24
Review for Exam 4. Sections 16.1-16.5, 16.7, 16.8. 50 minutes. 5 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4. (16.1) Line integrals. (16.2) Vector fields, work, circulation, flux (plane). (16.3) Conservative fields, potential functions. (16.4) The Green Theorem in a plane. (16.5) Surface area, surface integrals. (16.7) The Stokes Theorem. (16.8) The Divergence Theorem.

Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Embed Size (px)

Citation preview

Page 1: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Review for Exam 4.

I Sections 16.1-16.5, 16.7, 16.8.

I 50 minutes.

I 5 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.

Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

Page 2: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Conservative fields, potential functions (16.3).Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?If “yes”, then find the potential function.

Solution: We need to check the equations

∂yFz = ∂zFy , ∂xFz = ∂zFx , ∂xFy = ∂yFx .

∂yFz = x cos(z) = ∂zFy ,

∂xFz = y cos(z) = ∂zFx ,

∂xFy = sin(z) = ∂yFx .

Therefore, F is a conservative field, that means there exists ascalar field f such that F = ∇f . The equations for f are

∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).

Conservative fields, potential functions (16.3).

Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?If “yes”, then find the potential function.

Solution: ∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).Integrating in x the first equation we get

f (x , y , z) = xy sin(z) + g(y , z).

Introduce this expression in the second equation above,

∂y f = x sin(z) + ∂yg = x sin(z) ⇒ ∂yg(y , z) = 0,

so g(y , z) = h(z). That is, f (x , y , z) = xy sin(z) + h(z).Introduce this expression into the last equation above,

∂z f = xy cos(z) + h′(z) = xy cos(z) ⇒ h′(z) = 0 ⇒ h(z) = c .

We conclude that f (x , y , z) = xy sin(z) + c . C

Page 3: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Conservative fields, potential functions (16.3).

Example

Compute I =

∫C

y sin(z) dx + x sin(z) dy + xy cos(z) dz , where C

given by r(t) = 〈cos(2πt), 1 + t5, cos2(2πt)π/2〉 for t ∈ [0, 1].

Solution: We know that the field F = 〈y sin(z), x sin(z), xy cos(z)〉conservative, so there exists f such that F = ∇f , or equivalently

df = y sin(z) dx + x sin(z) dy + xy cos(z) dz .

We have computed f already, f = xy sin(z) + c .Since F is conservative, the integral I is path independent, and

I =

∫ (1,2,π/2)

(1,1,π/2)

[y sin(z) dx + x sin(z) dy + xy cos(z) dz

]I = f (1, 2, π/2)− f (1, 1, π/2) = 2 sin(π/2)− sin(π/2) ⇒ I = 1.

Conservative fields, potential functions (16.3).

Example

Show that the differential form in the integral below is exact,∫C

[3x2 dx +

z2

ydy + 2z ln(y) dz

], y > 0.

Solution: We need to show that the field F =⟨3x2,

z2

y, 2z ln(y)

⟩is conservative. It is, since,

∂yFz =2z

y= ∂zFy , ∂xFz = 0 = ∂zFx , ∂xFy = 0 = ∂yFx .

Therefore, exists a scalar field f such that F = ∇f , or equivalently,

df = 3x2 dx +z2

ydy + 2z ln(y) dz .

Page 4: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral

given by

∮C

[(6y + x) dx + (y + 2x) dy

]on the circle C defined by

(x − 1)2 + (y − 3)2 = 4.

Solution: Recall:

∮C

F · dr =

∫∫S

(∂xFy − ∂yFx

)dx dy .

Here F = 〈(6y + x), (y + 2x)〉. Since ∂xFy = 2 and ∂yFx = 6,Green’s Theorem implies∮

C

[(6y + x) dx + (y + 2x) dy

]=

∮C

F · dr =

∫∫S

(2− 6) dx dy .

Since the area of the disk S = {(x − 1)2 + (y − 3)2 6 4} is π(22),∮C

F · dr = −4

∫∫S

dx dy = −4(4π) ⇒∮

C

F · dr = −16π.

Page 5: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

Surface area, surface integrals (16.5).Example

Integrate the function g(x , y , z) = x√

4 + y2 over the surface cutfrom the parabolic cylinder z = 4− y2/4 by the planes x = 0,x = 1 and z = 0.

Solution:

R

z

4

1

4

x

y

S

We must compute: I =

∫∫S

g dσ.

Recall dσ =|∇f ||∇f · k|

dx dy , with k ⊥ R

and in this case f (x , y , z) = y2 + 4z − 16.

∇f = 〈0, 2y , 4〉 ⇒ |∇f | =√

16 + 4y2 = 2√

4 + y2.

Since R = [0, 1]× [−4, 4], its normal vector is k and |∇f · k| = 4.Then, ∫∫

S

g dσ =

∫∫R

(x√

4 + y2) 2

√4 + y2

4dx dy .

Page 6: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Surface area, surface integrals (16.5).

Example

Integrate the function g(x , y , z) = x√

4 + y2 over the surface cutfrom the parabolic cylinder z = 4− y2/4 by the planes x = 0,x = 1 and z = 0.

Solution:

∫∫S

g dσ =

∫∫R

(x√

4 + y2) 2

√4 + y2

4dx dy .

∫∫S

g dσ =1

2

∫∫R

x(4 + y2) dx dy =1

2

∫ 4

−4

∫ 1

0x(4 + y2) dx dy

∫∫S

g dσ =1

2

[∫ 4

−4(4+y2) dy

][∫ 1

0x dx

]=

1

2

(4y+

y3

3

)∣∣∣4−4

(x2

2

)∣∣∣10∫∫

S

g dσ =1

22(42 +

43

3

)1

2= 8

(1 +

4

3

)⇒

∫∫S

g dσ =56

3.

Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

Page 7: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

The Stokes Theorem (16.7).

Example

Use Stokes’ Theorem to find the flux of ∇× F outward throughthe surface S , where F = 〈−y , x , x2〉 andS = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: Recall:

∫∫S

(∇× F) · n dσ =

∮C

F · dr.

The surface S is the cylinder walls and its cover at z = h.Therefore, the curve C is the circle x2 + y2 = a2 at z = 0.That circle can be parametrized (counterclockwise) asr(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].∫∫

S

(∇× F) · n dσ =

∮C

F · dr =

∫ 2π

0F(t) · r′(t) dt,

where F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 andr′(t) = 〈−a sin(t), a cos(t), 0〉.

The Stokes Theorem (16.7).

Example

Use Stokes’ Theorem to find the flux of ∇× F outward throughthe surface S , where F = 〈−y , x , x2〉 andS = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 andr′(t) = 〈−a sin(t), a cos(t), 0〉. Hence∫∫

S

(∇× F) · n dσ =

∫ 2π

0F(t) · r′(t) dt,

∫∫S

(∇× F) · n dσ =

∫ 2π

0

(a2 sin2(t) + a2 cos2(t)

)dt =

∫ 2π

0a2 dt.

We conclude that

∫∫S

(∇× F) · n dσ = 2πa2.

Page 8: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the fieldF = 〈x2,−2xy , 3xz〉 across the boundary of the regionD = {x2 + y2 + z2 6 4, x > 0, y > 0, z > 0}.

Solution: Recall:

∫∫S

F · n dσ =

∫∫∫D

(∇ · F)dv .

∇ · F = ∂xFx + ∂yFy + ∂zFz = 2x − 2x + 3x ⇒ ∇ · F = 3x .∫∫S

F · n dσ =

∫∫∫D

(∇ · F)dv =

∫∫D

3x dx dy dz .

It is convenient to use spherical coordinates:∫∫S

F ·n dσ =

∫ π/2

0

∫ π/2

0

∫ 2

0

[3ρ sin(φ) cos(φ)

]ρ2 sin(φ) dρ dφ dθ.

Page 9: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the fieldF = 〈x2,−2xy , 3xz〉 across the boundary of the regionD = {x2 + y2 + z2 6 4, x > 0, y > 0, z > 0}.

Solution:∫∫S

F ·n dσ =

∫ π/2

0

∫ π/2

0

∫ 2

0

[3ρ sin(φ) cos(φ)

]ρ2 sin(φ) dρ dφ dθ.

∫∫S

F · n dσ =[∫ π/2

0cos(θ) dθ

][∫ π/2

0sin2(φ) dφ

][∫ 2

03ρ3 dρ

]∫∫

S

F · n dσ =[sin(θ)

∣∣∣π/2

0

][1

2

∫ π/2

0

(1− cos(2φ)

)dφ

][3

4ρ4

∣∣20

]∫∫

S

F · n dσ = (1)1

2

2

)(12) ⇒

∫∫S

F · n dσ = 3π.

Review for the Final Exam.

I Monday, December 13, 10:00am - 12:00 noon. (2 hours.)I Places:

I Sctns 001, 002, 005, 006 in E-100 VMC (Vet. Medical Ctr.),I Sctns 003, 004, in 108 EBH (Ernst Bessey Hall);I Sctns 007, 008, in 339 CSE (Case Halls).

I Chapters 12-16.

I Problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.

Page 10: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Review for Final Exam.

I Chapter 16, Sections 16.1-16.5, 16.7, 16.8.

I Chapter 15, Sections 15.1-15.4, 15.6.

I Chapter 14, Sections 14.1-14.7.

I Chapter 13, Sections 13.1, 13.3.

I Chapter 12, Sections 12.1-12.6.

Chapter 16, Integration in vector fields.Example

Use the Divergence Theorem to find the flux of F = 〈xy2, x2y , y〉outward through the surface of the region enclosed by the cylinderx2 + y2 = 1 and the planes z = −1, and z = 1.

Solution: Recall:

∫∫S

F · n dσ =

∫∫∫D

(∇ · F) dv . We start with

∇ · F = ∂x(xy2) + ∂y (x2y) + ∂z(y) ⇒ ∇ · F = y2 + x2.

The integration region is D = {x2 + y2 6 1, z ∈ [−1, 1]}. So,

I =

∫∫∫D

(∇ · F) dv =

∫∫∫D

(x2 + y2) dx dy dz .

We use cylindrical coordinates,

I =

∫ 2π

0

∫ 1

0

∫ 1

−1r2 dz r dr dθ = 2π

[∫ 1

0r3 dr

](2) = 4π

( r4

4

∣∣∣10

).

We conclude that

∫∫S

F · n dσ = π. C

Page 11: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Chapter 16, Integration in vector fields.

Example

Use Stokes’ Theorem to find the work done by the forceF = 〈2xz , xy , yz〉 along the path C given by the intersection of theplane x + y + z = 1 with the first octant, counterclockwise whenviewed from above.

Solution:

C

z

x + y + z = 11

1

x

1 y

x + y = 1

S

R

Recall:

∫C

F · dr =

∫∫S

(∇× F) · n dσ.

The surface S is the level surface f = 0 of

f = x + y + z − 1

therefore, ∇f = 〈1, 1, 1〉, |∇f | =√

3 and|∇f · k| = 1.

n =∇f

|∇f |=

1√3〈1, 1, 1〉, dσ =

|∇f ||∇f · k|

dx dy =√

3 dx dy .

Chapter 16, Integration in vector fields.

Example

Use Stokes’ Theorem to find the work done by the forceF = 〈2xz , xy , yz〉 along the path C given by the intersection of theplane x + y + z = 1 with the first octant, counterclockwise whenviewed from above.

Solution: n =1√3〈1, 1, 1〉 and dσ =

√3 dx dy .

We now compute the curl of F,

∇× F =

∣∣∣∣∣∣i j k

∂x ∂y ∂z

2xz xy yz

∣∣∣∣∣∣ = 〈(z − 0),−(0− 2x), (y − 0)〉

so ∇× F = 〈z , 2x , y〉. Therefore,∫∫S

(∇× F) · n dσ =

∫∫R

(〈z , 2x , y〉 · 1√

3〈1, 1, 1〉

)√3 dx dy

Page 12: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Chapter 16, Integration in vector fields.

Example

Use Stokes’ Theorem to find the work done by the forceF = 〈2xz , xy , yz〉 along the path C given by the intersection of theplane x + y + z = 1 with the first octant, counterclockwise whenviewed from above.

Solution:

I =

∫∫S

(∇× F) · n dσ =

∫∫R

(〈z , 2x , y〉 · 1√

3〈1, 1, 1〉

)√3 dx dy .

I =

∫∫R

(z + 2x + y) dx dy , z = 1− x − y ,

I =

∫ 1

0

∫ 1−x

0(1+x) dy dx =

∫ 1

0(1+x)(1−x) dx =

∫ 1

0(1−x2) dx .

I = x∣∣∣10− x3

3

∣∣∣10

= 1− 1

3=

2

3⇒

∫C

F · dr =2

3.

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by z =√

x2 + y2 for z ∈ [0, 1].Also find the flux of the field F = 〈x , y , 0〉 outward through S .

Solution:

1

x

y

z

S

R

1

1

Recall: A(S) =

∫∫S

dσ. The surface S is the

level surface f = 0 of the functionf = x2 + y2 − z2. Also recall that

dσ =|∇f ||∇f · k|

dx dy .

Since ∇f = 2〈x , y ,−z〉, we get that

|∇f | = 2√

x2 + y2 + z2, z2 = x2 + y2 ⇒ |∇f | = 2√

2 z .

Also |∇f · k| = 2z , therefore, dσ =√

2 dx dy , and then we obtain

A(S) =

∫∫R

√2 dx dy =

∫ 2π

0

∫ 1

0

√2r dr dθ = 2π

√2r2

2

∣∣∣10

=√

2 π.

Page 13: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by z =√

x2 + y2 for z ∈ [0, 1].Also find the flux of the field F = 〈x , y , 0〉 outward through S .

Solution: We now compute the outward flux I =

∫∫S

F · n dσ.

Since

n =∇f

|∇f |=

1√2 z〈x , y ,−z〉.

I =

∫∫R

1√2 z

(x2 + y2)√

2 dx dy =

∫∫R

√x2 + y2 dx dy .

Using polar coordinates, we obtain

I =

∫ 2π

0

∫ 1

0r r dr dθ = 2π

r3

3

∣∣∣10

⇒ I =2π

3.

Review for Final Exam.

I Chapter 16, Sections 16.1-16.5, 16.7, 16.8.

I Chapter 15, Sections 15.1-15.4, 15.6.

I Chapter 14, Sections 14.1-14.7.

I Chapter 13, Sections 13.1, 13.3.

I Chapter 12, Sections 12.1-12.6.

Page 14: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloidz = 1− x2 − y2 and the plane z = 0.

Solution:

y

D

Rx

z

1

1

1

So, D = {x2 + y2 6 1, 0 6 z 6 1− x2 − y2},and R = {x2 + y2 6 1, z = 0}. We know that

V (D) =

∫∫∫D

dv =

∫∫R

∫ 1−x2−y2

0dz dx dy .

Using cylindrical coordinates (r , θ, z), we get

V (D) =

∫ 2π

0

∫ 1

0

∫ 1−r2

0dz r dr dθ = 2π

∫ 1

0(1− r2) r dr .

Substituting u = 1− r2, so du = −2r dr , we obtain

V (D) = 2π

∫ 0

1u

(−du)

2= π

∫ 1

0u du = π

u2

2

∣∣∣10

⇒ V (D) =π

2.

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the functionf (x , y , z) = z sin(x) on the bounded region D in the first octantbounded by the plane z = 4− 2x − y . Do not evaluate theintegrals.

Solution: Recall: f =1

V (D)

∫∫∫D

f dv .

D

z

x

yR

2x + y + z = 4

2x + y = 42

4

4

Since V (D) =

∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0dz dy dx ,

we conclude that

f =

∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0z sin(x) dz dy dx∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0dz dy dx

.

Page 15: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Chapter 15, Multiple integrals.Example

Reverse the order of integration and evaluate the double integral

I =

∫ 4

0

∫ 2

y/2ex2

dx dy .

Solution: We see that y ∈ [0, 4] and x ∈ [0, y/2], that is,

y = 2x

y

x2

4Therefore, reversing the integration ordermeans

I =

∫ 2

0

∫ 2x

0ex2

dy dx .

This integral is simple to compute,

I =

∫ 2

0ex2

x dx , u = x2, du = 2x dx ,

I =

∫ 4

0eu du ⇒ I = e4 − 1.

Review for the Final Exam.

I Monday, December 13, 10:00am - 12:00 noon. (2 hours.)I Places:

I Sctns 001, 002, 005, 006 in E-100 VMC (Vet. Medical Ctr.),I Sctns 003, 004, in 108 EBH (Ernst Bessey Hall);I Sctns 007, 008, in 339 CSE (Case Halls).

I Chapters 12-16.

I ∼ 12 Problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

Plan for today: Practice final exam: April 30, 2001.

Page 16: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Remark on Chapter 16.

Remark: The normal form of Green’s Theorem is atwo-dimensional restriction of the Divergence Theorem.

I The Divergence Theorem:

∫∫S

F · n dσ =

∫∫∫D

(∇ · F) dv .

I Normal form of Green’s Thrm:

∮C

F · n ds =

∫∫S

(∇ · F) dA.

Remark: The tangential form of Green’s Theorem is a particularcase of the Stokes Theorem when C , S are flat (on z = 0 plane).

I The Stokes Theorem:

∮C

F · dr =

∫∫S

(∇× F) · n dσ.

I Tang. form of Green’s Thrm:

∮C

F · dr =

∫∫S

(∇× F) · k dA.

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given A = (1, 2, 3), B = (6, 5, 4) and C = (8, 9, 7), find thefollowing:

I−→AB and

−→AC .

Solution:−→AB = 〈(6− 1), (5− 2), (4− 3)〉, hence

−→AB = 〈5, 3, 1〉. In the same way

−→AC = 〈7, 7, 4〉.

I−→AB +

−→AC = 〈12, 10, 5〉.

I−→AB ·

−→AC = 35 + 21 + 4.

I−→AB ×

−→AC =

∣∣∣∣∣∣i j k5 3 17 7 4

∣∣∣∣∣∣ = 〈(12− 7),−(20− 7), (35− 21)〉,

hence−→AB ×

−→AC = 〈5,−13, 14〉.

Page 17: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point(1, 0,−1) and perpendicular to the plane 2x − 3y + 5x = 35. Thenfind the intersection of the line and the plane.

Solution: The normal vector to the plane 〈2,−3, 5〉 is the tangentvector to the line. Therefore,

r(t) = 〈1, 0,−1〉+ t 〈2,−3, 5〉,so the parametric equations of the line are

x(t) = 1 + 2t, y(t) = −3t, z(t) = −1 + 5t.

The intersection point has a t solution of

2(1+2t)−3(−3t)+5(−1+5t) = 35 ⇒ 2+4t+9t−5+25t = 35

38t = 38 ⇒ t = 1 ⇒ r(1) = 〈3,−3, 4〉.

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by v(t) = 〈t2, (t3 + 1)〉, and theparticle is at 〈2, 1〉 for t = 0.

I Where is the particle at t = 2?

Solution: r(t) =⟨( t3

3+ rx

),( t4

4+ t + ry

)⟩. Since

r(0) = 〈2, 1〉, we get that r(t) =⟨( t3

3+ 2

),( t4

4+ t + 1

)⟩.

Hence r(2) = 〈8/3 + 2, 7〉.I Find an expression for the particle arc length for t ∈ [0, 2].

Solution: s(t) =

∫ t

0

√τ4 + (τ3 + 1)2 dτ .

I Find the particle acceleration.

Solution: a(t) = 〈2t, 3t2〉.

Page 18: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 4.Example

I Draw a rough sketch of the surface z = 2x2 + 3y2 + 5.

Solution: This is a paraboloid along the vertical direction,opens up, with vertex at z = 5 on the z-axis, and the x-radiusis a bit longer than the y -radius.

I Find the equation of the tangent plane to the surface at thepoint (1, 1, 10).

Solution: Introduce f (x , y) = 2x2 + 3y2 + 5, then

L(1,1)(x , y) = ∂x f (1, 1) (x − 1) + ∂y f (1, 1) (y − 1) + f (1, 1).

Since f (1, 1) = 10, and ∂x f = 4x , ∂y f = 6y , then

z = L(1,1)(x , y) = 4(x − 1) + 6(y − 1) + 10.

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let w = f (x , y) and x = s2 + t2, y = st2. If ∂x f = x − y and∂y f = y − x , find ∂sw and ∂tw in terms of s and t.

Solution:

∂sw = ∂x f ∂sx+∂y f ∂sy = (x−y)2s+(y−x)t2 = (x−y)(2s−t2).

Therefore, ∂sw = (s2 + t2 − st2)(2s − t2).

∂tw = ∂x f ∂tx+∂y f ∂ty = (x−y)2t+(y−x)2st = (x−y)(2t−2st).

Therefore, ∂tw = (s2 + t2 − st2)2t(1− s).

Page 19: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function f (x , y) = 2x2 + 8xy + y4

and determine whether they re local maximum, minimum of saddlepoints.

Solution:

∇f = 〈(4x + 8y), (8x + 4y3)〉 = 〈0, 0〉 ⇒

{x + 2y = 0,

2x + y3 = 0.

−4y + y3 = 0 ⇒

y = 0 ⇒ x = 0 ⇒ P0 = (0, 0)

y = ±2 ⇒ x = ∓4 ⇒

{P1 = (4,−2)

P2 = (−4, 2)

Since fxx = 4, fyy = 12y2, and fxy = 8, we conclude thatD = 3(16)y2 − 4(16).

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function f (x , y) = 2x2 + 8xy + y4

and determine whether they re local maximum, minimum of saddlepoints.

Solution:P0 = (0, 0), P1 = (4,−2), P2 = (−4, 2), D = 3(16)y2 − 4(16).

D(0, 0) = −4(16) < 0 ⇒ P0 = (0, 0) saddle point.

D(4,−2) = 12(16)− 4(16) > 0, fxx = 4 ⇒ P1 = (4,−2) min.

D(−4, 2) = 12(16)− 4(16) > 0, fxx = 4 ⇒ P1 = (−4, 2) min.

Page 20: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral I =

∫ 1

0

∫ √x

xy dy dx by reversing the order

of integration.

Solution: The integration region is the set in the square[0, 1]× [0, 1] in between the curves y = x and y =

√x . Therefore,

I =

∫ 1

0

∫ y

y2

y dx dy =

∫ 1

0y(y − y2) dy =

∫ 1

0(y2 − y3) dy

I =(y3

3− y4

4

)∣∣∣10

=1

3− 1

4⇒ I =

1

12.

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force F = 〈yz , xz ,−xy〉 on a particlemoving along the path r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution:

W =

∫C

F · dr =

∫ 2

0F(t) · r′(t) dt,

where F(t) = 〈t3, t4,−t5〉 and r′(t) = 〈3t2, 2t, 1〉. Hence

W =

∫ 2

0(3t5 + 2t5 − t5) dt =

∫ 2

04t5 dt =

4

6t6

∣∣∣20

=2

326.

Therefore, W = 27/3.

Page 21: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force fieldF = 〈(y cos(z)− yzex), (x cos(z)− zex), (−xy sin(z)− yex)〉 isconservative. Then find its potential function. Then evaluate

I =

∫C

F · dr for r(t) = 〈t, t2, πt3〉.

Solution: The field F is conservative, since

∂xFy = cos(z)− zex = ∂yFx ,

∂xFz = −xy sin(z)− yex = ∂zFx ,

∂yFz = −x sin(z)− ex = ∂zFy .

The potential function is a scalar function f solution of

∂x f = y cos(z)− yzex , ∂y f = x cos(z)− zex , ∂z f = −xy sin(z)− yex .

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force fieldF = 〈(y cos(z)− yzex), (x cos(z)− zex), (−xy sin(z)− yex)〉 isconservative. Then find its potential function. Then evaluate

I =

∫C

F · dr for r(t) = 〈t, t2, πt3〉.

Solution: Recall:

∂x f = y cos(z)− yzex , ∂y f = x cos(z)− zex , ∂z f = −xy sin(z)− yex .

The x-integral of the first equation impliesf = xy cos(z)− yzex + g(y , z). Introduce f into the secondequation above,

x cos(z)− zex + ∂yg = x cos(z)− zex ⇒ ∂yg(y , z) = 0,

so we conclude g(y , z) = h(z), hence f = xy cos(z)− yzex + h(z).

Page 22: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force fieldF = 〈(y cos(z)− yzex), (x cos(z)− zex), (−xy sin(z)− yex)〉 isconservative. Then find its potential function. Then evaluate

I =

∫C

F · dr for r(t) = 〈t, t2, πt3〉.

Solution: Recall: f = xy cos(z)− yzex + h(z).

Introduce f into the equation ∂z f = −xy sin(z)− yex , that is,

−xy sin(z)− ex + h′(z) = −xy sin(z)− yex ⇒ h′(z) = 0.

So, h(z) = c , a constant, hence f = xy cos(z)− yzex + c .

Finally

∫C

F · dr =

∫ (1,1,π)

(0,0,0)df = f (1, 1, π)− f (0, 0, 0).

So we conclude that

∫C

F · dr = −(1 + πe).

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral

∫C

Fx dx + Fy dy

where Fx = y + ex and Fy = 2x2 + cos(y) and C is the trianglewith vertices (0, 0), (0, 2) and (1, 1) traversed counterclockwise.

Solution: Denoting F = 〈Fx ,Fy 〉, Green’s Theorem says∫C

F · dr =

∫∫S

(∇× F) · k dA =

∫∫S

(∂xFy − ∂yFx) dA.

∫C

F · dr =

∫∫S

(4x − 1) dx dy =

∫ 1

0

∫ 2−y

y(4x − 1) dx dy .

A straightforward calculation gives

∫C

F · dr = 3.

Page 23: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloidz = 4− x2 − y2 that lies above the plane z = 0. Use polarcoordinates to evaluate the integral.

Solution:

A(S) =

∫∫S

dσ, dσ =|∇f ||∇f · k|

dx dy

where f = x2 + y2 + z − 4. Therefore,

∇f = 〈2x , 2y , 1〉 ⇒ |∇f | =√

1 + 4x2 + 4y2, ∇f · k = 1.

A(S) =

∫ 2π

0

∫ 2

0

√1 + 4r2 r dr dθ, u = 1 + 4r2, du = 8r dr .

The finally obtain A(S) = (π/6)(173/2 − 1).

Practice final exam: April 30, 2001. Prbl. 12.Example

Use the Stokes Theorem to evaluate I =

∫∫S

[∇× (y i)

]· n dσ

where S is the hemisphere x2 + y2 + z2 = 1, with z > 0.

Solution: F = 〈y , 0, 0〉. The border of the hemisphere is given bythe circle x2 + y2 = 1, with z = 0. This circle can be parametrizedfor t ∈ [0, 2π] as

r(t) = 〈cos(t), sin(t), 0〉 ⇒ r′(t) = 〈− sin(t), cos(t), 0〉,

and we also have F(t) = 〈sin(t), 0, 0〉. Therefore,∫∫S

(∇× F

)· n dσ =

∮ 2π

0F(t) · r′(t) dt = −

∫ 2π

0sin2(t) dt

∫∫S

(∇× F

)· n dσ = −1

2

∫ 2π

0

[1− cos(2t)

]dt.

Page 24: Review for Exam 4. - Michigan State Universityusers.math.msu.edu/users/gnagy/teaching/10-fall/mth234/w...Review for Exam 4. I Sections 16.1-16.5, 16.7, 16.8. I 50 minutes. I 5 problems,

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate I =

∫∫S

[∇× (y i)

]· n dσ

where S is the hemisphere x2 + y2 + z2 = 1, with z > 0.

Solution:

∫∫S

(∇× F

)· n dσ = −1

2

∫ 2π

0

[1− cos(2t)

]dt.

Recall that ∫ 2π

0cos(2t) dt =

1

2

(sin(2t)

∣∣∣2π

0

)= 0.

Therefore, we obtain∫∫S

(∇× F

)· n dσ = −π.

C