38
1 Electric Circuits Response of First-Order RL and RC Circuits Qi Xuan Zhejiang University of Technology Nov 2015

Response of First-Order RL and RC Circuits

  • Upload
    vantu

  • View
    231

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Response of First-Order RL and RC Circuits

1 Electric Circuits

Response of First-Order RL and RC Circuits

Qi Xuan Zhejiang University of Technology

Nov 2015

Page 2: Response of First-Order RL and RC Circuits

Structure

•  The  Natural  Response  of  an  RL  Circuit    •  The  Natural  Response  of  an  RC  Circuit  •  The  Step  Response  of  RL  and  RC  Circuits    •  A  General  Solu8on  for  Step  and  Natural  Responses  

•  Sequen8al  Switching    •  Unbounded  Response    •  The  Integra8ng  Amplifier  

2 Electric Circuits

Page 3: Response of First-Order RL and RC Circuits

A  Flashing  Light  Circuit    

Electric Circuits 3

Page 4: Response of First-Order RL and RC Circuits

The  Natural  Response  of  an  RL  Circuit    

Electric Circuits 4

a)  The   switch  has  been   in   a   closed  posi8on   for   a   long  8me:  all  currents  and  voltages  have  reached  a  constant  value.  

b)  The  inductor  appears  as  a  short  circuit  (Ldi/dt = 0)  prior  to  the  release  of  the  stored  energy.

Page 5: Response of First-Order RL and RC Circuits

Expression  for  the  Current  

Electric Circuits 5

Page 6: Response of First-Order RL and RC Circuits

Expression  for  the  Power  and  Energy

Electric Circuits 6

Page 7: Response of First-Order RL and RC Circuits

The  Significance  of  the  Time  Constant  

Electric Circuits 7

The   8me   constant   is   an   important   parameter   for   first-­‐order   circuits,   and   it   is   convenient   to   think   of   the   @me   elapsed   aAer   switching   in   terms   of   integral  mul@ples   of   τ:   one   8me   constant   aJer   the   inductor   has   begun   to   release   its   stored   energy   to   the   resistor,   the   current   has   been   reduced   to   e-­‐1   ,   or  approximately  0.37  of  its  ini8al  value.

Page 8: Response of First-Order RL and RC Circuits

Steady-­‐State  Response

Electric Circuits 8

The response that exists a long time after the switching has taken place is called the steady-state response

<1%

transient  response

Page 9: Response of First-Order RL and RC Circuits

Calcula8ng  the  natural  response  of  an  RL  circuit  can  be  summarized  as  follows:    1.  Find  the  ini8al  current,  I0,  through  the  inductor.    2.  Find  the  8me  constant  of  the  circuit,  τ = L/R.    3.  Use  I0e-t/τ  to  generate  i(t) from  I0 and  τ.    

Electric Circuits 9

Page 10: Response of First-Order RL and RC Circuits

Example  #1 The   switch   in   the   circuit   shown   in   Figure   has   been  closed  for  a  long  8me  before  it  is  opened  at  t  =  0.  Find    a)   iL(t)  for  t ≥ 0,    b)   io(t)  for  t ≥ 0+,    c)   vo(t)  for  t ≥ 0+,    d)  the  percentage  of  the  total  energy  stored  in  the  2  H  

inductor  that  is  dissipated  in  the  10  Ω  resistor.    

Electric Circuits 10

Page 11: Response of First-Order RL and RC Circuits

Solu@on  for  Example  #1

Electric Circuits 11

iL(0+)=20A, τ = L/Req= 0.2 s a)

b)

c)

Page 12: Response of First-Order RL and RC Circuits

Electric Circuits 12

d)

Page 13: Response of First-Order RL and RC Circuits

The  Natural  Response  of  an  RC  Circuit  

Electric Circuits 13

Page 14: Response of First-Order RL and RC Circuits

The  Step  Response  of  an  RL  Circuit  

Electric Circuits 14

Kirchhoff’s  voltage  law

Page 15: Response of First-Order RL and RC Circuits

Electric Circuits 15

I0 = 0

Page 16: Response of First-Order RL and RC Circuits

Step  Response  Curve

Electric Circuits 16

τ

Page 17: Response of First-Order RL and RC Circuits

Electric Circuits 17

The  voltage  across  an  inductor  is  Ldi/dt,  so  for  t > 0+,  we  have:

I0 = 0

Page 18: Response of First-Order RL and RC Circuits

Another  Way  to  Get  the  Voltage  Expression

Electric Circuits 18

(From  Eq.  7.29)

(Compare  with  Eq.  7.1)

Page 19: Response of First-Order RL and RC Circuits

Example  #2 The  switch  in  the  circuit  has  been  in  posi8on  a  for  a   long  8me.  At  t = 0,  the  switch   moves   from   posi8on   a   to   posi8on   b.   The   switch   is   a   make-­‐before-­‐break   type;   that   is,   the   connec@on   at   posi@on   b   is   established   before   the  connec@on   at   posi@on   a   is   broken,   so   there   is   no   interrup8on   of   current  through  the  inductor.    a)  Find  the  expression  for  i(t)  for  t ≥ 0.  b)  What   is   the   ini8al   voltage   across   the   inductor   just   aJer   the   switch   has  

been  moved  to  posi8on  b?    c)  Does  this  ini8al  voltage  make  sense  in  terms  of  circuit  behavior?    d)  How   many   milliseconds   aJer   the   switch   has   been   moved   does   the  

inductor  voltage  equal  24  V?    e)  Plot  both  i(t) and  v(t)  versus  t.    

Electric Circuits 19

Page 20: Response of First-Order RL and RC Circuits

Solu@on  for  Example  #2

Electric Circuits 20

I0 = -8 A τ = L/R = 0.2 H / 2 Ω = 0.1 s

Yes;  in  the  instant  aJer  the  switch  has  been  moved  to  posi8on  b,  the  inductor  sustains  a  current  of  8  A  counterclockwise  around  the  newly  formed  closed  path.  This  current  causes  a  16  V  drop  across  the  2  Ω  resistor.  This  voltage  drop  adds  to  the  drop  across  the  source,  producing  a  40  V  drop  across  the  inductor.  

a)

b)

c)

Page 21: Response of First-Order RL and RC Circuits

Electric Circuits 21

We  find  the  8me  at  which  the  inductor  voltage  equals  24  V  by  solving  the  expression

d)

e)

Page 22: Response of First-Order RL and RC Circuits

The  Step  of  an  RC  Circuit

Electric Circuits 22

By  comparing  with  Eq.  7.48

Page 23: Response of First-Order RL and RC Circuits

A  General  Solu8on  for  Step  and  Natural  Response

Electric Circuits 23

τ = L/R for  RL  circuit

τ = RC for  RC  circuit

Page 24: Response of First-Order RL and RC Circuits

Electric Circuits 24

Page 25: Response of First-Order RL and RC Circuits

Helpful  Notes 1.  Iden8fy   the   variable  of   interest   for   the   circuit.   For  RC  circuits,   it   is  

most  convenient  to  choose  the  capaci@ve  voltage;  for  RL  circuits,  it  is  best  to  choose  the  induc@ve  current.    

2.  Determine   the   ini8al   value  of   the   variable,  which   is   its   value   at   t0.  Note   that   if   you   choose   capaci8ve   voltage   or   induc8ve   current   as  your  variable  of  interest,  it  is  not  necessary  to  dis8nguish  between  t = t0

- and  t = t0+.  This  is  because  they  both  are  con@nuous  variables.  

If  you  choose  another  variable,  you  need  to  remember  that  its  ini8al  value  is  defined  at  t = t0

+.    3.  Calculate  the  final  value  of  the  variable,  which  is  its  value  as  t —> ∞.    4.  Calculate  the  @me  constant  for  the  circuit.    

Electric Circuits 25

Page 26: Response of First-Order RL and RC Circuits

Example  #3

Electric Circuits 26

The  switch  in  the  circuit  has  been  in  posi8on  a  for  a  long  8me.  At  t  =  0  the  switch  is  moved  to  posi8on  b.    a)  What  is  the  ini8al  value  of  vC ?  b)  What  is  the  final  value  of  vC  ?  c)  What  is  the  8me  constant  of  the  circuit  when  the  switch  is  in  posi8on  b?    d)  What  is  the  expression  for  vC(t)  when  t ≥ 0?  e)  What  is  the  expression  for  i(t)  when  t ≥ 0+?  f)  How  long  aJer  the  switch  is  in  posi8on  b  does  the  capacitor  voltage

 equal  zero?    g)  Plot  vC(t) and  i(t)  versus  t.    

Page 27: Response of First-Order RL and RC Circuits

Solu@on  for  Example  #3

Electric Circuits 27

vC(0) = −40 V × 60 / (20 + 60) = −30 V

vC(∞) = 90 V

vC(t) = vC(∞) + [vC(0) − vC(∞)] e−t/τ = 90 − 120e−5t V, t ≥ 0 τ = RC = (400 × 103)(0.5 × 10−6) = 0.2 s

i(t) = i(∞) + [i(0) − i(∞)] e−t/τ = 300e−5t µA, t ≥ 0 i(∞) = [90 − vC(0)] V / 400 kΩ = 300 µA

t = 0.2 ln(120/90) = 57.54 ms

vC(t) = 0

a) b) c) d) e)

f) g)

Page 28: Response of First-Order RL and RC Circuits

Sequen8al  Switching

•  Defini8on:   switching   occurs   more   than   once   in   a  circuit.  

•  Method:  derive  the  expressions  for  v(t)  and  i(t) for  a  given  posi8on  of  the  switch  or  switches  and  then  use  these  solu8ons  to  determine  the  ini8al  condi8ons  for  the  next  posi8on  of  the  switch  or  switches.    

•  Note:  anything  but  induc8ve  currents  and  capaci8ve  voltages   can   change   instantaneously   at   the   8me   of  switching.    

Electric Circuits 28

Page 29: Response of First-Order RL and RC Circuits

Example  #4 The   uncharged   capacitor   in   the   circuit   is   ini8ally   switched   to  terminal  a  of  the  three-­‐posi8on  switch.  At  t  =  0,  the  switch  is  moved  to  posi8on  b,  where  it  remains  for  15  ms.  AJer  the  15  ms  delay,  the  switch  is  moved  to  posi8on  c,  where  it  remains  indefinitely.    a)  Derive   the   numerical   expression   for   the   voltage   across   the  

capacitor.    b)  Plot  the  capacitor  voltage  versus  8me.  c)  When  will  the  voltage  on  the  capacitor  equal  200  V?  

Electric Circuits 29

Page 30: Response of First-Order RL and RC Circuits

Solu@on  for  Example  #4

Electric Circuits 30

Touch  b: v(0) = 0 V; v(∞) = 400 V; τ = RC = 10 ms

v(t) = v(∞) + [v(0) − v(∞)]e−t/τ= 400 − 400e−100t V, 0 ≤ t ≤ 15 ms

Touch  c: v(0.015) = 400(1−e−1.5) = 310.75 V; v(∞) = 0 V; τ = RC = 5 ms

v(t) = v(∞) + [v(0) − v(∞)]e−(t−0.015)/τ= 310.75e−200(t−0.015) V, t ≥ 15 ms

a)

b)

c) t1 = 6.93 ms; t2 = 17.20 ms

Page 31: Response of First-Order RL and RC Circuits

The  Integra8ng  Amplifier

Electric Circuits 31

if + is = 0

vn = vp = 0

= 0

Page 32: Response of First-Order RL and RC Circuits

Example  #5

Electric Circuits 32

Assume  that  the  numerical  values  for  the  signal  voltage  are  Vm = 50 mV and   t1 = 1 s.   This   signal   voltage   is   applied   to   the   integra8ng-­‐amplifier   circuit   shown   in   Fig.   7.40.   The   circuit  parameters  of  the  amplifier  are  Rs = 100 kΩ, Cf = 0.1 µF,  and  VCC = 6 V.  The  ini8al  voltage  on  the  capacitor  is  zero.

a)  Calculate  vo(t).  b)  Plot  vo(t)  versus  t.

Page 33: Response of First-Order RL and RC Circuits

Solu@on  for  Example  #5

Electric Circuits 33

a)

b)

Page 34: Response of First-Order RL and RC Circuits

The  Differen8a8ng  Amplifier

Electric Circuits 34

Page 35: Response of First-Order RL and RC Circuits

 A  Flashing  Light  Circuit

Electric Circuits 35

The  lamp  in  this  circuit  starts  to  conduct  whenever  the  lamp  voltage  reaches  a  value  Vmax.  During  the  8me  the  lamp  conducts,  it  can  be  modeled  as  a  resistor  whose  resistance  is  RL.  The  lamp  will  con8nue  to  conduct  un8l  the  lamp  voltage  drops  to  the  value  Vmin.  When  the  lamp  is  not  conduc8ng,  it  behaves  as  an  open  circuit.

Page 36: Response of First-Order RL and RC Circuits

Electric Circuits 36

Page 37: Response of First-Order RL and RC Circuits

Electric Circuits 37

Page 38: Response of First-Order RL and RC Circuits

Summary

•  Natural  response  for  RL  and  RC  circuits  •  Time  constants  RL  and  RC  circuits  (L/R,  RC)  •  Step  response  for  RL  and  RC  circuits  •  Sequen8al  switching  •  Unbounded  response  •  Integra8ng  and  differen8a8ng  amplifier  

Electric Circuits 38