Click here to load reader
View
0
Download
0
Embed Size (px)
RESONANT OPTICAL NANOANTENNAS AND
APPLICATIONS
a thesis
submitted to the program of material science and
nanotechnology
and the institute of engineering and sciences
of bilkent university
in partial fulfillment of the requirements
for the degree of
master of science
By
Murat Celal KILINÇ
August 2010
I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.
Assist Prof. Dr. Mehmet Bayındır (Supervisor)
I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.
Assist Prof. Dr. Ali Kemal Okyay
I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.
Assist Prof. Dr. Selçuk Aktürk
Approved for the Institute of Engineering and Sciences:
Prof. Dr. Levent Onural Director of Institute of Engineering and Sciences
ii
ABSTRACT
RESONANT OPTICAL NANOANTENNAS AND
APPLICATIONS
Murat Celal KILINÇ
M.S. in Material Science and Nanotechnology
Supervisor: Assist Prof. Dr. Mehmet Bayındır
August 2010
Being one of the fundamentals of electrical engineering, an antenna is a metal-
lic shape structured to transmit or receive electromagnetic waves. Thanks to
the recent advances in nano fabrication and nano imaging, metallic structures
can be defined with sizes smaller to that of visible light, wavelengths of several
nanometers. This opens up the possibility of the engineering of antennas working
at optical wavelengths. Nanoantennas could be thought of optical wavelength
equivalent of common antennas. Today physics, chemistry, material science and
biology use optical nanoantennas to control light waves. Optical nanoantennas
are tailored for many technological applications that include generation, manip-
ulation and detection of light. The near field enhancement of resonant optical
nanoantennas at specific wavelengths is their most promising advantage that
attracts technological applications. In this thesis, we study the resonance char-
acteristics of optical nanoantennas and investigate the governing factors by nu-
merical calculations. We also evaluate radiated electric field from the resonating
nanoantenna. Finally, we employ the resonant near field enhancement in optical
iii
nonlinear generation. The fabrication of nanoantennas with FIB milling is also
explored.
Keywords: Nanoantenna, Plasmonics, Optical Nonlinearity, Chalcogenide Glass
iv
ÖZET
OPTİK DALGA BOYLARINDA ÇALIŞAN, REZONE EDEN
NANOANTENLER VE UYGULAMALARI
Murat Celal KILINÇ
Malzeme Bilimi ve Nanoteknoloji Bölümü Yüksek Lisans
Tez Yöneticisi: Yar. Doç. Dr. Mehmet Bayındır
Ağustos 2010
Elektrik mühendisliğinin temel yapıtaşlarından olan antenler elektromanyetik
dalgaları yaymak ve almak için tasarlanmış metal şekillerdir. Nano fabrikasyon
ve nano boyutta görüntüleme tekniklerinin gelişmesi ile birlikte metal şekillerin
görünür ışığın dalgoboyundan küçük boyutlarda, nano boyutlarda, dahi fabrike
edilmesi mümkün hale gelmiştir. Nano boyutlu metal şekiller sayesinde op-
tik dalga boylarında çalışan antenlerin mühendisliğinin önü açılmıştır. Nano
antenler radyo antenlerinin optik dalga boylarında çalışan eşdeğeri sayılabilir.
Bugün, fizik, kimya, malzeme bilimi ve biyoloji nanoantenleri ışık dalgalarını
kontrol etmek için kullanmaya başlamıştır. Nanoantenler ışığın üretiminin,
manipülasyonunun ve algılanmasının yer aldığı teknolojik uygulamalar için
düzenlenmektedirler. Optik nanoantenlerin rezone ettikleri dalga boyları için,
yüzeylerinde ve yüzeylerine yakın yerlerde, dikkat çeken elektrik alan artışı
gözlenmektedir. Bu elektrik alan artışı teknolojik uygulamalar açısından oldukça
önemlidir. Bu tezde nümerik hesaplamalar yoluyla optik nanoantenlerin rezonans
iv
karakterleri ve rezonanslarını etkileyen etkenler çalışılmıştır. Bunun yanında, re-
zone eden nanoantenlerin radyasyon karakterleri incelenmiştir. Son olarak, re-
zone eden nanoantenlerin yakınındaki yüksek elektrik alan lineer olmayan optik
uygulamalar için kullanılmıştır. Odaklanmış iyon demeti yoluyla nanoantenlerin
fabrikasyonlarının sonuçları da sunulmuştur.
Anahtar Kelimeler: Nanoanten, Plazmonik, Lineer Olmayan Optik, Çalkojen
Cam
v
ACKNOWLEDGMENTS
Firstly, I would like to thank to my thesis advisor Assist Prof. Mehmet Bayındır
for his supervision during this study at UNAM. UNAM is mainly remembered
with a couple of energetic people: Assist Prof. Aykutlu Dana, Assist Prof.
Mehmet Bayındır and Prof. Salim Çıracı. Their effort for the establishment of a
national center for excellence in nanotechnology research is a devotion for state
of the art science and technology leap in Turkey.
Secondly, I would like to thank to Dr. Mecit Yaman for his scientific and
personal wisdom. I am delighted to be one of those he enlightened.
Thirdly, I would like to thank to TUBITAK for financial support through
2228 coded scholarship.
Finally, I would like to thank to friends at UNAM: Kemal Gürel, Mert Vural,
Adem Yildirim, Koray Mızrak, Burkan Kaplan, Neslihan Arslanbaba, Özlem
Şenlik, Yavuz Nuri Ertaş, Hasan Esat Kondakçı, Özlem Köylü, Erol Özgür,
Ekin Özgür, Duygu Akbulut, Hülya Budunoğlu, Dr. Hakan Deniz, Dr. Abdullah
Tülek, Can Koral and Ahmet Ünal.
v
Contents
1 INTRODUCTION 1
2 BACKGROUND 4
2.1 Antenna Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Electromagnetics of Metals . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Resonant Optical Nanoantennas and Applications . . . . . . . . . 12
3 NUMERICAL CALCULATIONS 25
3.1 Optical Nanoantennas at λ = 1.5 µm . . . . . . . . . . . . . . . . 26
3.2 Resonant Stripe Nanoantenna on As2Se3 . . . . . . . . . . . . . . 46
3.3 Resonant Stripe Nanoantenna on As2Se3 and Nonlinear Effects . 50
4 FABRICATION 56
5 CONCLUSIONS AND FUTURE WORK 60
vi
List of Figures
2.1 A typical radiation pattern of an antenna. . . . . . . . . . . . . . 6
2.2 Real ǫ1(ω/2π) and imaginary ǫ2(ω/2π) parts of the dielectric func-
tion of gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 (A) Variation of WLSC power with antenna length, filled squares.
Solid curve represents calculated near field intensity response with-
out a y-axis. (B1 to B2) Calculated spatial near field on 10 nm
above the dipole nanoantennas at λ = 830 nm. (B1) At resonance
(B2) Out of resonance [1]. . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Measured WLSC spectra of a resonant dipole nanoantenna for
three different average power levels of the pulsed Ti:sapphire laser,
excitation wavelength λ = 830 nm [1]. . . . . . . . . . . . . . . . . 14
2.5 (a) Calculated spatial near field | E | and (b) | E |4 of the three
types of antennas at their respective resonance wavelength. (c) is
obtained by convoluting the | E |4 maps with a 200 nm waist 2D
Gaussian profile and integrating over the third dimension. [2]. . . 15
2.6 (a) Luminescence map of the dipole nanoantenna for different
wavelengths. (b) Calculated convoluted | E |4 distribution over
a dipole nanoantenna [2]. . . . . . . . . . . . . . . . . . . . . . . . 15
vii
2.7 Far-field scattered electric-field amplitude calculated on the side
of the dipole nanoantenna. The scattering resonance shifts with
different materials filling the gap. εSiO2 = 2.36ε0, εSi3N4 = 4.01ε0,
εSi = 13.35ε0 [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Far-field scattered electric-field amplitude calculated on the side
of the dipole nanoantenna. The scattering resonance shifts with
different materials filling the gap. In the series combination of
silicon and SiO2 the thicknesses of the nanodisks are tSi = tSiO2 =
1.5 nm; in the series combination of SiO2 and gold,tSiO2 = 1.83
nm and tAu = 1.17 nm; in the parallel combination of silicon and
SiO2, rin = 4.61 nm; in the parallel combination of silicon and
gold, rin = 4.56 nm [3]. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 (a) The cross resonant optical antenna structure. Gold nanoan-
tennas on glass substrate have a cross section of 20nm × 20nm
and a tip to tip distance of 10 nm. (b) The reference frame used. [4]. 18
2.10 Calculated spatial near field (a) In a plane at midheight of the
structure, z = 10 nm (b) 5 nm above the upper antenna surface,
z = 25 nm [4]. . . . . . . . . .