32
Resolvent Energy of Graphs I.Gutman 1,2 , B.Furtula 1 , E.Zogi´ c 2 , E.Glogi´ c 2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia 2 State University of Novi Pazar, Novi Pazar, Serbia May 19, 2016 I.Gutman 1,2 , B.Furtula 1 , E.Zogi´ c 2 , E.Glogi´ c 2 ER(G) May 19, 2016 1 / 25

Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Resolvent Energy of Graphs

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2

1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia2 State University of Novi Pazar, Novi Pazar, Serbia

May 19, 2016

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 1 / 25

Page 2: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

I. Gutman, B. Furtula, E. Zogic, E. Glogic, Resolvent energy of graphs,MATCH Communications in Mathematical and in Computer Chemistry 75(2016) 279 - 290.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 2 / 25

Page 3: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

M-square matrix of order n; Resolvent matrix of M:

RM(z) = (zIn −M)−1 (1)

RM(z) exists for all values of z except when z coincides with aneigenvalue of M.

G -simple graph; A-adjacency matrix; λ1, λ2, ..., λn eigenvalues

The k-th spectral moment of G :

Mk(G ) =n∑

i=1

(λi )k (2)

M0 = n,M1 = 0,M2 = 2m, Mk = 0 for all odd values of k if and onlyif G is bipartite.

1 D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, 1980.

2 T. S. Shores, Linear Algebra and Matrix Analysis, 2007.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 3 / 25

Page 4: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

M-square matrix of order n; Resolvent matrix of M:

RM(z) = (zIn −M)−1 (1)

RM(z) exists for all values of z except when z coincides with aneigenvalue of M.

G -simple graph; A-adjacency matrix; λ1, λ2, ..., λn eigenvalues

The k-th spectral moment of G :

Mk(G ) =n∑

i=1

(λi )k (2)

M0 = n,M1 = 0,M2 = 2m, Mk = 0 for all odd values of k if and onlyif G is bipartite.

1 D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, 1980.

2 T. S. Shores, Linear Algebra and Matrix Analysis, 2007.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 3 / 25

Page 5: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

M-square matrix of order n; Resolvent matrix of M:

RM(z) = (zIn −M)−1 (1)

RM(z) exists for all values of z except when z coincides with aneigenvalue of M.

G -simple graph; A-adjacency matrix; λ1, λ2, ..., λn eigenvalues

The k-th spectral moment of G :

Mk(G ) =n∑

i=1

(λi )k (2)

M0 = n,M1 = 0,M2 = 2m, Mk = 0 for all odd values of k if and onlyif G is bipartite.

1 D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, 1980.

2 T. S. Shores, Linear Algebra and Matrix Analysis, 2007.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 3 / 25

Page 6: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

M-square matrix of order n; Resolvent matrix of M:

RM(z) = (zIn −M)−1 (1)

RM(z) exists for all values of z except when z coincides with aneigenvalue of M.

G -simple graph; A-adjacency matrix; λ1, λ2, ..., λn eigenvalues

The k-th spectral moment of G :

Mk(G ) =n∑

i=1

(λi )k (2)

M0 = n,M1 = 0,M2 = 2m, Mk = 0 for all odd values of k if and onlyif G is bipartite.

1 D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, 1980.

2 T. S. Shores, Linear Algebra and Matrix Analysis, 2007.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 3 / 25

Page 7: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

Energy of graph G

E(G) =n∑

i=1

|λi | (3)

1 I. Gutman, The energy of a graph, (1978)2 X. Li. Y. Shi, I. Gutman, Graph Energy, (2012)3 I. Gutman, X. Li (Eds.), Energies of Graphs-Theory and Applications, (2016)

Resolvent matrix of adjency matrix A

RA(z) = (zIn − A)−1 (4)

1

z − λi, i = 1, 2, ..., n − eigenvalues of RA(z) (5)

λi ≤ n − 1 is satisfied by all eigenvalues of all n-vertex graphs.

Resolvent energy of graph G

ER(G) =n∑

i=1

1

n − λi(6)

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 4 / 25

Page 8: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

Energy of graph G

E(G) =n∑

i=1

|λi | (3)

1 I. Gutman, The energy of a graph, (1978)2 X. Li. Y. Shi, I. Gutman, Graph Energy, (2012)3 I. Gutman, X. Li (Eds.), Energies of Graphs-Theory and Applications, (2016)

Resolvent matrix of adjency matrix A

RA(z) = (zIn − A)−1 (4)

1

z − λi, i = 1, 2, ..., n − eigenvalues of RA(z) (5)

λi ≤ n − 1 is satisfied by all eigenvalues of all n-vertex graphs.

Resolvent energy of graph G

ER(G) =n∑

i=1

1

n − λi(6)

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 4 / 25

Page 9: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

Energy of graph G

E(G) =n∑

i=1

|λi | (3)

1 I. Gutman, The energy of a graph, (1978)2 X. Li. Y. Shi, I. Gutman, Graph Energy, (2012)3 I. Gutman, X. Li (Eds.), Energies of Graphs-Theory and Applications, (2016)

Resolvent matrix of adjency matrix A

RA(z) = (zIn − A)−1 (4)

1

z − λi, i = 1, 2, ..., n − eigenvalues of RA(z) (5)

λi ≤ n − 1 is satisfied by all eigenvalues of all n-vertex graphs.

Resolvent energy of graph G

ER(G) =n∑

i=1

1

n − λi(6)

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 4 / 25

Page 10: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Introduction

Resolvent Estrada index

EEr (G ) =∞∑k=0

Mk(G )

(n − 1)k(7)

EEr (G ) =n∑

i=1

n − 1

n − 1− λi(8)

EEr is undefined in the case of the complete graph Kn.

X. Chen, J. Qian, Bounding the resolvent Estrada index of a graph, (2012)

X. Chen, J. Qian, On resolvent Estrada index, (2015)

I. Gutman, B. Furtula, X. Chen, J. Qian, Graphs with smallest resolvent Estrada indices(2015)

I. Gutman, B. Furtula, X. Chen, J. Qian, Resolvent Estrada index - computational andmathematical studies, (2015)

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 5 / 25

Page 11: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Basic properties of resolvent energy

Theorem 1.

If G is graph of order n and Mk(G ), k = 0, 1, 2, ... its spectral moments,then

ER(G ) =1

n

∞∑k=0

Mk(G )

nk. (9)

Corollary 1.

If e is a edge of the graph G , denote by G − e the subgraph obtained bydeleting e from G . Then for any edge e of G ,

ER(G − e) < ER(G ).

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 6 / 25

Page 12: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Basic properties of resolvent energy

Theorem 1.

If G is graph of order n and Mk(G ), k = 0, 1, 2, ... its spectral moments,then

ER(G ) =1

n

∞∑k=0

Mk(G )

nk. (9)

Corollary 1.

If e is a edge of the graph G , denote by G − e the subgraph obtained bydeleting e from G . Then for any edge e of G ,

ER(G − e) < ER(G ).

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 6 / 25

Page 13: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Basic properties of resolvent energy

Corollary 2.

Let Kn be the complete graph of order n and Kn the edgeless graph oforder n. Then for any graph G of order n, different from Kn and Kn,

ER(Kn) < ER(G ) < ER(Kn), (10)

1 ≤ ER(G ) ≤ 2n

n + 1. (11)

ER(G ) = 1 if and only if G ∼= Kn while ER(G ) = 2nn+1 if and only if

G ∼= Kn.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 7 / 25

Page 14: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Basic properties of resolvent energy

Corollary 3.

Among connected graphs of order n, the graph with the smallest resolventenergy is a tree.

Theorem 2.

Amog trees of order n, the path Pn has the smallest and the star Sn hasthe greatest resolvent energy.

H. Deng, A proof of a conjecture on the Estrada index, (2009)

M2k (Pn) ≤ M2k (T ) ≤ M2k (Sn)

M2k (Pn) < M2k (T ) < M2k (Sn), for k ≥ 2

ER(G) =1

n

∞∑k=0

Mk (G)

nk

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 8 / 25

Page 15: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Basic properties of resolvent energy

Corollary 3.

Among connected graphs of order n, the graph with the smallest resolventenergy is a tree.

Theorem 2.

Amog trees of order n, the path Pn has the smallest and the star Sn hasthe greatest resolvent energy.

H. Deng, A proof of a conjecture on the Estrada index, (2009)

M2k (Pn) ≤ M2k (T ) ≤ M2k (Sn)

M2k (Pn) < M2k (T ) < M2k (Sn), for k ≥ 2

ER(G) =1

n

∞∑k=0

Mk (G)

nk

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 8 / 25

Page 16: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Basic properties of resolvent energy

Theorem 3.

Let G be a graph of order n and φ(G , λ) = det(λIn − A(G )) ne itscharacteristic polynomial. Then

ER(G ) =φ′(G , n)

φ(G , n), (12)

where φ′(G , λ) is the first derivative of φ(G , λ).

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 9 / 25

Page 17: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Estimating the resolvent energy

Theorem 4.

Let G be a graph with n vertices and m edges. Then

n3

n3 − 2m≤ ER(G ) ≤ 1 +

2m(2n − 1)

n2(n2 − 2m). (13)

Equality on the left-hand side is attained if and only if G ∼= Kn or(provided n as even) G ∼= n

2K2. Equality on the right-hand side is attainedif and only if G ∼= Kn.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 10 / 25

Page 18: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Estimating the resolvent energy

Proposition 1.

Let G be a graph with n vetrices, m edges, and nullity n0. Then

ER(G ) ≥ n0

n+

n(n − n0)2

n2(n − n0)− 2m. (14)

Proposition 2.

If G is bipartite graph with n vertices and m edges where n is odd number,then n0 ≥ 1 and

ER(G ) ≥ 1

n+

n(n − 1)2

n2(n − 1)− 2m. (15)

D. Cvetkovic, I. Gutman, The algebraic multiplicity of the number zero in the spectrum ofa bipartite graph, (1972)

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 11 / 25

Page 19: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Estimating the resolvent energy

Proposition 3.

Let G be a bipartite graph with n vertices and m edges. Then

ER(G ) ≤ 1 +2m

n(n2 −m). (16)

Equality is attained if and only if either G ∼= Kn or G ∼= Ka,b ∪ Kn−a−b,where Ka,b is a complete bipartite graph such that ab = m.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 12 / 25

Page 20: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

The ER-values of all trees and connected unicyclic, and bicyclic graphs up to 15 vertices werecomputed, and the structure of the extremal members of these classes was established.First of all, the results of Theorem 2 were confirmed and extended:

Observation 1.Among trees of order n, the path Pn has the smallest and the tree P∗n second-smallest resolventenergy. Among trees of order n, the star Sn has the greatest and the tree S∗n second-greatestresolvent energy.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 13 / 25

Page 21: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

Observation 2.

Among connected unicyclic graphs of order n, n ≥ 4, the cycle Cn has thesmallest and the graph C ∗n second-smallest reslovent energy. Among thesegraphs of order n, n ≥ 5, the graphs Xn and X ∗n have, respectively, thegreatest and second-greatest resolvent energy.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 14 / 25

Page 22: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

Obsevation 3. Among connected bicyclic graphs of order n, those with the smallest, (a),and second-smallest, (b), resolvent energy are:

(a)Bp−1,p−1,p if n = 3p, p ≥ 2Bp−1,p,p if n = 3p + 1, p ≥ 1Bp,p,p if n = 3p + 2, p ≥ 1.

(b)Bp−2,p,p if n = 3p, p ≥ 2Bp−1,p−1,p+1 if n = 3p + 1, p ≥ 2Bp−1,p,p+1 if n = 3p + 2, p ≥ 1.

Among these graphs of order n, n ≥ 5, the graph Yn has the greatest resolvent energy. Forn ≥ 9, the graph Y ∗n has second-greatest resolvent energy, whereas Y ∗5 ,Y

∗6 ,Y

∗7 and Y ∗8 are

exceptions.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 15 / 25

Page 23: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

Observation 4.

Among connected tricyclic graphs of order n, n ≥ 5, the graph Zn has thegreatest resolvent energy. For n ≥ 6, graph Z ∗n has second-greatest energy,whereas Z ∗5 is exception.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 16 / 25

Page 24: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

Observation 5.

Connected tricyclic graphs of order n, 5 ≤ n ≤ 15 with the smallest ER,are depicted in the following figure.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 17 / 25

Page 25: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

Observation 6.

The inequality ER(Sn) < ER(Cn) holds for all n ≥ 4. Consequently,any tree has smaller ER-value than any unicyclic graph of the sameorder.

For Ba,b,c specified by (a) from Observation 3, the inequalityER(Xn) < ER(Ba,b,c) holds only until n = 6 and is violated for alln ≥ 7. Consequently, it is not true that any unicyclic graph hassmaller ER-value than any bicyclic graph of the same order.

The same applies also to the relation between ER of bicyclic andtricyclic graphs.

Any unicyclic graph has smaller ER-value than any connected tricyclicgraph of the same order.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 18 / 25

Page 26: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

Computational studies on resolvent energy

Observation 7.

Cospectral graphs have equal ER-values.

There are non-cospectral graphs whose ER-values are different, butremarkably close. ER(B3,3,3) = 1.018571022 whereasER(B2,3,4) = 1.018571080, and ER(B4,4,5) = 1.0096261837436whereas ER(B3,5,5) = 1.0096261837458.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 19 / 25

Page 27: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

References

M. Benzi, P. BoitoQuadrature rule-based bounds for functions of adjacency matricesLin. Algebra Appl. 433 (2010) 637-652.

S. B. Bozkurt, A. D. Gungor, I. GutmanRandic spectral radius and Randic energy,MATCH Commun. Math. Comput. Chem. 64 (2010) 321-334.

S. B. Bozkurt, A. D. Gungor, I. Gutman, A. S Cevik,Randic matrix and Randic energyMATCH Commun. Math. Comput. Chem. 64 (2010) 239-250.

X. Chen, J. Qian,Bounding the resolvent Estrada index of a graph,J. Math. Study 45 (2012) 159-166.

X. Chen, J. Qian,On resolvent Estrada index,MATCH Commun. Math. Comput. Chem. 73 (2015) 163-174.

D. M. Cvetkovic, I. Gutman,The algebraic multiplicity of the number zero in the spectrum of a bipartite graph,Mat. Vesnik (Beograd) 9 (1972) 141-150.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 20 / 25

Page 28: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

References

D. Cvetkovic, P. Rowlinson, S. Simic,An Introduction to the Theory of Graph Spectra,Cambridge Univ. Press, Cambridge, 2010.

D. Cvetkovic, M. Doob, H. Sachs,Spectra of Graphs-Theory and Application,Academic Press, New York, 1980.

K. C. Das, S. Sorgun, K. Xu,On Randic energy of graphs, in: I. Gutman, X. Li (Eds.), Energies of Graphs-Theory andApplications,Univ. Kragujevac, Kragujevac, 2016, pp. 111-122.

H. Deng,A proof of a conjecture on the Estrada index,MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606.

I. Gutman,The energy of a graph,Ber. Math.-Statist. Sekt. Forschungsz. Graz. 103 (1978) 1-22.

I. Gutman,Comparative studies of graph energies,Bull. Acad. Serbe Sci. Arts (Cl.Sci. Math. Nature.) 144 (2012) 1-17.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 21 / 25

Page 29: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

References

I. Gutman,Census of graph energies,MATCH Commun. Math. Comput. Chem. 74 (2015) 219-221.

I. Gutman,B. Furtula, X. Chen, J. Qian,Graphs with smallest resolvent Estrada indices,MATCH Commun. Math. Comput. Chem. 73 (2015) 267-270.

I. Gutman,B. Furtula, X. Chen, J. Qian,Resolvent Estrada index-computational and mathematical studies,MATCH Commun. Math. Comput. Chem. 74 (2015) 431-440.

I. Gutman, B. Furtula, E. Zogic, E. Glogic,Resolvent energy, in: I. Gutman, X. Li (Eds.), Graph Energies-Theory and Applications,Univ. Kragujevac, Kragujevac, 2016, pp. 277-290.

I. Gutman, X. Li (Eds.),Energies of Graphs-Theory and Applications,Univ. Kragujevac, Kragujevac, 2016.

E. Estrada, D. J. Higham,Network properties revealed through matrix functions,SIAM Rev. 52 (2010) 696-714.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 22 / 25

Page 30: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

References

J. Li, J. M. Guo, W. C. Shiu,A note on Randic energy,MATCH Commun. Math. Comput. Chem. 74 (2015) 389-398.

X. Li. Y. Shi, I. Gutman,Graph Energy,Springer, New York, 2012.

O. Miljkovic, B. Furtula, S. Radenkovic, I. Gutman,Equienergetic and almost-equienergetic trees,MATCH Commun, Math. Comput. Chem. 61 (2009) 451-461.

D. S. Mitrinovic, P. Vasic,Analytic Inequalities,Springer, Berlin, 1970.

V. Nikiforov,The energy of graphs and matrices,J. Math. Anal. Appl. 326 (2007) 1472-1475.

V. Nikiforov,Energy of matrices and norms of graphs, in: I. Gutman, X. Li (Eds.), GraphEnergies-Theory and Applications,Univ. Kragujevac, Kragujevac, 2016, pp. 5-48.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 23 / 25

Page 31: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

References

T. S. Shores,Linear Algebra and Matrix Analysis,Springer, New York, 2007.

M. P. Stanic, I. Gutman,On almost-equienergetic graphs,MATCH Commun, Math. Comput. Chem. 70 (2013) 681-688.

M. P. Stanic, I. Gutman,Towards a definition of almost-equienergetic graphs,J. Math. Chem. 52 (2014) 213-221.

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 24 / 25

Page 32: Resolvent Energy of Graphs - MISANU · Resolvent Energy of Graphs I.Gutman1;2, B.Furtula1, E.Zogi c2, E.Glogi c2 1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

THANK YOU FOR YOUR ATTENTION!

Ivan Gutman1,2, Boris Furtula1, Emir Zogic2, Edin Glogic2

1 Faculty of Science, University of Kragujevac, Kragujevac, Serbia

[email protected] , [email protected]

2 State University of Novi Pazar, Novi Pazar, Serbia

[email protected] , [email protected]

I.Gutman1,2, B.Furtula1, E.Zogic2, E.Glogic2 ER(G) May 19, 2016 25 / 25