier of the HD155121F is the main Rx gain control stage. However, Mixer1 and Mixer2gain level can switched as an optional function in order to optimize system performance.

biascircuit

LNA

Mixer1

Mixer2

biascircuit

LNA

Mixer1

X7

X7 : for Mixer1 gainX6 : for Mixer2 gainX5 :X4 :X3 :X2 :X1 :X0 :

Bit allocationfor PGA gain

X6 X5 X4 X3 X2 X1 X0

Decoder

Serial data

CLK (26)

IQ

SDATA (27)LE (28)

PGA I&QDemo.

Figure 1

Table 2 First Mixer Gain Control Table (as optional function)

Item Band Gain (typ) X7

Gain 1 (normal gain) GSM 9.5 dB 0

PCN 8.5 dB 0

Gain 2 (low gain) GSM –2.5 dB 1

PCN –3.5 dB 1

Table 3 Second Mixer Gain Control Table (as optional function)

Item Gain (Typ) X6

Gain 1 (normal gain) 13.0 dB 0

Gain 2 (low gain) –3.0 dB 1

HD155121F

20

Table 4 PGA and IQ Demodulator Block Gain Control

bitNo494847464544434241403938373635343332313029282726252423222120191817161514131211109876543210

Gain (dB)(Typ)57.555.553.551.549.547.545.543.541.539.537.535.533.531.529.527.525.523.521.519.517.515.513.511.59.57.55.53.51.5

−0.5−2.5−4.5−6.5−8.5

−10.5−12.5−14.5−16.5−18.5−20.5−22.5−24.5−26.5−28.5−30.5−32.5−34.5−36.5−38.5−40.5

Bit AllocationX411000000000000000011111111111111110000000000000000

X300111111110000000011111111000000001111111100000000

X200111100001111000011110000111100001111000011110000

X100110011001100110011001100110011001100110011001100

X010101010101010101010101010101010101010101010101010

X511111111111111111100000000000000000000000000000000

HD155121F

21

Serial Data Interface

tcyc

X6 X5 X4 X3 X2 X1 X0X7SDATA

CLK

LE

LSBMSB thldtstup

tsule

twle

Figure 2 Three-Wire Bus Timing Diagram

Serial Data Interface Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified)

Item Symbol Min Typ Max Unit Test Condition Note

Cycle time tcyc 50 — — nsec 1

Setup time tstup 10 — — nsec 1

Hold time thld 10 — — nsec 1

LE setup time tsule 25 — — nsec 1

LE width twle 25 — — nsec 1

Note: 1. These values are not tested in mass production.2. User can program the data for the PGA, while in any state.

HD155121F

22

Test Circuit

VC

CV

CO

1

TX

_VC

O1

OU

TP

UT

(J12

)

MU

RA

TA

MQ

E9P

7-89

7K

v=30

MH

z/V

TX

VC

O1

4 5 6

3 2 1

QIN

B

IOU

TIO

UT

BQ

OU

T

VC

CB

AN

D

VT

UN

E

QIN

0

IINBIIN

VC

C

OU

TV

CC

GN

DG

ND

MO

DC

ON

390

1 2 3 4 5 6 7 8 9 10 11 12

36 35 34 33 32 31 30 29 28 27 26 25

373839404142434445464748

242322212019181716151413

MIX

1IN

B1

MIX

1IN

1

RF

OU

T

RF

IN1

RF

IN2

VC

CP

LL

GN

DP

LL

VC

OIN

2

VC

OIN

1

VC

CC

OM

P

PLL

OU

T

ICU

RA

D

MIX2OB

IOUT

IOUTB

QOUT

QOUTB

GNDIQ

VCCIQ

MODLB

IIN

IINB

QIN

QINB

GNDDIV

VCCDIV

RFLOIN

GNDMIX1

VCCMIX1

MIX1OUT

MIX1OUTB

POONRX1

POONRX2

POONTX

MIX1INB2

MIX1IN2

IFLO

BA

ND

IFV

CO

O

IFV

CO

I

VC

CIF

GN

DIF

IFIN

IFIN

B LE

SD

AT

A

CLK

MIX

2O

HD155121F

1000

p

33p

33p

1p

68

10

TX

_VC

O2

OU

TP

UT

(J14

)

GS

M M

IX1

RF

IN(J

3)

DC

S L

NA

RF

IN(J

9)

DC

S L

NA

RF

OU

T(J

8)

MIX

2 IF

INP

UT(

J5)

VH

S L

OIN

/OU

T(J1

1)

VC

CD

CS

MIX

1R

FIN

(J7)

100

8p

08p

100n

1000

p

1000

p10

00p

1000

p

no fi

tno

fit

no fi

t

no fi

t

no fi

t

VC

CC

OM

P10

00p

1000

p

1p

1000

p

1000

p47

1000

p

1000

p

6p

VC

C

47p

Sie

men

s: B

FP

420

10p

no fi

t

no fi

t

3.3n

1p

00

0

22k

QO

UTBQO

UT

0

IOUT

B

MIX

2 O

UT

PU

T/P

GA

INP

UT

(J1)

IOUT

00

0

2p4.

7n0.

5p(Q

>40)

220n

MIX

1 IF

OU

TPU

T(J6

)U

HF

LOIN

PU

T(J

10)

1000

p

VC

CP

OO

NR

X1

PO

ON

TXPO

ON

RX

2

1000

p

560p

0.1µ

3

TOKO617DB-1018

TOKO617PT-1206

21

4

5

321

5

4

10k

10k

10k

10k

0

0

no fi

t

no fi

t

no fi

t

15n

4p

3368

00p

10033

p33

p1p

6810

010

0

VC

CV

CO

2M

UR

AT

AM

QE

9P7-

1747

Kv=

47M

Hz/

V

TX

VC

O2

4 5 6

3 2 1

OU

TV

CC

GN

DG

ND

MO

DC

ON

39010

00p

10

010

k10

p2.

7n

GS

M L

NA

RF

IN(J

4)

GS

M L

NA

RF

OU

T(J

2)

2p

47p

Sie

men

s: B

FP

420

10p

no fi

t10n

2p2p12

n

010

k22

p6.

8n

820

3p

HD155121F

23

Typical Performance

Power Supply Current Typical Performance

6

310p

10p

10

4.7k

no fit

10 17 18 32 38

7 19 31 37 40

41 42 43

A VCC = 3.0VICC [mA]

−+

−+

10p

10

4.7k

no fit

Unit:TRS: SiemensBFP420

R : ΩC : F

4a

b

5 26

27 Bit number 26

28

35 High for PCNLow for GSM

High

for PCN

for GSM

CLK

SDATA

LE

BAND

46

45 High

Rx

Low

Low

Low

Tx

High

44

POONTX

POONRX2

POONRX1

Active biascircuit

LNA bias current [mA]= (Vb − Va) / 10Ω

a

b

Figure 3

Power supply current does not include the LNA bias current calculated by below formula.

Power supply current [mA] = ICC [mA] – LNA Bias current [mA]

HD155121F

24

Power Supply Current Typical Performance (cont)

4054.543.5

VCC (V)32.52

54.543.5VCC (V)

32.52

45

50

55

60

65

70

Receive modePower supply current vs. VCC and TemperatureGSM mode, Gain1 (Normal gain), Bit No.26

Pow

er s

uppl

y cu

rren

t (m

A)

25

30

35

40

45

50

55

Transmit modePower supply current vs. VCC and TemperatureGSM mode

Transmit modePower supply current vs. VCC and TemperaturePCN mode

Pow

er s

uppl

y cu

rren

t (m

A)

54.543.5VCC (V)

32.5225

30

35

40

45

50

55

Pow

er s

uppl

y cu

rren

t (m

A)

4054.543.5

VCC (V)32.52

45

50

55

60

65

70

Receive modePower supply current vs. VCC and TemperaturePCN mode, Gain1 (Normal gain), Bit No.26

Pow

er s

uppl

y cu

rren

t (m

A)

Operating voltage range Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

Operating voltage rangeOperating voltage range

HD155121F

25

LNA Bias Circuit Typical Performance

310p

10p

10

4.7k

no fit

6 17 18 32 38

7 19 31 37 40

41 42 43

VCC = 3.0V

−+

−+

10p

10

4.7k

no fit

Unit:TRS: SiemensBFP420

R : ΩC : F

4a

b

5 26

27 all bit = 0 (no care)

28

35 High for PCNLow for GSM

High

for PCN

for GSM

CLK

SDATA

LE

BAND

46

45 High

Low

44

POONTX

POONRX2

POONRX1

Active biascircuit

Bias current [mA]= (Vb − Va) / 10Ω

a

b

Figure 4

4.543.5VCC (V)32.52

Bias current vs. VCC and Temperature

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

Bia

s cu

rren

t (m

A)

@E

xt. T

RS

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

HD155121F

26

Mixer1 Typical Performance

6

2

1 43

42

1000p

2.5p

12n

10 17 18 32 38

7 46 31 37 40

41 44 45

VCC = 3.0V

Mixer12p 0.5p*2

*1

220n(Q>40)

Unit: R : ΩC : F

28

27

26

35 GSM: "Low"PCN: "High"

Gain1: X7 = 0 for High gainGain2: X7 = 1 for Low gainother bit is no care

Input (GSM_RF)940MHz: −30dBm(50Ω)

Output (IF)225MHz(50Ω)

LE

SDATA

CLK

BAND

1000p

1000p

1000p

VCC = 3.0V

TOKO 617PT-1206, insertion loss ≅ 2.2dB800Ω : 50Ω

48

471.5p

4.7n

47

Mixer16pInput (PCN_RF)1842MHz: −30dBm(50Ω)

Input (Lo)GSM: 1165MHz, −8dBmPCN: 1617MHz, −8dBm

Note: 1.2.

Mixer1 is open collector type.Please tune this LC resonant circuit to get the maximum conversion gain at 225MHz.

391000p1000p

Figure 5

Item Mode Min Typ Max Unit Test Condition Note

Input (RF) Z GSM — 50 — Ω RF = 940MHz 1

PCN — 50 — Ω RF = 1842MHz

Differential output loadbetween pin42 and pin43

— — 800 — Ω IF = 225MHz 1

Output (IF) Z — — 50 — Ω IF = 225MHz 1

Input (LO) Z — — 50 — Ω LO = 1165, 1617MHz 1

Input (RF) VSWR GSM — — 2 RF = 940MHz 1

PCN — — 2 RF = 1842MHz

Input (LO) VSWR GSM — — 2 LO = 1150 to 1185MHz 1

PCN — — 4 LO = 1580 to 1655MHz

Note: 1. These values are not tested in mass production.

HD155121F

27

Mixer1 Typical Performance (cont)

• Mixer1 S parameters Port1: pin2 (MIX1IN1) Port2: pin1 (MIX1INB1)

Frequency(MHz)895900905910915920925930935940945950955960965970975980985990

S21S11 S22S12Ang.(degree)

−82.557−82.957−83.314−83.658−84.053−84.440−84.849−85.213−85.626−86.053−86.488−87.054−87.535−88.119−88.735−89.301−89.825−90.247−90.646−90.928

Ang.(degree)91.8991.7191.3990.7690.1489.3188.4187.6486.9085.9085.1184.5584.3284.6385.4186.3487.3187.5487.1586.51

Ang.(degree)90.7390.7190.5790.1989.6889.0388.4887.7287.0886.2785.5685.1384.9585.3886.1387.0487.7587.9687.6486.67

Ang.(degree)−79.502−79.884−80.164−80.543−80.877−81.223−81.544−81.910−82.283−82.668−83.100−83.532−84.137−84.752−85.411−86.052−86.574−86.974−87.278−87.564

Mag.(mU)754.62752.44752.00750.32749.06748.42748.51747.39747.02747.44747.37747.45747.73746.74745.30743.28740.18737.01734.02732.70

Mag.(mU)109.41111.75114.04116.14117.73119.37120.64121.21121.81121.93121.22119.98118.34116.90116.23116.77118.14120.72123.00124.32

Mag.(mU)107.94110.03112.02113.69115.37116.73118.02118.93119.54119.78119.74119.01117.70116.32116.29116.94119.06121.81124.35125.87

Mag.(mU)739.46737.07735.32733.45732.38731.16730.91729.92729.54729.38730.05730.63730.78730.02728.56724.68721.14717.34713.39711.49

• Mixer1 S parameters Port1: pin48 (MIX1IN2) Port2: pin47 (MIX1INB2)

Frequency(MHz)17951800180518101815182018251830183518401845185018551860186518701875188018851890

S21S11 S22S12Ang.(degree)

−137.31−137.67−138.01−138.39−138.68−139.03−139.36−139.75−140.13−140.54−140.93−141.23−141.66−142.01−142.45−142.85−143.27−143.76−144.18−144.59

Ang.(degree)54.3854.4254.3654.4054.2354.0853.8553.5453.2552.8552.5052.1451.6551.3751.0850.7650.5550.2850.2650.29

Ang.(degree)56.4056.3656.2956.3056.3456.4056.3856.6156.5756.5556.6856.6156.6756.7956.8456.9356.9956.9957.0557.13

Ang.(degree)−158.40−158.76−159.11−159.53−159.93−160.34−160.88−161.22−161.63−162.11−162.53−163.01−163.49−163.88−164.40−164.88−165.30−165.77−166.18−166.65

Mag.(mU)522.87523.98525.39526.77527.49528.26529.92531.15532.28533.43534.27535.62536.47537.71538.84539.18540.41541.22541.78542.05

Mag.(mU)173.99174.59174.84175.19175.11175.97175.84175.93176.03175.87175.65175.01174.36173.43172.32170.91169.63167.87166.42164.56

Mag.(mU)179.98178.85178.30177.57176.49176.09175.23174.88174.18173.91172.74172.61171.73171.48170.72170.10169.55168.56168.32167.81

Mag.(mU)601.94601.55600.91600.89599.30599.71598.92598.29597.93597.23596.37596.30594.72594.24592.85592.38591.02590.16589.17588.64

HD155121F

28

Mixer1 Typical Performance (cont)

• Mixer1 S parameters Port1: pin42 (MIX1OUT) Port2: pin43 (MIX1OUTB)

Frequency(MHz)200205210215220225230235240245250255260265270275280285290295

S21S11 S22S12Ang.(degree)

−21.27−21.81−22.34−22.87−23.40−23.92−24.52−25.09−25.63−26.17−26.73−27.26−27.84−28.39−28.96−29.53−30.07−30.62−31.22−31.81

Ang.(degree)71.10070.99470.75670.56370.37870.29970.05269.95669.75969.51969.33669.19068.99468.72968.59068.25968.04167.84067.52467.183

Ang.(degree)71.49471.34571.13270.95370.81670.54170.30470.23669.98069.70669.52469.40869.10368.99568.83368.55868.42768.22067.96667.699

Ang.(degree)−21.64−22.17−22.73−23.29−23.85−24.42−25.00−25.58−26.15−26.77−27.34−27.92−28.50−29.05−29.65−30.23−30.82−31.40−32.00−32.63

Mag.(mU)979.93979.30978.24977.43976.58976.18975.31975.16974.11973.55972.26972.06970.73970.76970.42969.30968.44967.83967.14966.09

Mag.(mU)39.0539.9640.8941.6942.6743.5744.5345.4246.2847.2048.1149.0049.9450.8051.8652.7953.6954.6855.6256.58

Mag.(mU)39.1440.1541.0541.8942.9143.7844.6345.5446.4847.3748.1949.1450.0250.8951.7652.6953.5854.5155.4356.32

Mag.(mU)979.20978.83977.99977.11977.38975.97974.84974.52974.24972.84972.50971.62971.00970.58969.11968.29967.22966.67965.98965.50

• Mixer1 S parameters Port1: pin39 (RFLOIN)

Frequency(MHz)11201125113011351140114511501155116011651170117511801185119011951200120512101215

S11 S11Ang.(degree)

−71.478−71.805−72.134−72.485−72.816−73.101−73.414−73.701−74.035−74.371−74.659−75.064−75.335−75.674−76.100−76.425−76.784−77.127−77.471−77.885

Ang.(degree)−101.924−102.299−102.703−103.040−103.392−103.758−104.098−104.415−104.781−105.128−105.454−105.790−106.114−106.415−106.713−107.018−107.243−107.590−107.769−108.016

Mag.(mU)831.05829.47827.93827.36825.87825.65823.25823.08821.69820.33820.23818.66817.64816.39815.89813.73813.55812.42811.32810.04

Mag.(mU)690.53689.12686.98685.49683.72682.04679.93677.68675.71674.24671.69669.77667.97664.89663.02661.31658.60656.49653.78651.73

Frequency(MHz)15701575158015851590159516001605161016151620162516301635164016451650165516601665

HD155121F

29

Mixer1 Typical Performance (cont)

4.543.5VCC (V)32.52

4.543.5VCC (V)32.52

Conversion gain vs. VCC and TemperatureGSM mode. Gain1 (Normal gain)

5

6

7

8

9

10

11

12

13

14

15

Con

vers

ion

gain

(dB

)

5

6

7

8

9

10

11

12

13

14

15

Con

vers

ion

gain

(dB

)

Operating voltage range

Conversion gain vs. VCC and TemperaturePCN mode. Gain1 (Normal gain)

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

4.543.5VCC (V)32.52

Conversion gain vs. VCC and TemperatureGSM mode. Gain2 (Low gain)

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Con

vers

ion

gain

(dB

)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°COperating voltage range

4.543.5VCC (V)32.52

Conversion gain vs. VCC and TemperaturePCN mode. Gain2 (Low gain)

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Con

vers

ion

gain

(dB

)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°COperating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

HD155121F

30

Mixer1 Typical Performance (cont)

4.543.5VCC (V)32.52

4.543.5VCC (V)32.52

Noise figure(SSB) vs. VCC and TemperatureGSM mode. Gain1 (Normal gain)

5

6

7

8

9

10

11

12

13

14

15

NF

SS

B (

dB)

5

6

7

8

9

10

11

12

13

14

15

NF

SS

B (

dB)

Operating voltage range

Noise figure(SSB) vs. VCC and TemperaturePCN mode. Gain1 (Normal gain)

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

4.543.5VCC (V)32.52

Noise figure(SSB) vs. VCC and TemperatureGSM mode. Gain2 (Low gain)

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

NF

SS

B (

dB)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°COperating voltage range

4.543.5VCC (V)32.52

Noise figure(SSB) vs. VCC and TemperaturePCN mode. Gain2 (Low gain)

NF

SS

B (

dB)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°COperating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

HD155121F

31

Mixer1 Typical Performance (cont)

4.543.5VCC (V)32.52

4.543.5VCC (V)32.52

1dB Input compression point vs.VCC and TemperatureGSM mode. Gain1 (Normal gain)

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

)

−20

−19

−18

−17

−16

−15

−14

−13

−12

−11

−10

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

)

Operating voltage range

1dB Input compression point vs.VCC and TemperaturePCN mode. Gain1 (Normal gain)

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

4.543.5VCC (V)32.52

1dB Input compression point vs.VCC and TemperatureGSM mode. Gain2 (Low gain)

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

4.543.5VCC (V)32.52

1dB Input compression point vs.VCC and TemperaturePCN mode. Gain2 (Low gain)

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

HD155121F

32

Mixer1 Typical Performance (cont)

4.543.5VCC (V)32.52

5

6

7

8

9

10

11

12

13

14

15

Del

ta (

Gai

n1−G

ain2

) ga

in (

dB)

5

6

7

8

9

10

11

12

13

14

15

Del

ta (

Gai

n1−G

ain2

) ga

in (

dB)

Delta (Gain1−Gain2) vs. VCC and TemperatureGSM mode.

Delta (Gain1−Gain2) vs. VCC and TemperaturePCN mode.

Operating voltage range

4.543.5VCC (V)32.52

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

HD155121F

33

Mixer2 Typical Performance

Unit: R : ΩC : F

Output (IF2)45MHz

26

27

28

35 Low

X6 = 0 for High gainX6 = 1 for Low gainother bit is no care

CLK

SDATA

LE

BAND

VCC = 3.0V

TOKO 617DB1018(200Ω: 50Ω)Test circuit insertion loss = 3.6dB

6

30

298p

100n NC

17 18 32 38 41

7 19

IF Amp MIX2

PGA

300

300

31 37 40

42 43

8pInput (IF1)225MHz−50dBm

36

1000p

15n

4pInput2 (IFLO)540MHz−10dBm

High POONRX144

High POONRX245

Low POONTX46

25

241000p

1000p50Ω

50Ω

50Ω

÷2

DIV DEM

Figure 6

Item Mode Min Typ Max Unit Test Condition Note

Input (IF) Z — 50 — Ω IF1 = 225MHz 1

LO Z — 50 — Ω IFLO = 540MHz 1

i/p VSWR — — 2 IF1 = 225MHz 1

LO VSWR — — 2 IFLO = 540MHz 1

Note: 1. These values are not tested in mass production.

HD155121F

34

Mixer2 Typical Performance (cont)

• Mixer2 S parameters Port1: pin30 (IFIN) Port2: pin29 (IFINB)

Frequency(MHz)200205210215220225230235240245250255260265270275280285290295

S21S11 S22S12Ang.(degree)

−20.936−21.513−22.040−22.592−23.094−23.735−24.288−24.863−25.424−26.032−26.599−27.186−27.743−28.351−28.923−29.513−30.038−30.634−31.230−31.837

Ang.(degree)12.57012.80813.02413.29713.49913.65914.00114.23314.53914.79515.01715.29915.52915.74915.99216.21616.48216.68516.85817.022

Ang.(degree)12.51712.82913.06513.25713.48913.70213.96914.25714.50014.75915.03915.30915.52915.75116.05616.35116.59816.77317.00017.193

Ang.(degree)−20.558−21.073−21.628−22.145−22.689−23.198−23.777−24.355−24.928−25.481−26.039−26.606−27.110−27.702−28.224−28.763−29.315−29.899−30.498−31.043

Mag.(mU)941.92940.46940.85940.32938.32938.11936.93936.23935.61934.29933.31933.20932.03931.63930.97929.68928.75927.72927.06925.35

Mag.(mU)47.8447.9147.9747.9948.0348.0548.0248.1048.1548.2048.2648.2948.3848.5648.5748.6648.7748.9249.0349.12

Mag.(mU)47.7747.8947.9247.9247.8947.9148.0047.9848.0948.0448.1248.2148.2648.3048.4048.5048.5848.7148.8448.94

Mag.(mU)941.65941.18939.92939.52938.70937.66937.61936.56936.05934.73934.55933.47933.28931.86931.63930.13929.21928.79927.41926.34

HD155121F

35

Mixer2 Typical Performance (cont)

4.543.5VCC (V)32.52

4.543.5VCC (V)32.52

Conversion gain vs. VCC and TemperatureGain1 (Normal gain)

9

10

11

12

13

14

15

16

17

Con

vers

ion

gain

(dB

)N

oise

figu

re (

dB)

Operating voltage range

Noise figure vs. VCC and TemperatureGain1 (Normal gain)

Operating voltage range

4.543.5VCC (V)32.52

Conversion gain vs. VCC and TemperatureGain2 (Low gain)

Operating voltage range

4.543.5VCC (V)32.52

Noise figure vs. VCC and TemperatureGain2 (Low gain)

Noi

se fi

gure

(dB

)

Operating voltage range

2

3

4

5

6

7

8

9

10

8

9

10

11

12

13

14

15

16

−7

−6

−5

−4

−3

−2

−1

0

1

Con

vers

ion

gain

(dB

)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

HD155121F

36

Mixer2 Typical Performance (cont)

4.543.5VCC (V)32.52

4.543.5VCC (V)32.52

1dB Input compression point vs.VCC and TemperatureGain1 (Normal gain)

1dB Input compression point vs.VCC and TemperatureGain2 (Low gain)

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

)D

elta

(Gai

n1−G

ain2

) ga

in (

dB)

Delta(Gain1−Gain2) vs. VCC and Temperature

4.543.5VCC (V)32.52

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

)

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

Ta=−40°C

Ta=100°CTa=85°CTa=27°CTa=−25°C

Operating voltage range

−30

−25

−20

−15

−10

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

−25

−20

−15

−10

−5

HD155121F

37

PGA and Demodulator Typical Performance

Unit: R : ΩC : F

OP

LL

VCC = 3.0V

RX mode

MO

DLB

6

IQ

17

DIV

18

IF

38 32

CLK

SD

AT

A

26

LE

OP

LL

27

Serial data

28

IFLO

fin: 540MHz−10dBm

MIX2O

15n

4p36

MIX2

300Ω

300Ω

GMSK modulated waveCarrier: 45MHz

TOKO617DB-1018Insertion loss = 3.6dB

DIV

MIX2OB

25

24PGA1000p

1000p

7

IQ

19

DIV

37

IF

31

BA

ND

35

44POONRX1

45POONRX2

46

10k

POONTX

23IOUT

10k22IOUTB

10k

10k

21QOUT

20QOUTB

IQDemo.

Measurementequipment

0,90,180,270degree

(45MHz)

Figure 7

HD155121F

38

PGA and Demodulator Typical Performance (cont)

504030Bit number20100

504030Bit number20100

Power gain vs. Bit number with TemperatureVCC = 3V

−60

40

20

0

−20

−40

60

Pow

er g

ain

(dB

)1d

B In

put c

ompr

essi

on p

oint

(dB

m)

1dB Input compression point vs. Bit numberVCC = 3V, Ta = 25°C

4.543.5VCC (V)32.52

Power gain vs. VCC and Temperature

4.543.5VCC (V)32.52

1dB Input compression point vs.VCC and Temperature

1dB

Inpu

t com

pres

sion

poi

nt (

dBm

) Operating voltage range

−70

−60

−50

−40

−30

−20

−10

0

−70

−60

−50

−40

−30

−20

−10

0

−80

40

20

0

−20

−40

−60

60

Pow

er g

ain

(dB

)

Ta=−25°CTa=27°CTa=85°CTa=100°C

Ta=−40°CTa=−25°CTa=27°CTa=85°CTa=100°C

Ta=−40°C

Operating voltage range

Bit number 6

Bit number 26

Bit number 46

Ta=−25°CTa=27°CTa=85°CTa=100°C

Ta=−40°C

HD155121F

39

PGA and Demodulator Typical Performance (cont)

100000Frequency (kHz)

1000 1000010010

Frequency (kHz)

10

120

200

400

600

800

1600

3000

20000

sim.(typ)

0.0

−1.2

−4.0

−14.0

−22.3

−29.2

−49.8

−47.3

−62.3

sim.(worst)

0.0

−0.5

−1.6

−7.9

−14.7

−20.3

−37.6

−46.3

−58.7

Frequency response of LPF in Demodulator

−80

0

−20

−40

−60

20

Rej

ectio

n (

dB)

IQ o

ffset

vol

tage

(m

V)

IQ offset voltage vs. VCC and TemperatureGSM mode

4.543.5VCC (V)32.524.543.5

VCC (V)32.52

IQ offset voltage vs. VCC and TemperaturePCN mode

IQ o

ffset

vol

tage

(m

V)

Operating voltage range

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60

sim.(typical)sim.(worst)

Operating voltage range

I Ta=−25°C

I Ta=85°CI Ta=100°C

I Ta=27°C

I Ta=−40°CQ Ta=−25°C

Q Ta=85°CQ Ta=100°C

Q Ta=27°C

Q Ta=−40°CI Ta=−25°C

I Ta=85°CI Ta=100°C

I Ta=27°C

I Ta=−40°CQ Ta=−25°C

Q Ta=85°CQ Ta=100°C

Q Ta=27°C

Q Ta=−40°C

HD155121F

40

IQ Modulator and OffsetPLL Typical Performance

Unit: R : ΩC : F

OP

LL

VCC = 3.0V

TX mode

MO

DLB

6

IQ

17

DIV

18

IF

38 32

CO

MP

10

OP

LL

3V

IFLO

fin: 540MHz−10dBm

GSM "Low"PCN "High"

TxVCOMURATAMQE9P7-1747

TxVCOMURATAMQE9P7-897

fin: 1167MHz−8dBm

0,90,180,270degree

(270MHz)

15n

4p

IINI

36 DIV

7

IQ

19

DIV

37

IF

31

RF

LOIN

39

ICU

RA

D

12

BA

ND

35

44POONRX1

45POONRX2

46

336800p

POONTX

11PLLOUT

9VCOIN1IQMod.

I, Ibar,Q, Qbar

generator

OffsetPLL

16

IINBIbarDigital

modulationsignal

generator

15

QINBQbar13

QIN

Differential encode: off

Detector mode:positive peak

Q

I

Q14

560p

33p 68

100 100390

1p 33p

33p

8VCOIN233p 68

100 100

22k

47

1pSpectrumanalyzer

390

1000p1000p

Figure 8

• Phase detector offset current ratio evaluation circuit

Unit: R : ΩC : F

VCOIN28

Signal generator

GSM: 1172MHz, −8dBmPCN: 1612MHz, −8dBm

GSM: VCOIN1 = 901MHz, −20dBmPCN: VCOIN2 = 1746MHz, −20dBm IFLO: 540MHz, −10dBm

36IFLO

47

22k

2.5V

RFLOIN

47

1000p1000p

Signal generator

13QINB

Signal generator

39

47

1000p

1000p

VCOIN191000p

PLLOUT11

ICURAD12

Oscillo scope

0.5V

14QIN1.5V

15IINB0.5V

16IIN1.5V

Figure 9

HD155121F

41

IQ Modulator and OffsetPLL Typical Performance (cont)

12040200 60 80 100Temperature (°C)

4.543.5VCC (V)32.52

Tx spectrum vs. TemperatureGSM mode (902MHz)

Tx spectrum vs. VCCGSM mode (902MHz)

Tx spectrum vs. VCCPCN mode (1747MHz)

0

20

40

60

80

100

Sup

pres

sion

rat

io (

dBc)

4.543.5VCC (V)32.52

0

20

40

60

80

100

Sup

pres

sion

rat

io (

dBc)

−60 −20−40

0

20

40

60

80

100

Sup

pres

sion

rat

io (

dBc)

Carrier suppression ratio

Side-band suppression ratio

Operating voltage range

Operating voltage range Operating voltage range

12040200 60 80 100Temperature (°C)

Tx spectrum vs. TemperaturePCN mode (1747MHz)

0

20

40

60

80

100

Sup

pres

sion

rat

io (

dBc)

−60 −20−40

Carrier suppression ratio

Side-band suppression ratio

Operating voltage range

Carrier suppression ratio

Side-band suppression ratio

Carrier suppression ratio

Side-band suppression ratio

HD155121F

42

IQ Modulator and OffsetPLL Typical Performance (cont)

12040200 60 80 100Temperature (°C)

4.543.5VCC (V)32.52

Phase error vs. TemperatureGSM mode (902MHz)

Phase error vs. VCCGSM mode (902MHz)

Phase error vs. VCCPCN mode (1747MHz)

0

2

4

6

8

7

5

3

1

9

10

Pha

se e

rror

(de

gree

)

4.543.5VCC (V)32.52

0

2

4

6

8

7

5

3

1

9

10

0

2

4

6

8

7

5

3

1

9

10

Pha

se e

rror

(de

gree

)

−60 −20−40

0

2

4

6

8

7

5

3

1

9

10

Pha

se e

rror

(de

gree

)

RMS

peak

Operating voltage range

Operating voltage range Operating voltage range

12040200 60 80 100Temperature (°C)

Phase error vs. TemperaturePCN mode (1747MHz)

Pha

se e

rror

(de

gree

)

−60 −20−40

Operating voltage range

RMS

peak

RMS

peak

RMS

peak

HD155121F

43

IQ Modulator and OffsetPLL Typical Performance (cont)

12040200 60 80 100Temperature (°C)

4.543.5VCC (V)32.5

Modulation spectrum vs. TemperatureGSM mode (902MHz)

Modulation spectrum vs. VCCGSM mode (902MHz)

Modulation spectrum vs. VCCPCN mode (1747MHz)

−100

−80

−60

−40

−20

0

−100

−80

−60

−40

−20

0

−100

−80

−60

−40

−20

0

Sup

pres

sion

rat

io (

dB)

4.543.5VCC (V)32.522

Sup

pres

sion

rat

io (

dB)

−60−100

−80

−60

−40

−20

0

−60−20−40

Sup

pres

sion

rat

io (

dB)

12040200 60 80 100Temperature (°C)

Modulation spectrum vs. TemperaturePCN mode (1747MHz)

Sup

pres

sion

rat

io (

dB)

−60 −20−40

200kHz offset400kHz offset600kHz to 1800kHz

3MHz to 6MHz6MHz upward offset

1.8MHz to 3MHz

Operating voltage range

200kHz offset400kHz offset600kHz to 1800kHz

3MHz to 6MHz6MHz upward offset

1.8MHz to 3MHz

Operating voltage range

200kHz offset400kHz offset600kHz to 1800kHz

3MHz to 6MHz6MHz upward offset

1.8MHz to 3MHz

200kHz offset400kHz offset600kHz to 1800kHz

3MHz to 6MHz6MHz upward offset

1.8MHz to 3MHz

Operating voltage range Operating voltage range

HD155121F

44

IQ Modulator and OffsetPLL Typical Performance (cont)

12040200 60 80 100Temperature (°C)

4.543.5VCC (V)32.5

Lock up time vs. TemperatureGSM mode (902MHz)

Lock up time vs. VCCGSM mode (902MHz)

Lock up time vs. VCCPCN mode (1747MHz)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Lock

up

time

(µs

ec)

4.543.5VCC (V)32.522

Lock

up

time

(µs

ec)

−600

20

40

60

80

100

−60−20−40

Lock

up

time

(µs

ec)

12040200 60 80 100Temperature (°C)

Lock up time vs. TemperaturePCN mode (1747MHz)

Lock

up

time

(µs

ec)

−60 −20−40

Operating voltage range

Operating voltage range Operating voltage range

Operating voltage range

HD155121F

45

IQ Modulator and OffsetPLL Typical Performance (cont)

• Modulation spectrum wave form vs. TemperatureGSM mode (880 MHz)

D

ATTEN 20dBRL 10.3dBm

CENTER 880.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

Ta = −40°C

MKR 9.77dBm880.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 10.7dBm

CENTER 880.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 10.20dBm880.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 10.2dBm

CENTER 880.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 10.03dBm880.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.4dBm

CENTER 880.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.27dBm880.00MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.7dBm

CENTER 880.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.53dBm880.00MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.2dBm

CENTER 880.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.03dBm880.00MHz

VAVG 10010dB/

R

Ta = 27°C Ta = 100°C

Specification

Specification Specification Specification

Specification Specification

• Modulation spectrum wave form vs. TemperatureGSM mode (902 MHz)

D

ATTEN 20dBRL 10.0dBm

CENTER 902.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

Ta = −40°C

MKR 9.62dBm902.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 10.2dBm

CENTER 902.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 10.50dBm902.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.7dBm

CENTER 902.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.37dBm902.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.3dBm

CENTER 902.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.12dBm902.00MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.7dBm

CENTER 902.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.50dBm902.00MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.8dBm

CENTER 902.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.00dBm902.00MHz

VAVG 10010dB/

R

Ta = 27°C Ta = 100°C

Specification

Specification Specification Specification

Specification Specification

HD155121F

46

IQ Modulator and OffsetPLL Typical Performance (cont)

• Modulation spectrum wave form vs. TemperatureGSM mode (915 MHz)

D

ATTEN 20dBRL 9.9dBm

CENTER 915.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

Ta = −40°C

MKR 9.61dBm915.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 10.4dBm

CENTER 915.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.73dBm915.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.5dBm

CENTER 915.000MHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.67dBm915.000MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.1dBm

CENTER 915.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.28dBm915.00MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 12.4dBm

CENTER 915.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 12.40dBm915.00MHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.8dBm

CENTER 915.00MHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.83dBm915.00MHz

VAVG 10010dB/

R

Ta = 27°C Ta = 100°C

Specification

Specification Specification Specification

Specification Specification

HD155121F

47

IQ Modulator and OffsetPLL Typical Performance (cont)

• Modulation spectrum wave form vs. TemperaturePCN mode (1710 MHz)

D

ATTEN 20dBRL 8.5dBm

CENTER 1.710000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

Ta = −40°C

MKR 8.36dBm1.710000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.2dBm

CENTER 1.710000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 8.90dBm1.710000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.4dBm

CENTER 1.710000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.23dBm1.710000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 10.9dBm

CENTER 1.71000GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.03dBm1.71000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.2dBm

CENTER 1.71000GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.23dBm1.71000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.5dBm

CENTER 1.71000GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.20dBm1.71000GHz

VAVG 10010dB/

R

Ta = 27°C Ta = 100°C

Specification

Specification Specification Specification

Specification Specification

• Modulation spectrum wave form vs. TemperaturePCN mode (1747 MHz)

D

ATTEN 20dBRL 9.4dBm

CENTER 1.747000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

Ta = −40°C

MKR 8.76dBm1.747000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.4dBm

CENTER 1.747000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.58dBm1.747000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.5dBm

CENTER 1.747000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.17dBm1.747000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.3dBm

CENTER 1.74700GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.44dBm1.74700GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.6dBm

CENTER 1.74700GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.58dBm1.74700GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.9dBm

CENTER 1.74700GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.87dBm1.74700GHz

VAVG 10010dB/

R

Ta = 27°C Ta = 100°C

Specification

Specification Specification Specification

Specification Specification

HD155121F

48

IQ Modulator and OffsetPLL Typical Performance (cont)

• Modulation spectrum wave form vs. TemperaturePCN mode (1785 MHz)

D

ATTEN 20dBRL 8.8dBm

CENTER 1.785000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

Ta = −40°C

MKR 8.44dBm1.785000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 8.7dBm

CENTER 1.785000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 8.91dBm1.785000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 9.4dBm

CENTER 1.785000GHz SPAN 1.000MHzSWP 50.0ms*RBW 30kHz VBW 30kHz

MKR 9.57dBm1.785000GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.3dBm

CENTER 1.78500GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 10.94dBm1.78500GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.4dBm

CENTER 1.78500GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.41dBm1.78500GHz

VAVG 10010dB/

R

D

ATTEN 20dBRL 11.8dBm

CENTER 1.78500GHz SPAN 20.00MHzSWP 50.0ms*RBW 100kHz VBW 100kHz

MKR 11.66dBm1.78500GHz

VAVG 10010dB/

R

Ta = 27°C Ta = 100°C

Specification

Specification Specification Specification

Specification Specification

HD155121F

49

IQ Modulator and OffsetPLL Typical Performance (cont)

Common mode voltage (V)

Input swing level (Vpp) (single)

Tx spectrum vs. Input swing levelGSM mode (902MHz)

Tx spectrum vs. Input swing levelPCN mode (1747MHz)

Sup

pres

sion

leve

l (d

Bc)

Input swing level (Vpp) (single)

Sup

pres

sion

leve

l (d

Bc)

Sup

pres

sion

leve

l (d

Bc)

1.601.000.80 1.20 1.40−100

−80

−60

−40

−20

0

−10

−30

−70

−90

−50

0.40 0.60 1.601.000.80 1.20 1.40−100

−80

−60

−40

−20

0

−10

−30

−70

−90

−50

0.40 0.60

−100

−80

−60

−40

−20

0

−10

−30

−70

−90

−50

−100

−80

−60

−40

−20

0

−10

−30

−70

−90

−50

1.751.000.75 1.25 1.500.25 0.50Common mode voltage (V)

1.751.000.75 1.25 1.500.25 0.50

Tx spectrum vs. Common mode voltageGSM mode (902MHz)

Sup

pres

sion

leve

l (d

Bc)

Tx spectrum vs. Common mode voltagePCN mode (1747MHz)

Operating range

Operating range Operating range

Operating range

Carrier suppression ratio

Side-band suppression ratio

Carrier suppression ratio

Side-band suppression ratio

Carrier suppression ratio

Side-band suppression ratio

Carrier suppression ratio

Side-band suppression ratio

HD155121F

50

IQ Modulator and OffsetPLL Typical Performance (cont)

RICURAD(Pin12) (kΩ)

Phase comparator output current (I1, I3) vs.VCC and Temperature

0.3

0.6

0.9

1.5

1.2

0.25

0.3

0.35

0.45

0.4

I3/I1 (mA

)

I1 o

r I3

(m

A)

OPLL phase detector output current value is controlled by RICURAD(pin12).Following figure is for determining phase detector output current.

IPLL

OU

T(P

in11

) (

mA

)

100100

1

2

3

4

5

6

1

54.543.5VCC (V)

32.52

Operating voltage range

I1

I3/I1

I3

I1,I3 Ta=−40°CI1,I3 Ta=−25°CI1,I3 Ta=27°CI1,I3 Ta=85°CI1,I3 Ta=100°C

I3/I1 Ta=−40°CI3/I1 Ta=−25°CI3/I1 Ta=27°CI3/I1 Ta=85°CI3/I1 Ta=100°C

RICURAD = 22kΩ at pin12

IPLLOUT (GSM)

IPLLOUT (PCN)

HD155121F

51

Package Dimensions

Preliminary

Hitachi CodeJEDECEIAJWeight (reference value)

FP-48CConforms0.2 g

Unit: mm

*Dimension including the plating thicknessBase material dimension

9.0 ± 0.27.0

*0.21 ± 0.050.08

36 25

1 12

37

48

24

13

0.5

9.0

± 0.

2

0.10

1.00

0° − 8°

0.50 ± 0.10

*0.1

7 ±

0.05

1.70

Max

M

0.75 0.75

0.19 ± 0.04

1.40

0.15

± 0

.04

0.13

+0.

09−0

.05

HD155121F

52

Appendix A

Transmitter Architecture (offset PLL architecture)

The HD155121F generates a modulated signal at IF with a quadrature modulator and converts it to a finalfrequency with an Offset Phase Locked Loop (OPLL).

The Offset Phase Locked Loop is simply a PLL with a down conversion mixer in the feedback path.

Using a down converter in the feed back path acts as an up converter in the forward path, which allows theoutput frequency to be different from the comparison frequency without affecting the normal operation ofthe loop. Phase / frequency changes in the reference signal are not scaled, as they would be if a dividerwere used in the feed back path, and hence the modulation is faithfully reproduced at the final frequency.

The main advantage of the OPLL in this application is that it forms a tracking band pass filter around themodulated signal. This is because the loop cannot respond to phase variations at the reference that areoutside its closed loop bandwidth. Thus the broad band phase noise from the quadrature modulator isshaped by the frequency response of the closed loop allowing the TX noise specifications to be met withoutfurther filtering.

A secondary advantage of the OPLL is that the output signal, coming from a VCO, is truly constantenvelope. This removes the problem of spectral spreading caused by AM to AM and AM to PMconversion in the power amplifier.

The OPLL is formed from an on-chip Gilbert cell down converter, limitters and phase detector with an off-chip passive loop filter and VCO. The phase detector is implemented as a Gilbert cell with a current sourceoutput stage, which allows an integrator to be included in the passive loop filter. This is similar to thetechnique commonly used in PLL synthesizers.

As is well known, when out of lock, a mixer type phase detector does not provide any frequencydiscrimination. This means that the under normal circumstances, a loop of this type is not guaranteed tolock. However in the HD155121F, a well defined offset current is added to the phase detector output, sothat when the loop is out of lock, this offset current linearly charges the capacitors in the loop filter. Thishas the effect of sweeping the VCO across the band. When the down converted signal from the VCOapproaches the reference frequency, the Gilbert cell begins to operate as a phase detector and the loopacquires in the normal way. The presence of the offset current in lock is unimportant, as it only results in astatic phase offset between the final signal and the reference signal.

At the end of the transmit burst, when the transmitter is disabled, a switch closes to discharge the loop filtercapacitors. This resets the acquisition process in preparation for the start of the next burst.

The closed loop bandwidth of the OPLL should be designed to be around 1.2 to 1.5 MHz, which should belarge enough to allow rapid locking and accurate tracking of the modulation. If the bandwidth is too large,the OPLL will not reject the noise from the modulator sufficiently. The ideal bandwidth will be acompromise dependant on the noise performance of the VCO and amplifier chain.

HD155121F

53

C3

R3Phase detector VCO

C2

R2C1

Figure A-1 Loop Filter Circuit of OPLL

The following equations provide a good starting point for the design of the OPLL.

Let:f Closed loop unity gain frequency Hz Closed loop bandwidth

f f Closed loop resonant frequency Hz

fk VCO gain Hz Vk k rad Vk Peak phase dotector current mA in GSM e at RICURAD k

k Phase ector gain k

n

n n

v

vr v

d

dr d

0

0 2

2

21 2 22

2 1 7

== =

= ⋅== ⋅ ⋅= = =

= = ⋅ =

( ) ( )

/ ( )

( / )( / sec)

. ( ) mod ( )

det ( ) / . /

ω π

π

π

Ω

ππξ

( / ) ( )

.

mA rad at RICURAD k

DampingFactor

== ≅

22

0 9

Ω

Then:

C k k

R k k C C

C CR C

vr dr n

v d n

n

2

2 2 1 2 2 2

1 2 153 3 1 10

2= ⋅= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅=⋅ ≅ ⋅

/

/( ) ( ) /( )

//( )

ωξ ξ ω

ω

Note that many VCO modules have up to 100 pF capacitance on the control line. This can be verysignificant when designing high bandwidth loops.

The phase detector peak output current is centered around 1.2 mA which is set by an 22 kΩ resistorRICURAD on pin 12.

For example, the f0 = 1.2 MHz loop filter using the VCO of kv = 30 MHz / V (GSM) should be designed inthe following method.

Let:

f MHz Hz

f f kHz Hz

f rad

k MHz V Hz V

k k rad Vk mA at RICURAD k

n

n n

v

vr v

d

06

05

5

6

6

1 2 1 2 10

2 600 6 10

2 2 6 10

30 30 10

2 2 30 101 2 22

= = ×

= = = ×

= ⋅ = ⋅ ×

= = ×

= ⋅ = × ×= =

. ( ) . ( )

/ ( ) ( )

( / sec)

( / ) ( / )

( / sec). ( ) (

ω π π

π πΩ))

. / ( / ) . ) / ( / ) ( )

.

k mA rad A rad at RICURAD k

Damping Factordr = = × == ≅

−1 7 1 7 10 22

0 9

3π πξ

Ω

HD155121F

54

Then:

C k k nF

R C

C C pF

R C

vr dr n

n

22 30 10 1 7 10

2 6 107 2 10 7 2

2 2 22 0 9

2 6 10 7 2 1066

1 2 15 7 2 10 15 480

3

26 3

5 29

5 9

9

= ⋅ = × × × ×× ×

= × =

= ⋅ ⋅ = ×× × × ×

=

= = × =

−−

/.

( ). .

( ) / ( ).

./ ( . ) /

ωπ

ξ ωπ

Ω

33 1 101

2 6 106≅ ⋅ =× ×

/( )ωπn

When the VCO modules have 33 pF capacitance on the control line, C3 is 33 pF.

C pFR

3 333 804

== Ω

The result of the calculations for the PLL loop characteristic,based on the following block diagram (figureA-2), is showed in figure A-3 and figure A-4. The offset PLL will be stable if the component values shownare used.

C333p

R3

804

VCO module

Input phase Output phasekdr

+−

kvr/S

kvr = 2π ⋅ kv = 2π × 30 × 106 (rad / Vsec)

kdr = (1.7 × 10−3) / π (A / rad)

VCO module exampleGSM: MURATA MQE9P7-897

PCN: MURATA MQE9P7-1747

C3 = 33pFkv = 30MHz/V

C3 = 22pFkv = 47MHz/V

VCO

C27.2n

R266

C1480p

Unit: R : ΩC : F

Phasedetector

Figure A-2 Block Diagram for OPLL Simulation

HD155121F

55

The open loop transfer function, Hol(S), of OPLL as shown in figure A-2 is given below.

Hol Sk k S

C C R S S S

k k S

C C R S S S

C C CC C C R RC R

vr dr z

p p

vr dr z

p p

p

p

( )( )

( )

( )

( ) ( )

(

=⋅ ⋅ +

⋅ ⋅ ⋅ ⋅ + ⋅ +=

⋅ ⋅ +⋅ ⋅ ⋅ ⋅ + +

= + +⋅ ⋅ ⋅ ⋅

=⋅

ωω ω

ωω ω

ω

ςω

1 3 3 2 1 3 3

1 2 31 2 3 2 32 2

2 2 2 21 2

CC C C R C C

C C C

C Rz

p p

p p

1 3 3 3 1 2

2 1 2 31

2 2

1

1

12

22

+ + ⋅ + + +

=⋅

= − −

= + −

) ( )

( )

( )

( )

ω

ω ω ς ς

ω ω ς ς

Let:C pFC nFC pF VCO input capci ce on the control lineRR

1 4802 7 23 332 663 804

=====

.( tan )

ΩΩ

Then:ω πςω π

ω π

ω π

π

π

p

z

p

p

vr

dr

MHz

kHz

MHz

MHz

k rad V

k A rad

= × = ×=

= × = ×

= × = ×

= × = ×

= × ×

= × −

35 70 10 2 5 68

1 036

2 104 10 2 335

27 32 10 2 4 348

46 65 10 2 7 425

2 30 10

1 7 10

6

6

16

26

6

3

. . ( )

.

. ( )

. . ( )

. . ( )

( / sec)

( . ) / ( / )

The magnitude, | Hol(jω) |, and the phase, Φ(jω), of Hol(S) are as shown in the following equations. Whenthe above constants from ωp to kdr are substituted in the equations, then | Hol(jω) | and Φ(jω) in figure A-3can be obtained.

Hol jk k

C C R

j

vr dr p

p p

z p p

( )

( ) tan ( / ) tan ( / ) tan ( / ) (deg)

ωω ω

ω ω ω ω ω

ω ω ω ω ω ω ω

=⋅ ⋅ +

⋅ ⋅ ⋅ ⋅ + ⋅ +

= − − −− − −

212

2 212 2

22

1 11

12

1 3 3

180Φ

HD155121F

56

108106 107

Frequency (Hz)

designed for 1.2MHz bandwidth loop filter designed for 1.2MHz bandwidth loop filter

−100

−50

0

50

100

| Hol

(jω

) |

104 105 108106 107

Frequency (Hz)

−280

−230

−180

−130

−80

Φ (

jω)

104 105

GSMGSM, PCN

PCN

Figure A-3 The Magnitude, | Hol(jω) |, and the Phase, Φ(jω),of Open Loop Transfer Function Hol(jω)

Moreover, the closed loop transfer function, Hcl(jw) is the following equation, and the magnitudecharacteristic, Hcl(jω), of he closed loop is shown is figure A-4.

Hcl jHol j

Hol j( )

( )( )

ω ωω

=+1

108106 107

Frequency (Hz)

designed for 1.2MHz bandwidth loop filter

−100

−60

−40

−20

−80

0

20

| Hcl

(jω

) |

104 105

GSM

PCN

Figure A-4 The Magnitude, | Hcl(jω) | of Closed Loop Transfer Function Hcl(jω)

HD155121F

57

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,copyright, trademark, or other intellectual property rights for information contained in this document.Hitachi bears no responsibility for problems that may arise with third party’s rights, includingintellectual property rights, in connection with use of the information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you havereceived the latest product standards or specifications before final design, purchase or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,contact Hitachi’s sales office before using the product in an application that demands especially highquality and reliability or where its failure or malfunction may directly threaten human life or cause riskof bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,traffic, safety equipment or medical equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularlyfor maximum rating, operating supply voltage range, heat radiation characteristics, installationconditions and other characteristics. Hitachi bears no responsibility for failure or damage when usedbeyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeablefailure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or otherconsequential damage due to operation of the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document withoutwritten approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductorproducts.

Hitachi, Ltd.Semiconductor & Integrated Circuits.Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, JapanTel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

Hitachi Asia Pte. Ltd.16 Collyer Quay #20-00Hitachi TowerSingapore 049318Tel: 535-2100Fax: 535-1533

URL NorthAmerica : http:semiconductor.hitachi.com/Europe : http://www.hitachi-eu.com/hel/ecgAsia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htmAsia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htmAsia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htmJapan : http://www.hitachi.co.jp/Sicd/indx.htm

Hitachi Asia Ltd.Taipei Branch Office3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105)Tel: <886> (2) 2718-3666Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd.Group III (Electronic Components)7/F., North Tower, World Finance Centre,Harbour City, Canton Road, Tsim Sha Tsui,Kowloon, Hong KongTel: <852> (2) 735 9218Fax: <852> (2) 730 0281 Telex: 40815 HITEC HXHitachi Europe Ltd.

Electronic Components Group.Whitebrook ParkLower Cookham RoadMaidenheadBerkshire SL6 8YA, United KingdomTel: <44> (1628) 585000Fax: <44> (1628) 778322

Hitachi Europe GmbHElectronic components GroupDornacher Straße 3D-85622 Feldkirchen, MunichGermanyTel: <49> (89) 9 9180-0Fax: <49> (89) 9 29 30 00

Hitachi Semiconductor (America) Inc.179 East Tasman Drive,San Jose,CA 95134 Tel: <1> (408) 433-1990Fax: <1>(408) 433-0223

For further information write to: