RESONANCE - Binomial Theorem

Embed Size (px)

DESCRIPTION

The topic of the module is Binomial Theorem. [Maths]

Citation preview

  • Part I

    Part II

    Part III

    Part IV

    Part - V.

    Part - VI.

    DPP No. _____Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Signature HOD Signature Faculty

    DAILY LECTURE SHEET : ACADEMIC SESSION 2008-09

    Title/Sub title of the Topic : ____________________________________________________________

    Lecture No. of the particular topic : _____________________________________Cumulative Lecture No. ______

    Contents to be discussed :

    DPP No. _______ Home Assignments : ________________________________________________________

    _________________________________________________________________________________________________

    Theory Contents to be Covered in the Lecture : Assignments to be given after the Lecture :

    Theory : 4 LectureDiscussion : 2 LectureBatch : R

    Binomial Theorem for positive indexTheorem + basic properties

    General term, middle term

    Coefficient of xk in (ax + b)n

    Num greatest coefficientNum greatest term

    Remainder

    1

    Binomial Theorem

  • LECTURE 1

    1. Expand the following binomials :(i) (x 3)5 [ Ans. x5 15x4 + 90x3 270x2 + 405x 243 ]

    (ii) (2x y)5 [ Ans. 32x5 80x4y + 80x3y2 40x2y3 + 10xy4 y5 ]

    2. Find

    (i) 28th term of (5x + 8y)30 [ Ans. !3!27!30

    (5x)3 . (8y)27]

    (ii) 7th term of 9

    x25

    5x4

    [Ans. 3x

    10500]

    3. Find middle term of (i) 142

    2x1

    & (ii)

    93

    6aa3

    [Ans. (i) 16

    429 x14, (ii) 8

    189 a17, 16

    21a19]

    4. Find the term independent of x in 9

    2

    x31x

    23

    [Ans. 18

    7]

    D5. Find the coefficients of x32 & x17 in 15

    34

    x1x

    [Ans. 1365, 1365]

    6. Find the coefficient of x1 in (1 + 3x2 + x4) 8

    x11

    [Ans. 232]

    7. Find the numerically greatest coefficient in the expansion of (3x 2)21 [ Ans. T9 ]

    8. Find the algebracally greatest and least coefficient in the expansion of (2 5x)48[ Ans. T35 , T36 ]

    9. Find the greatest term in the expansion of (7 5x)11 where x = 32

    [Ans. T4 = 9440

    78 53]

    D10. Find numerically greatest term in the expansion of (3 5x)15 when x = 51

    . [ Ans. T3, T4 ]

    11. If n is a positive integer, show that(i) 9n + 7 is divisible by 8.D(ii) 32n+1 + 2n+2 is divisible by 7D(iii) 62n 35n 1 is divisible by 1225.

    12. What is the remainder when 599 is divided by 13 [Ans. 8]

    D13. What is the remainder when 7103 is divided by 25. [Ans. 18]

  • Part I

    Part II

    Part III

    Part IV

    Part - V.

    Part - VI.

    DPP No. _____Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Signature HOD Signature Faculty

    DAILY LECTURE SHEET : ACADEMIC SESSION 2008-09

    Title/Sub title of the Topic : ____________________________________________________________

    Lecture No. of the particular topic : _____________________________________Cumulative Lecture No. ______

    Contents to be discussed :

    DPP No. _______ Home Assignments : ________________________________________________________

    _________________________________________________________________________________________________

    Theory Contents to be Covered in the Lecture : Assignments to be given after the Lecture :

    Theory : 4 LectureDiscussion : 2 LectureBatch : R

    Sum of series involves binomial coefficientupper index is constant(i) By proper substitution

    (ii) kt = knt(iii) By reduction r nCr = n n1Cr1(iv) Calculus

    rC , rCr , rC)1( , rC1r1

    ,

    r2Cr ...

    2

    (A + B )n

    Binomial Theorem

  • LECTURE 2

    1. If n is +ve integer, prove that the integral part of (7 + 4 3 )n is an odd number..

    D2. If n is +ve integer, prove that the integeral part of (7 + 2 5 )2n + 1 is an even number..

    D3. If (7 + 4 3 )n = , where is a +ve integer and is a proper fraction, then prove that

    (1) () = 1

    4. Show that the integer just above ( 3 +1)2n is divisible by 2n + 1 for all n N,

    5. If (1 + x)n = C0 + C1x + C2x2 + .........+ Cnxn, then show that

    (i) C0 + C1 + C2 + ..........+Cn = 2n

    (ii) C0 + C2 + C4 + .......... = 2n1

    D(iii) C1 + C3 + C5 + .......... = 2n1

    (iv) C0 + 3C1 + 32C2 + ........ = 4n.

    6. If (1 + x)n = C0 + C1x + C2x2 + .........+ Cnxn, then show that

    (i) C1 + 2C2 + 3.C3 + ............. + nCn = n.2n1

    (ii) C0 + 2C1 + 3.C2 + ............. + (n+1) . Cn = 2n1(n+2)

    (iii) C0 + 3C1 + 5C2 + ............. + (2n+1) . Cn = 2n(n+1)

    D(iv) a.C0 + (a b).C1 _ (a 2b)C2 + .........+(a nb).Cn = 2n1 (2a nb)

    (v) C0 22.C1 + 32 C2 + .............+ (1)n (n+1)2 .Cn = 0, n > 2.

    D(vi) a2.C0 (a 1)2.C1 + (a 2)2.C2 (a 3)2.C3 + ..........+ (1)n (a n)2.Cn = 0.

    (vii)1n

    121n

    C..........3

    C2

    CC1n

    n210

    (viii) 1n1..........

    4C

    3C

    2CC 3210

    (ix)

    n

    0r

    rr

    2n1

    )2r)(1r(C.)1(

    .

    (x)

    n

    0r 1r2r

    Cr = 1n1)3n(2n

    .

  • Part I

    Part II

    Part III

    Part IV

    Part - V.

    Part - VI.

    DPP No. _____Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Signature HOD Signature Faculty

    DAILY LECTURE SHEET : ACADEMIC SESSION 2008-09

    Title/Sub title of the Topic : ____________________________________________________________

    Lecture No. of the particular topic : _____________________________________Cumulative Lecture No. ______

    Contents to be discussed :

    DPP No. _______ Home Assignments : ________________________________________________________

    _________________________________________________________________________________________________

    Theory Contents to be Covered in the Lecture : Assignments to be given after the Lecture :

    Theory : 4 LectureDiscussion : 2 LectureBatch : R

    3

    Problem of double sigma

    Product of binomial coefficient

    Upper index is variable(i) nCr + nCr + 1 = n+1Cr+1(ii) Using binomial theorem for negative index

    Binomial Theorem

  • LECTURE 3

    1. (i) nCn + n+1Cn + n+2Cn + ........+ n+kCn = n+kCn+1 .

    (ii) mC1 + m+1C2 + m+2C3 + ....... + m+n1Cn = nC1 + n+1C2 + n+2C2 + .......+n+m1Cm.

    2. Prove that If (1 + x)n = C0 + C1x + C2x2 +..............+ Cnxn,

    (i) C02 + C12 + ..... + Cn2 = )!n(!)n2(

    (ii) C0C1 + C1C2 + ...... + Cn1 Cn =

    )!1n()!1n(!n2

    (iii) C0Cn + C1 . Cn1 + .............. + Cn C0 = 2)!n()!n2(

    D(iv)

    n

    0r3rr 3)!-(n3)!(n

    ! n2CC .

    (v) mCr.nC0 + mCr1.nC1 + mCr2.nC2 + .......+mC1.nCr1 + mC0.nCr = m+nCr ,

    where m,n,r are positive integers and r < m, r < n.

    D(vi) C0.2nCn C1.2n2Cn + C2. 2n4Cn .......... = 2n, where Cr stands for nCr.

    3. Evaluate :

    n

    0m

    m

    0pp

    mm

    n C.C Ans. 3n

    4. If (1 + x)n = C0 + C1x + C2x2 + ..........+ Cnxn, prove that

    (i) injn CC)ji( = n.22nD(ii) (Ci + Cj)2 = (n 1).2nCn + 22n 0 i < j n,

    D5. If (1 + x)n = C0 + C1x + C2x2 + ............+ Cnxn, show that

    i.j.CiCj=n2 { 1n2n23n2 C.

    212

    } 0 i < j n.

    D6. Prove that If (1 + x)n = C0 + C1x + C2x2 +..............+ Cnxn,

    (i) 22

    n2

    22

    120 ]! 1)[(n

    ! )1n2(1n

    C.......3

    C2

    CC

    (ii) C12 2.C22 + 3.C32 ........ 2n.C22n = (1)n1.n.Cn where Cr stands for 2nCr.

    (iii)

    n

    0rn

    2n222r C.nC)rn(r , where Cr stands for nCr.

    (iv) C0 C1 + C2 ............+ (1)m1.Cm1 = (1)m1 ! )1m()1mn).....(2n)(1n(

    where Cr stands for nCr.

    D7. If (1 + x)n = C0 + C1x + C2x2 + ..........+ Cnxn, show that

    n

    0r r

    2

    ji C1

    2n

    Cj

    Ci

    , 0 i < j n.

  • Part I

    Part II

    Part III

    Part IV

    Part - V.

    Part - VI.

    DPP No. _____Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Home Assignment :

    Signature HOD Signature Faculty

    DAILY LECTURE SHEET : ACADEMIC SESSION 2008-09

    Title/Sub title of the Topic : ____________________________________________________________

    Lecture No. of the particular topic : _____________________________________Cumulative Lecture No. ______

    Contents to be discussed :

    DPP No. _______ Home Assignments : ________________________________________________________

    _________________________________________________________________________________________________

    Theory Contents to be Covered in the Lecture : Assignments to be given after the Lecture :

    Theory : 4 LectureDiscussion : 2 LectureBatch : R

    Binomial theorem for negative and fractional index

    Multinomial theorem

    Binomial Theorem

    4

  • LECTURE 4

    1. Write the expansion of(i) (1 x)1 (ii) (1 x)2 (iii) (1 x)n

    2. Find the general term in the expansion of (23x2)2/3 [Ans. r32

    2!r)1r3......(8.5.22

    x2r]

    D3. Find the no. of term in the expansion of (a + b + c + d + e + f)n. [Ans. n+5cn]

    D4. Find the coeff. of a3.b4.c7 in the expansion of (bc + ca + ab)8. [Ans. 280]

    5. Find the coefficient of x3 y4 z2 in the expansion of (2x 3y + 4z)9. Ans. !2!4!3!9

    23 34 42

    6. Find the coefficient of x4 in (1 + x 2x2)7 Ans. 14

    D7. The sum of rational terms in

    1063 532 is ............... [Ans. 12632]