49
Review of I c variation, R c , RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang, J. Lu, V. Toplosky, B. Jarvis, S. Carter, Y. L. Viouchkov, and D. C. Larbalestier all NHMFL Quality Assurance procedure for 32T project: We are looking for compliance with our specification, which includes transport and geometrical properties of (Re)BCO tape using minimum set of measurements. (Re)BCO coated conductor was purchased from SuperPower Inc. : 144 lengths, 60 m or 110 m each Comparison of 4K in- field I c measured on short samples for conductors from different This work was supported in part by the U.S. National Science Foundation under Grant No. DMR- 0654118, DMR-0923070 and the State of Florida. Special thanks to AMSC, Fujikura, SuNAM, SuperOx for providing samples for testing

Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Embed Size (px)

Citation preview

Page 1: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Review of Ic variation Rc RRR and other parametersD Abraimov H W Weijers W D Markiewicz M Santos

J McCallister J Jaroszynski J Jiang J Lu V Toplosky B Jarvis S Carter Y L Viouchkov and D C Larbalestier all NHMFL

Quality Assurance procedure for 32T project

We are looking for compliance with our specification which includes

transport and geometrical properties of (Re)BCO tape using

minimum set of measurements

(Re)BCO coated conductor was purchased from SuperPower Inc

144 lengths 60 m or 110 m each

Comparison of 4K in- field Ic measured on short samples for conductors

from different manufacturers This work was supported in part by the US National Science Foundation under Grant No DMR-0654118 DMR-0923070 and the State of Florida

Special thanks to AMSC Fujikura SuNAM SuperOx for providing samples for testing

BIIabHigh Jc

B at 18o

to tape planebull One of the major limiting factors of coil

performance is sharp Jc(Q) dependence in (Re)BCO bull The minimum Ic for 32 T coil design occurs at 18o

critical angle between tape plane and magnetic field of 17 T

Origins of specification for (Re)BCO conductor

Xu A et al Superconducting Science and Technology 23 014003 (2010)

BIIab

Restriction on Ic

bull Tape is being delivered in 110 or 60 m lengths making joints resistance critical

bull RRRgt50 for low resistance of stabilizer in case of quench

Dimensionsbull Cu stabilizer layer should be uniform through

length and width of the tape to provide mechanical stability between pancake windings and get uniform heat propagation

bull Tape width should be uniform to avoid variations in Ic and mechanical properties difficulties in coil manufacturing

17 T

Other transport properties

Property of tape from the specification Value Units

Minimum Ic at 42 K extrapolated to 17 T from Ic(B) measured at 18o angle gt256 A

n from V~I n fit gt25 -Joints resistance measurements le230 mWmiddotcm2

Residual Resistivity Ratio of Cu (42 to 300 K) gt50 -

Final conductor width 410 plusmn 005 mm

Final conductor Thickness le0170 mm

Cu Stabilizer Cross-sectional Area 042 plusmn 001 mm 2

Substrate cross-sectional Area 020 plusmn 001 mm 2

Ag layer thickness 20 plusmn 05 mm

(Re)BCO conductor specification(short list)

Current biasing two Sorensen power supplies

bull up to 1400 Abull Analog connection

Current monitor Keithley 2000Voltage measurement Keithley 2184AMagnet power supply Lake Shore LS 622

LabView based program for automatic B and Ibias sweeping and Ic calculation

Ic testing system for 32 T tape characterization

Oxford InstrumentsSuperconducting 135 T (42K) magnet

sample holder

Other techniquesroutine QA tests

Nikon iNexiv VMA-2520 microscope

Final conductor width Surface conditionThickness profiles

Vibromet 2

Preparation cross-sections

SEM visualization with Zeiss 1540 XB Cross beam

Olympus Microscope BX41M-LED

Total conductor thicknessCu Stabilizer cross‐sectional areaSubstrate cross-sectional area

Simplimet 3000Ag thicknessReBCO uniformityab-plane orientation

Transport measurements of Rc Ic of lap joints in LN self field

Additional techniques used for study properties of ReBCO tapes

bull 16 T Quantum design PPMS for measuring in- field

variable temperature angular dependence of Ic and R(T)

bull Rotator with split coil electromagnet 1T 77K for

measuring angular dependence of Ic in full width tapes

bull YateStar system for measuring distribution of transport

critical current at 77K 08T 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

T=77K B=1 T

SP125 inner SuNAM

I c A

degree

-30 0 30 60 90 120 150 180 210

10

1T 2T 4T 8T 12T 16T

J c M

Ac

m2

degree904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

RR

(30

0K

)

Temperature (K)

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 2: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

BIIabHigh Jc

B at 18o

to tape planebull One of the major limiting factors of coil

performance is sharp Jc(Q) dependence in (Re)BCO bull The minimum Ic for 32 T coil design occurs at 18o

critical angle between tape plane and magnetic field of 17 T

Origins of specification for (Re)BCO conductor

Xu A et al Superconducting Science and Technology 23 014003 (2010)

BIIab

Restriction on Ic

bull Tape is being delivered in 110 or 60 m lengths making joints resistance critical

bull RRRgt50 for low resistance of stabilizer in case of quench

Dimensionsbull Cu stabilizer layer should be uniform through

length and width of the tape to provide mechanical stability between pancake windings and get uniform heat propagation

bull Tape width should be uniform to avoid variations in Ic and mechanical properties difficulties in coil manufacturing

17 T

Other transport properties

Property of tape from the specification Value Units

Minimum Ic at 42 K extrapolated to 17 T from Ic(B) measured at 18o angle gt256 A

n from V~I n fit gt25 -Joints resistance measurements le230 mWmiddotcm2

Residual Resistivity Ratio of Cu (42 to 300 K) gt50 -

Final conductor width 410 plusmn 005 mm

Final conductor Thickness le0170 mm

Cu Stabilizer Cross-sectional Area 042 plusmn 001 mm 2

Substrate cross-sectional Area 020 plusmn 001 mm 2

Ag layer thickness 20 plusmn 05 mm

(Re)BCO conductor specification(short list)

Current biasing two Sorensen power supplies

bull up to 1400 Abull Analog connection

Current monitor Keithley 2000Voltage measurement Keithley 2184AMagnet power supply Lake Shore LS 622

LabView based program for automatic B and Ibias sweeping and Ic calculation

Ic testing system for 32 T tape characterization

Oxford InstrumentsSuperconducting 135 T (42K) magnet

sample holder

Other techniquesroutine QA tests

Nikon iNexiv VMA-2520 microscope

Final conductor width Surface conditionThickness profiles

Vibromet 2

Preparation cross-sections

SEM visualization with Zeiss 1540 XB Cross beam

Olympus Microscope BX41M-LED

Total conductor thicknessCu Stabilizer cross‐sectional areaSubstrate cross-sectional area

Simplimet 3000Ag thicknessReBCO uniformityab-plane orientation

Transport measurements of Rc Ic of lap joints in LN self field

Additional techniques used for study properties of ReBCO tapes

bull 16 T Quantum design PPMS for measuring in- field

variable temperature angular dependence of Ic and R(T)

bull Rotator with split coil electromagnet 1T 77K for

measuring angular dependence of Ic in full width tapes

bull YateStar system for measuring distribution of transport

critical current at 77K 08T 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

T=77K B=1 T

SP125 inner SuNAM

I c A

degree

-30 0 30 60 90 120 150 180 210

10

1T 2T 4T 8T 12T 16T

J c M

Ac

m2

degree904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

RR

(30

0K

)

Temperature (K)

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 3: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Property of tape from the specification Value Units

Minimum Ic at 42 K extrapolated to 17 T from Ic(B) measured at 18o angle gt256 A

n from V~I n fit gt25 -Joints resistance measurements le230 mWmiddotcm2

Residual Resistivity Ratio of Cu (42 to 300 K) gt50 -

Final conductor width 410 plusmn 005 mm

Final conductor Thickness le0170 mm

Cu Stabilizer Cross-sectional Area 042 plusmn 001 mm 2

Substrate cross-sectional Area 020 plusmn 001 mm 2

Ag layer thickness 20 plusmn 05 mm

(Re)BCO conductor specification(short list)

Current biasing two Sorensen power supplies

bull up to 1400 Abull Analog connection

Current monitor Keithley 2000Voltage measurement Keithley 2184AMagnet power supply Lake Shore LS 622

LabView based program for automatic B and Ibias sweeping and Ic calculation

Ic testing system for 32 T tape characterization

Oxford InstrumentsSuperconducting 135 T (42K) magnet

sample holder

Other techniquesroutine QA tests

Nikon iNexiv VMA-2520 microscope

Final conductor width Surface conditionThickness profiles

Vibromet 2

Preparation cross-sections

SEM visualization with Zeiss 1540 XB Cross beam

Olympus Microscope BX41M-LED

Total conductor thicknessCu Stabilizer cross‐sectional areaSubstrate cross-sectional area

Simplimet 3000Ag thicknessReBCO uniformityab-plane orientation

Transport measurements of Rc Ic of lap joints in LN self field

Additional techniques used for study properties of ReBCO tapes

bull 16 T Quantum design PPMS for measuring in- field

variable temperature angular dependence of Ic and R(T)

bull Rotator with split coil electromagnet 1T 77K for

measuring angular dependence of Ic in full width tapes

bull YateStar system for measuring distribution of transport

critical current at 77K 08T 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

T=77K B=1 T

SP125 inner SuNAM

I c A

degree

-30 0 30 60 90 120 150 180 210

10

1T 2T 4T 8T 12T 16T

J c M

Ac

m2

degree904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

RR

(30

0K

)

Temperature (K)

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 4: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Current biasing two Sorensen power supplies

bull up to 1400 Abull Analog connection

Current monitor Keithley 2000Voltage measurement Keithley 2184AMagnet power supply Lake Shore LS 622

LabView based program for automatic B and Ibias sweeping and Ic calculation

Ic testing system for 32 T tape characterization

Oxford InstrumentsSuperconducting 135 T (42K) magnet

sample holder

Other techniquesroutine QA tests

Nikon iNexiv VMA-2520 microscope

Final conductor width Surface conditionThickness profiles

Vibromet 2

Preparation cross-sections

SEM visualization with Zeiss 1540 XB Cross beam

Olympus Microscope BX41M-LED

Total conductor thicknessCu Stabilizer cross‐sectional areaSubstrate cross-sectional area

Simplimet 3000Ag thicknessReBCO uniformityab-plane orientation

Transport measurements of Rc Ic of lap joints in LN self field

Additional techniques used for study properties of ReBCO tapes

bull 16 T Quantum design PPMS for measuring in- field

variable temperature angular dependence of Ic and R(T)

bull Rotator with split coil electromagnet 1T 77K for

measuring angular dependence of Ic in full width tapes

bull YateStar system for measuring distribution of transport

critical current at 77K 08T 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

T=77K B=1 T

SP125 inner SuNAM

I c A

degree

-30 0 30 60 90 120 150 180 210

10

1T 2T 4T 8T 12T 16T

J c M

Ac

m2

degree904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

RR

(30

0K

)

Temperature (K)

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 5: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Other techniquesroutine QA tests

Nikon iNexiv VMA-2520 microscope

Final conductor width Surface conditionThickness profiles

Vibromet 2

Preparation cross-sections

SEM visualization with Zeiss 1540 XB Cross beam

Olympus Microscope BX41M-LED

Total conductor thicknessCu Stabilizer cross‐sectional areaSubstrate cross-sectional area

Simplimet 3000Ag thicknessReBCO uniformityab-plane orientation

Transport measurements of Rc Ic of lap joints in LN self field

Additional techniques used for study properties of ReBCO tapes

bull 16 T Quantum design PPMS for measuring in- field

variable temperature angular dependence of Ic and R(T)

bull Rotator with split coil electromagnet 1T 77K for

measuring angular dependence of Ic in full width tapes

bull YateStar system for measuring distribution of transport

critical current at 77K 08T 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

T=77K B=1 T

SP125 inner SuNAM

I c A

degree

-30 0 30 60 90 120 150 180 210

10

1T 2T 4T 8T 12T 16T

J c M

Ac

m2

degree904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

RR

(30

0K

)

Temperature (K)

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 6: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Additional techniques used for study properties of ReBCO tapes

bull 16 T Quantum design PPMS for measuring in- field

variable temperature angular dependence of Ic and R(T)

bull Rotator with split coil electromagnet 1T 77K for

measuring angular dependence of Ic in full width tapes

bull YateStar system for measuring distribution of transport

critical current at 77K 08T 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

T=77K B=1 T

SP125 inner SuNAM

I c A

degree

-30 0 30 60 90 120 150 180 210

10

1T 2T 4T 8T 12T 16T

J c M

Ac

m2

degree904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

RR

(30

0K

)

Temperature (K)

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 7: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Contact resistance of lap joints

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 8: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Contact resistance arranged by SP process run numberSmall spread within each run but has large difference between some runs

Maximum average160 nW cm2

Peak maximum230 nW cm2

Measurements done on standard lap joints with 80 mm overlap80 mm

32T spec

M3-1033M3-1062have low Ic (4K) and high joint resistance

T=77K SF

0 20 40 60 80 1000

100

200

300

40010

22-1

1024

-310

28-1

1029

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

1038

1038

1038

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4

1048

-210

48-2 10

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-2 1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-2 1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2 11

11-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2 21

7-2

217-

421

8-2 21

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

M3

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

M4

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 9: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Measurements of in-field critical currents at fixed orientation

Ic(42K18oB)

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 10: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Typical Ic(B) dependence measured as field rises and decreases and current rises and decreases (LabView screenshot)

No hysteresis and no damage during field sweep

SP62 inner part of length (N5)Bias current measured from 200 A DI=2 AThis field dependence was measured during 39 minDepending on Ic values field dependence takes 34 min ndash 40 min

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 11: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

8 9 10 11 12 13 14 15 16 17

250

300

350

400

450

500

550600650700

UP SP60 inner Down SP60 inner UP SP60 out Down SP60 out UP SP61 out Down SP61 out UP SP61 inner Down SP61 inner UP SP62 inner Down SP62 inner UP SP62 out Down SP62 out UP SP63 out Down SP63 out

I c A

B T

Representative selection of Ic(B) curves measured at 42 K with 18o between sample plane and B

Orange horizontal line represents 256A minimum specified at 17T

B

Most of measured samples have Ic gt 256 A

No hysteresis in increasing and decreasing field These data have tight fit to Ic~B-a

I

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 12: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

60 80 100 120 140 160 180 2000

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 outer I

c(4K17T18o)

inner Ic(4K17T18o)

outer Ic(77KSF)

inner Ic(77KSF)

SP Min Ic(77KSF) 32T spec

I c a

t 77

K S

F A

I c a

t 18

o 4

2K

ext

rap

ola

ted

to 1

7T

A

Tape

Progress in Ic measurements SP60 ndash SP207 Data arranged by NHMFL numbers ndash delivery time line

Tapes SP65 66 79 80 were sent for developing winding technique

144 lengths 60 m or 110 m each

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 13: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

100 110 120 130 140 150 160 170 1800

10

20

30

40

50

Nu

mb

er

of s

am

ple

s

Ic(SF77K) A

Histogram of Ic measured at 77K SF

ltIcgt=130 A SD=105

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 14: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

150 200 250 300 350 400 450 500 550 6000

5

10

15

20

25

30

35

Nu

mb

er

of s

am

ple

s

Ic(4K18o17T) A

Histogram for Ic measured at 42 K 17 T 18deg

Before we were dealing mostlywith this conductor produced with M3 machine

Now we are receiving more M4 tapes suitable for top and bottom parts of the magnet

M4 16 Ic variability

M3 16 of Ic variability

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 15: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 20 40 60 80 100 120 1400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

75010

2910

38 1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-1 1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1043

-210

45-3

1045

-310

45-3

1045

-310

47-4 10

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-3 1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4 1062

-410

63-2

1063

-210

63-2 10

67-2

1071

-210

72-3 10

78-2

1078

-2 1078

-210

78-2

1084

-210

88-2

1088

-210

89-2

1094

-210

94-2

1111

-211

11-2

1115

-218

0-3

180-

418

2-2

182-

218

2-4

195-

2 195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2 218-

221

8-2 21

8-2

218-

221

9-2

219-

221

9-2

219-

221

9-2

219-

2 219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

2 246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

7-2

247-

2

ltIc(4K17T18o)gt

Inner Ic(4K17T18o)

Outer Ic(4K17T18o)

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4passed with large margin

M3

Ic(4K17T18o) data arranged as ascending SuperPower run number (we assume it as time line for each M3 M4 machine)

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 16: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 17: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 18: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

550

600

650

M3 inner M3 outer M4 inner M4 outer

I c a

t 42

K e

xtra

po

late

d to

17

T A

Ic SF 77K A

We are getting two types of conductors from different SuperPower Inc machines with averaged lift factors 221 (M3) and 336 (M4)

=159

=105

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 19: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

200 300 400 500 600 70000

01

02

03

04

05

06

07

08

09

10

M3 inner M3 outer M4 inner M4 outer

Ic at 42K extrapolated to 17T A

M3 ltIcgt =283 A lt gt=a 083 +- 004

M4 ltIcgt =450 A lt gt=a 084 +- 005

No dramatic changes in a values Interpretation pinning mechanism is probably similar for low Ic and high Ic tapes

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 20: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 20 40 60 80 100 120

-25

-20

-15

-10

-5

0

5

10

15

20

2510

2910

3810

3810

3810

3810

22-1

1024

-310

28-1

1029

-110

30-1

1030

-110

30-1

1031

-210

31-2

1033

-210

33-2

1033

-210

33-2

1038

-2 1038

-210

38-2 10

38-2

1038

-210

38-2

1038

-2 1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2

1048

-210

50-4

1052

-310

52-3

1052

-310

52-3

1060

-210

60-3

1061

-210

61-2

1061

-2 1061

-210

61-2

1061

-210

61-2

1061

-210

61-2

1062

-210

62-4

1062

-410

63-2

1063

-210

63-2

1067

-210

71-2

1072

-310

78-2

1078

-210

78-2

1078

-210

84-2

1088

-210

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

4 195-

219

5-2

217-

221

7-2

217-

221

7-2

217-

421

8-2

218-

221

8-2

218-

2 218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

Standard deviation 57

At 77K SF just few tapes have relative spread above 10End to end relative variation of Ic(77K SF)

100

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 21: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

30

40

50

1029

1038

1038

1038

1038

1022

-110

24-3

1028

-110

29-1

1030

-110

30-1

1030

-110

31-2

1031

-210

33-2

1033

-210

33-2

1033

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

38-2

1038

-210

43-2

1045

-310

45-3

1045

-310

45-3

1047

-410

48-2

1048

-210

48-2

1048

-210

48-2 10

48-2

1050

-410

52-3

1052

-310

52-3

1052

-310

60-2

1060

-310

61-2

1061

-210

61-2

1061

-210

61-2

1061

-210

61-2 10

61-2

1061

-210

62-2

1062

-410

62-4

1063

-210

63-2

1063

-210

67-2

1071

-210

72-3

1078

-210

78-2 10

78-2

1078

-210

84-2 10

88-2 10

88-2

1089

-210

94-2

1094

-211

11-2

1111

-211

15-2

180-

318

0-4

182-

218

2-2

182-

419

5-2

195-

221

7-2

217-

221

7-2

217-

221

7-4

218-

221

8-2

218-

221

8-2

218-

221

8-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

219-

221

9-2

236-

223

9-3

239-

323

9-3

245-

3

245-

324

5-3

245-

324

5-3

245-

324

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

246-

224

6-2

247-

224

7-2

Tape

At 42K in-field more tapes have relative spread above 1010

0End to end relative variation of Ic(4K 17T 18o)

Standard deviation 96

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 22: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Same Ic(4K17T18o) data as on previous slide but arranged as ascending lt Ic(4K17T18o) gt Observations small difference in Ic for samples from different ends

Tapes within one process have similar Ic M4 process yields tapes with higher Ic Uniform distribution with two steps at 270A and 480A

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 23: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

SP64 innerSP60 inner

SEM images of ReBCO surface Larger and irregularly shaped grains on SP60 more needle like grains for SP62-64 staircase like surface for SP60 but flat surface for SP61-64

After etching Cu and Ag

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 24: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Ag

ReBCO

SEM cross-section of M4 SP129

SEM cross-section of M3 SP159

Ag

ReBCO

Different thickness for M3 and M4 machines

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 25: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

550

600

650

700

121 0

92

095

5

096

1 108 107

155 152 1

5 153 1

53 15

146

5 155

16

156

ltIc(4 K 17 T 18 deg)gt

Ic(4 K 17 T 18 deg) inner

Ic(4 K 17 T 18 deg) outer

32T spec

I c(4K

17

T 1

8o)

A

Tape

M4

M3

Ascending lt Ic(4K17T18o) gt plot with ReBCO thicknesses

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 26: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

08 10 12 14 1600

05

10

15

20

25

30

35

40

45

50

55

1029

103810

24-3

1030

-1

1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-221

9-2

236-

223

9-3

239-

3

J c at 7

7K

SF

MA

cm

2

ReBCO thickness m

77K self-field critical current vs ReBCO thickness dependence

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 27: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

08 10 12 14 160

2

4

6

8

10

1029

1038

1024

-3

1030

-1 1030

-1

1060

-2

1084

-2

217-

2

217-

2

218-

221

9-2

219-

2

236-

223

9-3

239-

3

J c at 4

2K

ext

rap

ola

ted

to 1

7T

MA

cm

2

ReBCO thickness m

M3

M4

4K in-field critical current density vs ReBCO thickness dependence

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 28: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Testing geometrical tolerances

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 29: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 1 2 3 4

120

130

140

150

160

170

180

SP60 inner SP60 outer SP61 inner SP61 outer SP62 inner SP62 outer SP63 inner SP63 outer SP64 inner SP64 outer

Th

ickn

ess

m

Width mm

Thickness profiles measured with Nikon microscope

All profiles are nearly the same

Optical image of typical cross section (SP 60 inner)

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 30: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Width distributions for SP60 ndash SP64 tapes are within specification

0 100 200 300 400 500 600404

406

408

410

412

414

416

SP60 inner SP61 inner SP62 inner SP63 inner SP64 inner SP60 outer SP61 Outer SP62 Outer SP63 Outer SP64 Outer Max Min

W

m

m

L mm

We noticed considerable improvement of tape width uniformity which eliminates substantial part

of variations in Ic and mechanical properties

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 31: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

120 125 130 135 140 145 150 155 160 165 170 175

406

408

410

412

414

416

418

420

422

424

426

428

430

max min mean 32T spec Min 32T spec Max

Wid

th

mm

SP number

Conductor width variation

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 32: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

120 125 130 135 140 145 150 155 160 165 170 175140

145

150

155

160

165

170

175

180

To

tal t

hic

kne

ss

um

SP number

Total thickness measured with micrometer

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 33: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

120 125 130 135 140 145 150 155 160 165 170 175037

038

039

040

041

042

043

044

045

Cu

are

a

mm

2

SP number

Cu area for SP125- 166 tapes

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 34: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

1024

-3

1030

-110

30-1 10

33-2

1033

-210

38-2

1038

-2

1045

-3

1048

-2

1052

-310

52-3

1052

-3

1062

-410

62-4

1063

-210

63-2

1078

-2

180-

318

0-4

182-

419

5-2

217-

2 218-

221

8-2

218-

221

8-2

218-

221

9-2

219-

221

9-2

219-

2

219-

2

Co

nta

ct r

esi

sta

nce

n

cm2

Tape

RRR of stabilizer ndash parallel connection of Ag and Cu layers

RRR meets the specification

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 35: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Comparison of 4K in- field Ic for conductors from different

manufacturers

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 36: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

1 10

100

200

300

400

500

600700

SuNAM N1 SuNAM N2 SuperOx N2 SuperOx N3 SuperOx N4 AMSC Fujikura N1 Fujikura N2 SP77 SP129 N1 SP129 N2 SP132 N1 SP132 N2 SP127

I c A

B T

Comparison Ic(4K B) for tapes from different manufacturers measured up to 312TOrientation field perpendicular to tape plane

B

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 37: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

1 10100

1000

SP67 innerB at 18deg

SP83 innerB at 18deg

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

1400A

700 A

SP64 inner

SP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

1050 A

FujikuraB at 18deg

GdBCO

SP89outerB at 18deg

Comparison of Ic(4KB) in ReBCO conductors in-field up to 135T

T=4KIc(B) measured in OX IIMax field is 135T

Close to SP average

SP Min Ic

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 38: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

GdBCO FujikuraBIIc

SP108 out

Bi_130222_pmm120822_143_A70OP round wire diameter 1386mm

1400A

700 A

Bi_130222_pmm120822_143_A71OP round wire diameter 1399mm

Bi-2212 round wire

SP64 innerSP63 inner

ReBCOSP 2013 (2x50um thick Cu) BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

I c A

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108in

Bi-2212 round wire130222pmm12082210A6610mm

OP130508-27x7-7-100bar-B48diameter 06883 mm ff=10

1050 A

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

FujikuraB at 18deg

GdBCO

Comparison of conductor performances at 42K up to 135TMeasured in OX II using up to 4 Sorensen DSC8-350E

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 39: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

Manufacturer Material a at BIIc a at 18deg

SuperPower ReBCO 067-076 07-09

SuNAM ReBCO 06 06 069 068

SuperOx ReBCO 054 054 0588 059

Fujikura ReBCO 0641 069 070

AMSC ReBCO 074

Sumitomo Bi-2223 018 0164

OP processed Bi-2212- round d=138mm 033

OP processed Bi-2212 d=1154 mm 027 026 0238

OP processed Bi-2212 d=0688 mm 027

Comparison of a values

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 40: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

1 10100

1000

ReBCO

SuperOx B at 18o

ReBCOSuperOx BIIc

SP108in

Bi_2212130222_pmm120822_143_A70OP round wire diameter 1386mm

Bi 2212 130222_pmm 120822_12_A691154 mm round wire

Bi-2212 round wire130222pmm12082210A66

SP64 innerSP63 inner

ReBCOSP 2013(2x50um thick Cu)BII c

Bi-2223Sumitomo 2011 tape BIIc

SP108out

ReBCO2013 SuNAM tapein brass stabilizerB at 18deg to tape

J e

Am

m2

B T

Bi-2223Sumitomo 2012 tape BIIc

ReBCOSP 2013(2x50um thick Cu)B at 18 deg

ReBCO2013 SuNAM tapein brass stabilizerBIIc

SP108 out

Bi2212130222pmm120822_143_A71OP round wire 1399mm

17T

GdBCO

FujikuraB at 18deg

FujikuraBIIc

GdBCO

Comparison of conductor performances at 42KMeasured in OX II using up to 4 Sorensen DSC8-350E

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 41: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

I c(4K

B a

t 18

o)

A

Ic(4K BIIc) A

SuNAM

Fujikura

SuperOxSuperPower

X2

X15

X1

Difference in anisotropy

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 42: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

bull Comprehensive analysis of various tape properties is necessary for building reliable magnet

bull Ic measured in specific field orientation at 42K is important for predicting coil performance not testing at self-field 77 K

bull Jc(B 4K 18o) did not dropped as ReBCO thickness got 60 increase in M4 tapes

bull Transport and geometrical properties of commercially available (Re)BCO conductor from SuperPower Inc are not perfect but sufficient for making 32 T user magnet

bull Among ReBCO conductors SuperPower Inc and Fujikura have largest Ic(4K B)

bull Tapes from SuperOx show smallest among ReBCO CC a and smallest Ic anisotropy

Conclusions

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 43: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

How to choose operating current after measuring Ic in about 003 - 0018 of the conductor at 4K in-field

Assume that the distribution shown in experimental histogram is ldquouniversalrdquo through every tape from the set SP60-SP124

Here is simple statistical model Ic(x) generated with Gaussian distribution in 6000 point min Ic taken for 10000 virtual tapes

Based on standard deviation of Ic relative difference 935

Assume that minimum size of Ic non-uniformity is about 1 cm for 60m long tape

-50 -45 -40 -35 -300

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Cou

nt

Min relative Ic change (below average per tape)

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 44: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

60 62 64 66 68 70 72 74 76 780

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Inner Ic(4K17TBIIc)

Outer Ic(4K17T BIIc)

Inner Ic(77K SF)

Outer Ic(77K SF)

I c S

F 7

7 K

A

I c ext

rap

ola

ted

to

17

T

42

K

A

Tape Number

B

I

Ic(4K 17T BIIc) with Ic(77K SF) for selected tapes

Anti-correlation

All tapes from M3 machine

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 45: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

120 140 160 180 200060

062

064

066

068

070

072

074

076

078

080

082

084

086

60

61

62

6364

6061

6263 64

67

68 69

70

717273

67

68

69

70

7172

73

7475

76

77

78

Ic extrapolated to 17 T 42 K A

Relation between a values and Ic (4K 17T BIIc) For tapes with higher Ic we observe larger a values

Ic~B-a

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 46: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

58 60 62 64 66 68 70 72 7400

02

04

06

08

10

12

14

16

18

20

22

Inner Outer

I c(4K

17

T1

8o)

I c(4K

17

T B

IIc)

SP number

Mean 182Standard deviation 012 (66)

Ratio Ic(4K 17T 18o) Ic(4K 17T BIIc) has low spread from tape to tapeInterpretation Angular dependence of Ic has small variation

BIIc and 18o orientations measured on different samples

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 47: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

100 150 200 250 300

00

02

04

06

08

10

SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

Normalized R vs T for samples from ldquoinnerrdquo part of spools

MeasurementsTemperature range 300K ndash 89K SFTransport measurements were done with PPMS3-2 samples were measured simultaneously on one packExcitation current 10 mA DT near transition 0025K

Aim By calculating Tc from electric resistivity measurementsfind why Ic at SF 77K for SP60 differs from one for SP61-64

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 48: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

904 906 908 910 912 914 916 918 920

000

005

010

015

020

025

030 SP60 inner 1 SP60 inner 2 SP60 inner 3 SP60 inner 4 SP61 inner SP62 inner SP63 inner SP64 inner

R

R(3

00

K)

Temperature (K)

For inner region

Very narrow Tc spread and sharp transition for SP61-64 Samples from SP60 have wider and variable transition regionSome SP60 samples have up to 3 ldquokneerdquo

R vs T for samples from ldquoinnerrdquo part of spools

ldquoinnerrdquo means that sample was cut from inner part of spool arrived from SP

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
Page 49: Review of I c variation, R c, RRR and other parameters D. Abraimov, H. W. Weijers, W. D. Markiewicz, M. Santos, J. McCallister, J. Jaroszynski, J. Jiang,

59 60 61 62 63 64 65

906

908

910

912

914

916

918 max dRdT middle dRdT small dRdT

Tp

K

Tape number

bulk critical temperature Tc defined as maximum of dRdT

Striking difference between SP60 and SP61-64SP60 contains several phases with different Tc ranging from 907K to 918K

Peaks of dRdT

Interpretation

SP60 has non-uniform composition with multiple (Re)BCO phases

SP 61-64 have variable through length oxygen doping

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49