Click here to load reader

RESONANT OPTICAL NANOANTENNAS AND · PDF file 2011. 6. 17. · nanoantenna. Finally, we employ the resonant near field enhancement in optical iii. nonlinear generation. The fabrication

  • View
    0

  • Download
    0

Embed Size (px)

Text of RESONANT OPTICAL NANOANTENNAS AND · PDF file 2011. 6. 17. · nanoantenna. Finally,...

  • RESONANT OPTICAL NANOANTENNAS AND

    APPLICATIONS

    a thesis

    submitted to the program of material science and

    nanotechnology

    and the institute of engineering and sciences

    of bilkent university

    in partial fulfillment of the requirements

    for the degree of

    master of science

    By

    Murat Celal KILINÇ

    August 2010

  • I certify that I have read this thesis and that in my opinion it is fully adequate,

    in scope and in quality, as a thesis for the degree of Master of Science.

    Assist Prof. Dr. Mehmet Bayındır (Supervisor)

    I certify that I have read this thesis and that in my opinion it is fully adequate,

    in scope and in quality, as a thesis for the degree of Master of Science.

    Assist Prof. Dr. Ali Kemal Okyay

    I certify that I have read this thesis and that in my opinion it is fully adequate,

    in scope and in quality, as a thesis for the degree of Master of Science.

    Assist Prof. Dr. Selçuk Aktürk

    Approved for the Institute of Engineering and Sciences:

    Prof. Dr. Levent Onural Director of Institute of Engineering and Sciences

    ii

  • ABSTRACT

    RESONANT OPTICAL NANOANTENNAS AND

    APPLICATIONS

    Murat Celal KILINÇ

    M.S. in Material Science and Nanotechnology

    Supervisor: Assist Prof. Dr. Mehmet Bayındır

    August 2010

    Being one of the fundamentals of electrical engineering, an antenna is a metal-

    lic shape structured to transmit or receive electromagnetic waves. Thanks to

    the recent advances in nano fabrication and nano imaging, metallic structures

    can be defined with sizes smaller to that of visible light, wavelengths of several

    nanometers. This opens up the possibility of the engineering of antennas working

    at optical wavelengths. Nanoantennas could be thought of optical wavelength

    equivalent of common antennas. Today physics, chemistry, material science and

    biology use optical nanoantennas to control light waves. Optical nanoantennas

    are tailored for many technological applications that include generation, manip-

    ulation and detection of light. The near field enhancement of resonant optical

    nanoantennas at specific wavelengths is their most promising advantage that

    attracts technological applications. In this thesis, we study the resonance char-

    acteristics of optical nanoantennas and investigate the governing factors by nu-

    merical calculations. We also evaluate radiated electric field from the resonating

    nanoantenna. Finally, we employ the resonant near field enhancement in optical

    iii

  • nonlinear generation. The fabrication of nanoantennas with FIB milling is also

    explored.

    Keywords: Nanoantenna, Plasmonics, Optical Nonlinearity, Chalcogenide Glass

    iv

  • ÖZET

    OPTİK DALGA BOYLARINDA ÇALIŞAN, REZONE EDEN

    NANOANTENLER VE UYGULAMALARI

    Murat Celal KILINÇ

    Malzeme Bilimi ve Nanoteknoloji Bölümü Yüksek Lisans

    Tez Yöneticisi: Yar. Doç. Dr. Mehmet Bayındır

    Ağustos 2010

    Elektrik mühendisliğinin temel yapıtaşlarından olan antenler elektromanyetik

    dalgaları yaymak ve almak için tasarlanmış metal şekillerdir. Nano fabrikasyon

    ve nano boyutta görüntüleme tekniklerinin gelişmesi ile birlikte metal şekillerin

    görünür ışığın dalgoboyundan küçük boyutlarda, nano boyutlarda, dahi fabrike

    edilmesi mümkün hale gelmiştir. Nano boyutlu metal şekiller sayesinde op-

    tik dalga boylarında çalışan antenlerin mühendisliğinin önü açılmıştır. Nano

    antenler radyo antenlerinin optik dalga boylarında çalışan eşdeğeri sayılabilir.

    Bugün, fizik, kimya, malzeme bilimi ve biyoloji nanoantenleri ışık dalgalarını

    kontrol etmek için kullanmaya başlamıştır. Nanoantenler ışığın üretiminin,

    manipülasyonunun ve algılanmasının yer aldığı teknolojik uygulamalar için

    düzenlenmektedirler. Optik nanoantenlerin rezone ettikleri dalga boyları için,

    yüzeylerinde ve yüzeylerine yakın yerlerde, dikkat çeken elektrik alan artışı

    gözlenmektedir. Bu elektrik alan artışı teknolojik uygulamalar açısından oldukça

    önemlidir. Bu tezde nümerik hesaplamalar yoluyla optik nanoantenlerin rezonans

    iv

  • karakterleri ve rezonanslarını etkileyen etkenler çalışılmıştır. Bunun yanında, re-

    zone eden nanoantenlerin radyasyon karakterleri incelenmiştir. Son olarak, re-

    zone eden nanoantenlerin yakınındaki yüksek elektrik alan lineer olmayan optik

    uygulamalar için kullanılmıştır. Odaklanmış iyon demeti yoluyla nanoantenlerin

    fabrikasyonlarının sonuçları da sunulmuştur.

    Anahtar Kelimeler: Nanoanten, Plazmonik, Lineer Olmayan Optik, Çalkojen

    Cam

    v

  • ACKNOWLEDGMENTS

    Firstly, I would like to thank to my thesis advisor Assist Prof. Mehmet Bayındır

    for his supervision during this study at UNAM. UNAM is mainly remembered

    with a couple of energetic people: Assist Prof. Aykutlu Dana, Assist Prof.

    Mehmet Bayındır and Prof. Salim Çıracı. Their effort for the establishment of a

    national center for excellence in nanotechnology research is a devotion for state

    of the art science and technology leap in Turkey.

    Secondly, I would like to thank to Dr. Mecit Yaman for his scientific and

    personal wisdom. I am delighted to be one of those he enlightened.

    Thirdly, I would like to thank to TUBITAK for financial support through

    2228 coded scholarship.

    Finally, I would like to thank to friends at UNAM: Kemal Gürel, Mert Vural,

    Adem Yildirim, Koray Mızrak, Burkan Kaplan, Neslihan Arslanbaba, Özlem

    Şenlik, Yavuz Nuri Ertaş, Hasan Esat Kondakçı, Özlem Köylü, Erol Özgür,

    Ekin Özgür, Duygu Akbulut, Hülya Budunoğlu, Dr. Hakan Deniz, Dr. Abdullah

    Tülek, Can Koral and Ahmet Ünal.

    v

  • Contents

    1 INTRODUCTION 1

    2 BACKGROUND 4

    2.1 Antenna Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.2 Electromagnetics of Metals . . . . . . . . . . . . . . . . . . . . . . 8

    2.3 Resonant Optical Nanoantennas and Applications . . . . . . . . . 12

    3 NUMERICAL CALCULATIONS 25

    3.1 Optical Nanoantennas at λ = 1.5 µm . . . . . . . . . . . . . . . . 26

    3.2 Resonant Stripe Nanoantenna on As2Se3 . . . . . . . . . . . . . . 46

    3.3 Resonant Stripe Nanoantenna on As2Se3 and Nonlinear Effects . 50

    4 FABRICATION 56

    5 CONCLUSIONS AND FUTURE WORK 60

    vi

  • List of Figures

    2.1 A typical radiation pattern of an antenna. . . . . . . . . . . . . . 6

    2.2 Real ǫ1(ω/2π) and imaginary ǫ2(ω/2π) parts of the dielectric func-

    tion of gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2.3 (A) Variation of WLSC power with antenna length, filled squares.

    Solid curve represents calculated near field intensity response with-

    out a y-axis. (B1 to B2) Calculated spatial near field on 10 nm

    above the dipole nanoantennas at λ = 830 nm. (B1) At resonance

    (B2) Out of resonance [1]. . . . . . . . . . . . . . . . . . . . . . . 13

    2.4 Measured WLSC spectra of a resonant dipole nanoantenna for

    three different average power levels of the pulsed Ti:sapphire laser,

    excitation wavelength λ = 830 nm [1]. . . . . . . . . . . . . . . . . 14

    2.5 (a) Calculated spatial near field | E | and (b) | E |4 of the three

    types of antennas at their respective resonance wavelength. (c) is

    obtained by convoluting the | E |4 maps with a 200 nm waist 2D

    Gaussian profile and integrating over the third dimension. [2]. . . 15

    2.6 (a) Luminescence map of the dipole nanoantenna for different

    wavelengths. (b) Calculated convoluted | E |4 distribution over

    a dipole nanoantenna [2]. . . . . . . . . . . . . . . . . . . . . . . . 15

    vii

  • 2.7 Far-field scattered electric-field amplitude calculated on the side

    of the dipole nanoantenna. The scattering resonance shifts with

    different materials filling the gap. εSiO2 = 2.36ε0, εSi3N4 = 4.01ε0,

    εSi = 13.35ε0 [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.8 Far-field scattered electric-field amplitude calculated on the side

    of the dipole nanoantenna. The scattering resonance shifts with

    different materials filling the gap. In the series combination of

    silicon and SiO2 the thicknesses of the nanodisks are tSi = tSiO2 =

    1.5 nm; in the series combination of SiO2 and gold,tSiO2 = 1.83

    nm and tAu = 1.17 nm; in the parallel combination of silicon and

    SiO2, rin = 4.61 nm; in the parallel combination of silicon and

    gold, rin = 4.56 nm [3]. . . . . . . . . . . . . . . . . . . . . . . . . 17

    2.9 (a) The cross resonant optical antenna structure. Gold nanoan-

    tennas on glass substrate have a cross section of 20nm × 20nm

    and a tip to tip distance of 10 nm. (b) The reference frame used. [4]. 18

    2.10 Calculated spatial near field (a) In a plane at midheight of the

    structure, z = 10 nm (b) 5 nm above the upper antenna surface,

    z = 25 nm [4]. . . . . . . . . .