16
Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

Embed Size (px)

Citation preview

Results from first tests of TRD prototypes for CBM

DPG Frühjahrstagung Münster 2011Pascal Dillenseger

Institut für Kernphysik Frankfurt am Main

2

Contents

• Overview of the CBM experiment• CBM-TRD– General TRD requirements– The IKF CBM-TRD– Laboratory performance measurements– CERN Nov. 2010 CBM-TRD testbeam• Setup• Preliminary results

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

3

The CBM experiment

• The dedicated heavy ion experiment at FAIR– Study phase diagram at low energies but high

densities• Accelerators

• SIS 100:– 27 GeV/u for U92+ – 5*1011 Ions per bunch

• SIS 300:– 35 GeV/u for U92+

• Observables• Charmonium, direct photons…

4

The electron identification setup

Vertex reconstruction and momentum measurement:

-Micro-Vertex Detector-Silicon Tracking System

Particle IDentification (PID):

-Ring Imaging CHerenkov-Transition Radiation Detector

- 3 stations with 4 layers each-Time Of Flight -EM Calorimeter

CBM TRD-Developement at the IKF Pascal Dillenseger

5

TRD requirements

• The TRD will be used as…– an electron identification detector– a tracking detector

• Main difficulties are… – the expected high hit rates up to 140 kHz/cm² – the big area ( 1000m² ) that needs to be covered

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

6

Design specifications

• High rates -> fast readout• Big area -> easy and economic to build• Good PID -> Pion rejection factor (PRF) 100• Tracking capability• There are several different attemps, build an tested by

working groups from:– Münster, Dubna, Bucharest and Frankfurt

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

7

The attempt of the IKF

A MultiWire Proportional Chamber (MWPC)with:

- a small gas gap - a small wire pitch- no drift region

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

8

The prototypes

Four prototypes with different gas gaps and wire pitches havebeen build

6 mm gas gap - 2 mm wire pitch

6 mm gas gap - 3 mm wire pitch

10 mm gas gap - 5 mm wire pitch

10 mm gas gap - 2.5 mm wire pitch

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

9

Laboratory performance measurements

Energy resolution• Measured with an 55Fe

x-ray source• Fe-Kα-Peak 5,9 keV• Ar-Escape-Peak 2,9 keV• Gas mixture

Ar/CO2 (85%/15%)

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

10

55Fe spectraCBM-TRD 6 mm gas gap 3 mm wire pitchUa = 1450 VΔE = 0,289

CBM-TRD 10 mm gas gap 2.5 mm wire pitchUa = 2440 VΔE = 0,298

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

11

Testbeam setup

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

12

Testbeam specifications

• CERN PS accelerator• Prototypes with 10 mm gas gap were tested• An ALICE type radiator was used• Used gas mixtures were– Ar/CO2 (80%/20%)

– Xe/CO2 (80%/20%)

• High voltage set up– 1800 V for the chamber with 5 mm wire pitch– 2440 V for the chamber with 2.5 mm wire pitch

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

13

Front-end-electronics

• As readout electronics the SPADIC-chip and the SUSIBO-board were used – Self-triggered Pulse Amplification and Digitization

asIC• 8 channels • 90 ns shaping time• 8 Bit ADC• Sampling rate 25 MHz

– SUSIBO-board is a Virtex 5 board with which the data can be transferred to the pc via FTDI-chip

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

14

Single event from the testbeam readout with the spadic-chip

Preliminary results

Raw data Same event baseline corrected and background subtracted

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

15

Electron-Pion Spectra for 5 GeV/c beam Xe/CO2 (80%/20%)

10 mm gas gap5 mm wire pitch

10 mm gas gap 2.5 mm wire pitch

Simulations Patrick Reichelt - HK 39.46 – Testbeam data analysis Weilin Yu

Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

16

Summary

• Fast and easy to build TRD is needed• Solution…

flat symmetric MWPC without a drift region• Good performance in measurements with 55Fe

x-ray source• Good performance at CERN testbeam