25
© Neil Palmer RESTORE+: Addressing Landscape Restoration on Degraded Land in Indonesia, the Congo Basin, and Brazil EUBCE, Lisbon, 28 May 2019

RESTORE+: Addressing Landscape Restoration on Degraded

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RESTORE+: Addressing Landscape Restoration on Degraded

© Neil Palmer

RESTORE+: Addressing Landscape Restoration on Degraded Land in Indonesia, the Congo Basin, and Brazil

EUBCE, Lisbon, 28 May 2019

Page 2: RESTORE+: Addressing Landscape Restoration on Degraded

RESTORE+Quick facts

2

• Project duration5 years (2017‐2022)

• Type of activitiesEnhancement of methods, tools, datasets and institutional capacity

• Partner institutions

Indonesia: Ministry of National Development Planning/BAPPENAS

Brazil: Brazilian Cooperation Agency (Foreign Office), Ministry for the Environment

• Funding support

• Project partners

Page 3: RESTORE+: Addressing Landscape Restoration on Degraded

3

RESTORE+Approach

Identifying degraded land:

• Exploring possible definitions of degraded land including social and biophysical consideration

• Assess land degradation through analysis of high resolution (satellite) imagery

• Big earth observation data analysis• Crowdsourcing and grass‐root engagement

Assess implication of using different degraded land definitions in:

• Vegetation modelling to project carbon stock, potential yield under different restoration measures etc.

• Biodiversity assessment (priority areas, species, biodiversity modelling)

Assess sectoral interaction of Food‐Land‐Energy nexus:

• Projection scenarios for production and trade of forestry and agriculture (food) commodities

• Land use/cover projection scenarios based on spatially explicit bottom‐up informed economic models

• Assess bioenergy supply chain in its interaction with the overall energy system

• Assess market support for sustainability safeguards

Page 4: RESTORE+: Addressing Landscape Restoration on Degraded

Importance of fuel wood in Sub‐Sahara Africa

• 80% of all Sub‐Saharan African households, relied on fuel wood as their main source of energy – mostly open fires

• Two out of three of SSA households—585 million people—live without electricity

• Fuel wood collection & charcoal production are the most important drivers of forest degradation in large parts of Africa (Herold et al., 2012)

• For Cameroon, 9.8 million m3 of fuel wood are collected annually in Cameroon (Topa et al., 2010) (for comparison, total harvest of Austria is 16 million m3)

Source: IEA, 2014 if not stated otherwise

Page 5: RESTORE+: Addressing Landscape Restoration on Degraded

Primary energy demand in SSA

Source: IEA, 2014

Page 6: RESTORE+: Addressing Landscape Restoration on Degraded

Fuelwood vs. Charcoal/Energy Density (16–21:30 MJ/kg)

Source: Mosnier et al., 2016

Page 7: RESTORE+: Addressing Landscape Restoration on Degraded

Cameroon

Page 8: RESTORE+: Addressing Landscape Restoration on Degraded

Cameroon Megatrends

Deforestation

Sourc: GFW

Page 9: RESTORE+: Addressing Landscape Restoration on Degraded

Cameroon Megatrends

Population growth

0

5

10

15

20

25

30

35

40

2000 2005 2010 2015 2020 2025 2030 2035

Millions of inh

abita

nts

Page 10: RESTORE+: Addressing Landscape Restoration on Degraded

Cameroon Megatrends

Urbanization

Page 11: RESTORE+: Addressing Landscape Restoration on Degraded

Cameroon Megatrends

Urbanisation

Page 12: RESTORE+: Addressing Landscape Restoration on Degraded

GLOBIOM model results for Cameroon

Page 13: RESTORE+: Addressing Landscape Restoration on Degraded

Possible solutions

• Portable natural gas/biogas for cities • Improved cookstoves instead of open fires to reduce wood demand• Short rotation plantations

• WHAT?    • WHERE?   • HOW?

• combined restoration and bioenergy generation

Page 14: RESTORE+: Addressing Landscape Restoration on Degraded

Incorporating biophysical productivity in spatially explicit partial equilibrium model

14

1 Gridded representation with detailed agroecological information (topography, climate, soil type etc.)

2 Each pixel contains information on potential productivity for main agriculture and forest commodities based on biophysical modelling

Matching potential of supply with demand (both spatially explicit) for all modelled commodities

Optimization model with the objective function of maximizing producer and consumer surplus to calculate 

production of all commodities in every pixel34

EPIC & WaNuLCAS RUMINANT G4MAgronomic Model

Global: annual crops; low/high input

Indonesia:Tree crops; Intensification

CattleSheep & goat

PoultrySwine

Forest Growth Model

AreaCarbon stock

AgeSpecies

Rotation time

Population, GDP, Diet

Food Energy Fiber Industry

Market/trade Prices

Page 15: RESTORE+: Addressing Landscape Restoration on Degraded

Degradation assessmentUse of radar based remote sensing products

15

ADVANTAGES:• Multiple data sources• Easy to interpret• Long legacy of usage

DISADVANTAGES:• Infrequent data, affected by cloud/ haze/smoke• Difficult to detect subtle changes (e.g. degradation)

ADVANTAGES:• Independent of cloud/smoke/haze and day‐light conditions• Possible to detect subtle changes (e.g. degradation). • Dense time‐series

DISADVANTAGES:• Affected by ground/vegetation moisture conditions• Difficult to interpret

Optical‐based satellite data (e.g. Landsat, Sentinel 2) Radar‐based satellite data (e.g. Sentinel 1, ALOS PALSAR)

Page 16: RESTORE+: Addressing Landscape Restoration on Degraded

16

Potential to better capture degradationRadar based remote sensing product

3010 areas of change 

400,000 ha in South Sumatra 

954

547 834 1624Fire Events Canal LUC

areas of other/mixed/unknown causes of change

Page 17: RESTORE+: Addressing Landscape Restoration on Degraded

17

Crowdsourcing of data collectionCitizen science approach

Mobile application for in‐situ data collection to promote community‐based LULC awareness and monitoring. 

Campaign launched in Austria  

Page 18: RESTORE+: Addressing Landscape Restoration on Degraded

18

Crowdsourcing platform tailored for IndonesiaIndonesia’s own citizen‐science platform

Page 19: RESTORE+: Addressing Landscape Restoration on Degraded

Average increment (over rotation time of 6 years)

SPATIAL RESULTS/MODEL VALIDATION/LAND USE MODELING

Source: RESTORE+, IIASA (2019)

Page 20: RESTORE+: Addressing Landscape Restoration on Degraded

Harvested wood (including destroyed biomass and residuals) in the secondary forest with rotation time of 30 years and disturbance intensity 30%. Commercial wood is 50% of the indicated amount

Source: RESTORE+, IIASA (2019)

Page 21: RESTORE+: Addressing Landscape Restoration on Degraded

Accessibility and spatial optimization

21

Power plants

Bioenergy contribution in an optimized energy system

Page 22: RESTORE+: Addressing Landscape Restoration on Degraded

Land‐energy nexus

22

TWh

Geothermal contribution in 23% renewable energy target scenario

Geothermal contribution when excluding primary forests

TWh

Page 23: RESTORE+: Addressing Landscape Restoration on Degraded

Land‐energy nexus

23

Biomass harvesting in 23% renewable energy target scenario

Biomass harvesting when excluding primary forests

MWe

MWe

Page 24: RESTORE+: Addressing Landscape Restoration on Degraded

Spatial suppression efficiency (at 25 km2 resolution) calibrated in FLAM using burned area reported in GFED for wildfire in Indonesia, accumulated over 2000‐2009

FLAM‐IDENTIFIED FIRE HOT SPOTS IN INDONESIA

24

Page 25: RESTORE+: Addressing Landscape Restoration on Degraded

Contact

Dr. Florian Kraxner

Deputy Director | Senior Research Scholar |Ecosystem Services and Management Program, ESMHead |Center for Landscape Resilience & Management, CLRInternational Institute for Applied Systems Analysis, IIASA Laxenburg, [email protected]://www.iiasa.ac.at

G4MEPIC