69
Today Resolution Wavefront modulation MIT 2.71/2.710 Optics 11/24/04 wk12-b-1

Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

  • Upload
    others

  • View
    2

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Today

• Resolution

• Wavefront modulation

MIT 2.71/2.710 Optics11/24/04 wk12-b-1

Page 2: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Resolution

MIT 2.71/2.710 Optics11/24/04 wk12-b-2

Page 3: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Coherent imaging as a linear, shift-invariant system

MIT 2.71/2.710 Optics11/24/04 wk12-b-3

Thin transparency( )yxt ,

( )yxg ,1

( ) ),( ,),(

1

2

yxtyxgyxg

==

output amplitude

impulse response ( )),(),(

,

2

3

yxhyxgyxg∗=

=′′

convolutionillumination(field)

Fourier transform

Fourier transform

transfer function(≡plane wave spectrum) ),(),(

),(

2

3

vuHvuGvuG

==( )vuG ,2

multiplication

transfer function of coherent system H(u ,v): aka amplitude transfer function

Page 4: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Incoherent imaging as a linear, shift-invariant system

MIT 2.71/2.710 Optics11/24/04 wk12-b-4

Thin transparency( )yxt ,

( )yxI ,1

( ) 21

2

),( ,

),(

yxtyxI

yxI

=

=

( )vuI ,2̂

incoherentimpulse response ( )

22

3

),(),(

,

yxhyxI

yxI

∗=

=′′

output intensity

convolutionillumination

(intensity)Fourier

transformFourier

transform

transfer function

),(~),(ˆ),(ˆ

2

3

vuHvuI

vuI

=

=

multiplication

( )vuH ,~ optical transfer function (OTF)transfer function of incoherent system:

Page 5: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Transfer Functions of Clear Aperture

MIT 2.71/2.710 Optics11/24/04 wk12-b-5

( ) ( ){ }( ) ( )

( )∫∫∫∫

′′′′

′′−′−′′′=

ℑ≡

vuvuH

vuvvvuuHvuH

yxhvuH

dd,

dd ,,

1 tonormalized , ,~

2

*

2

umax–umax

1

2umax–2umax

real(H) ( )H~real

1

1D amplitude transfer function (ATF) 1D optical transfer function (OTF)

( ) ( ){ }yxhvuH ,, ℑ≡

CoherentCoherent IncoherentIncoherent

PSF

Page 6: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Connection between PSF and NA

MIT 2.71/2.710 Optics11/24/04 wk12-b-6

( ) ( ) ( )yxyxg δδ=,in

( )

λπ

λπ

rfR

rfR

⎟⎟⎠

⎞⎜⎜⎝

⎛ ′

1

11

2

2J2.,.jinc

object planeimpulse

Fourier planecirc-aperture

image planeobserved field

(PSF)

1f 1f

( ) ⎟⎠⎞

⎜⎝⎛ ′′

=′′′′RryxH circ,

monochromaticcoherent on-axis

illumination

ℑ Fouriertransform

x ′′ x′x1f 1f

radial coordinate@ Fourier plane

22 yxr ′′+′′=′′

22 yxr ′+′=′radial coordinate@ image plane

2R

(unit magnification)

Page 7: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Connection between PSF and NA

MIT 2.71/2.710 Optics11/24/04 wk12-b-7

Fourier planecirc-aperture

image plane

1f 1f

monochromaticcoherent on-axis

illumination

x ′′ x′x1f 1f

( )

( )λ

π

λπ

λπ

λπ

λλ r

r

rfR

rfR

yfRx

fR

⎟⎠⎞

⎜⎝⎛ ′

=′

⎟⎟⎠

⎞⎜⎜⎝

⎛ ′

≡⎟⎟⎠

⎞⎜⎜⎝

⎛ ′−

′−

NA2

NA2J2

2

2J22,2jinc

1

1

11

11

( )1

NAfR

≡Numerical Aperture (NA)by definition:

NA: angleof acceptancefor on–axispoint object

2R

Page 8: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Numerical Aperture and Speed (or F–Number)

medium ofrefr. index n

θ

θ: half-angle subtended by the imaging system from an axial object

Numerical Aperture(NA) = n sinθ

Speed (f/#)=1/2(NA)pronounced f-number, e.g.f/8 means (f/#)=8.

Aperture stopthe physical element whichlimits the angle of acceptance of the imaging system

MIT 2.71/2.710 Optics11/24/04 wk12-b-8

Page 9: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Connection between PSF and NA

( )NA61.0 @ null λ

=′r

( )( )

( )λ

π

λπ

r

r

yxh ′

⎟⎠⎞

⎜⎝⎛ ′

=′′NA2

NA2J2,

1

MIT 2.71/2.710 Optics11/24/04 wk12-b-9

Page 10: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Connection between PSF and NA

( )( )

( )λ

π

λπ

r

r

yxh ′

⎟⎠⎞

⎜⎝⎛ ′

=′′NA2

NA2J2,

1

( )NA22.1 width lobe λ

=′∆r

MIT 2.71/2.710 Optics11/24/04 wk12-b-10

Page 11: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-11

The incoherent case:

( )NA61.0 @ null λ

=′r

( ) ( ) 2,,~ yxhyxh ′′=′′

( )( )

( )

2

1

NA2

NA2J2,~

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠⎞

⎜⎝⎛ ′

=′′

λπ

λπ

r

r

yxh

Page 12: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

NA in unit–mag imaging systems1f 1f

monochromaticcoherent on-axis

illumination

x ′′ x′x1f 1f

2R

MIT 2.71/2.710 Optics11/24/04 wk12-b-12

12 f x ′′ x′xmonochromaticcoherent on-axis

illumination

12 f2R

( )1

NAfR

( )12

NAf

R≡

( ) ( ) ( ) ⎟⎠⎞

⎜⎝⎛ ′

=′=′′=λrrhyxh NA2jinc,PSFin both cases,

Page 13: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

The two–point resolution problem

object: two point sources,mutually incoherent

(e.g. two stars in the night sky;two fluorescent beads in a solution)

x′x

imagingsystem intensity

patternobserved(e.g. with

digitalcamera)

The resolution question [Rayleigh, 1879]: when do we ceaseto be able to resolve the two point sources (i.e., tell them apart)due to the blurring introduced in the image by the finite (NA)?

MIT 2.71/2.710 Optics11/24/04 wk12-b-13

Page 14: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

The meaning of “resolution”

[from the New Merriam-Webster Dictionary, 1989 ed.]:

resolve v : 1 to break up into constituent parts: ANALYZE;2 to find an answer to : SOLVE; 3 DETERMINE, DECIDE;4 to make or pass a formal resolution

resolution n : 1 the act or process of resolving 2 the actionof solving, also : SOLUTION; 3 the quality of being resolute :FIRMNESS, DETERMINATION; 4 a formal statementexpressing the opinion, will or, intent of a body of persons

MIT 2.71/2.710 Optics11/24/04 wk12-b-14

Page 15: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-15

Resolution in optical systemsx

( ) ( )NA61.0

NA0.3 λλ

>=∆r

( )⎟⎟⎠⎞

⎜⎜⎝

⎛+′

NA5.1~ λxh

( )⎟⎟⎠⎞

⎜⎜⎝

⎛−′

NA5.1~ λxh

Page 16: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-16

Resolution in optical systemsx

( ) ( )NA61.0

NA0.3 λλ

>=∆r

( )

( )⎟⎟⎠⎞

⎜⎜⎝

⎛−′+

+⎟⎟⎠

⎞⎜⎜⎝

⎛+′

NA5.1~

NA5.1~

λ

λ

xh

xh

Page 17: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-17

x

( ) ( )NA61.0

NA4.0 λλ

<=∆r

Resolution in optical systems

( )⎟⎟⎠⎞

⎜⎜⎝

⎛+′

NA2.0~ λxh ( )⎟⎟⎠

⎞⎜⎜⎝

⎛−′

NA2.0~ λxh

Page 18: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-18

Resolution in optical systemsx

( ) ( )NA61.0

NA4.0 λλ

<=∆r

( ) ( )⎟⎟⎠⎞

⎜⎜⎝

⎛−′+⎟⎟

⎞⎜⎜⎝

⎛+′

NA2.0~

NA2.0~ λλ xhxh

Page 19: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-19

x

( )NA61.0 λ

=∆r

Resolution in optical systems

( ) ⎟⎟⎠⎞

⎜⎜⎝

⎛+′

NA305.0~ λxh ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−′

NA305.0~ λxh

Page 20: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-20

Resolution in optical systemsx

( )NA61.0 λ

=∆r

( ) ( ) ⎟⎟⎠⎞

⎜⎜⎝

⎛−′+⎟⎟

⎞⎜⎜⎝

⎛+′

NA305.0~

NA305.0~ λλ xhxh

Page 21: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-21

Resolution in noisynoisy optical systems

x

( )NA61.0 λ

=∆r

Page 22: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-22

x

( )NA22.1 λ

=∆r

“Safe” resolution in optical systems

( ) ( ) ⎟⎟⎠⎞

⎜⎜⎝

⎛−′+⎟⎟

⎞⎜⎜⎝

⎛+′

NA61.0~

NA61.0~ λλ xhxh

Page 23: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Diffraction–limited resolution (safe)Two point objects are “just resolvablejust resolvable” (limited by diffraction only)

if they are separated by:

Two–dimensional systems(rotationally symmetric PSF)

One–dimensional systems(e.g. slit–like aperture)

Safe definition:(one–lobe spacing)

Pushy definition:(1/2–lobe spacing)

( )NA22.1 λ

=′∆r

( )NA61.0 λ

=′∆r

( )NAλ

=′∆x

( )NA5.0 λ

=′∆x

You will see different authors giving different definitions.Rayleigh in his original paper (1879) noted the issue of noise

and warned that the definition of “just–resolvable” pointsis system– or application –dependent

MIT 2.71/2.710 Optics11/24/04 wk12-b-23

Page 24: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Also affecting resolution: aberrationsAll our calculations have assumed “geometrically perfect”

systems, i.e. we calculated the wave–optics behavior ofsystems which, in the paraxial geometrical optics approximation

would have imaged a point object onto a perfect point image.

The effect of aberrations (calculated with non–paraxial geometricaloptics) is to blur the “geometrically perfect” image; including

the effects of diffraction causes additional blur.

geometrical optics descriptionMIT 2.71/2.710 Optics11/24/04 wk12-b-24

Page 25: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Also affecting resolution: aberrations

2sx,max–2sx,max

H~

1

“diffractiondiffraction––limitedlimited”(aberration–free) 1D MTF

2sx,max–2sx,max

H~

1

1D MTF with aberrations

ℑ Fouriertransform ℑ Fourier

transformdiffraction–limited 1D PSF(sinc2)

somethingwider

wave optics picture

MIT 2.71/2.710 Optics11/24/04 wk12-b-25

Page 26: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

MIT 2.71/2.710 Optics11/24/04 wk12-b-26

Typical result of optical design(FoV)

field of viewof the system

MTF is neardiffraction–limited

near the centerof the field

MTF degradestowards thefield edges

shiftshiftvariantvariantopticalopticalsystemsystem

Page 27: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

The limits of our approximations

• Real–life MTFs include aberration effects, whereas our analysis has been “diffraction–limited”

• Aberration effects on the MTF are FoV (field) location–dependent: typically we get more blur near the edges of the field (narrower MTF ⇔ broader PSF)

• This, in addition, means that real–life optical systems are not shift invariant either!

• ⇒ the concept of MTF is approximate, near the region where the system is approximately shift invariant (recall: transfer functions can be defined only for shift invariant linear systems!)

MIT 2.71/2.710 Optics11/24/04 wk12-b-27

Page 28: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

The utility of our approximations

• Nevertheless, within the limits of the paraxial, linear shift–invariant system approximation, the concepts of PSF/MTF provide– a useful way of thinkingthinking about the behavior of optical

systems– an upper limit on the performance of a given optical

system (diffraction–limited performance is the best we can hope for, in paraxial regions of the field; aberrations will only make worse non–paraxial portions of the field)

MIT 2.71/2.710 Optics11/24/04 wk12-b-28

Page 29: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Common misinterpretations

Attempting to resolve object features smaller than the“resolution limit” (e.g. 1.22λ/NA) is hopeless.

Image quality degradation as object features become smaller than the

resolution limit (“exceed the resolution limit”) is noise dependentnoise dependent and gradualgradual.

MIT 2.71/2.710 Optics11/24/04 wk12-b-29

Page 30: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Common misinterpretations

Attempting to resolve object features smaller than the“resolution limit” (e.g. 1.22λ/NA) is hopeless.

Besides, digital processing of the acquired images (e.g. methods such as the CLEAN algorithm, Wiener filtering, expectation maximization, etc.) can be employed.

MIT 2.71/2.710 Optics11/24/04 wk12-b-30

Page 31: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Common misinterpretationsSuper-resolution

By engineering the pupil function (“apodizing”) to result in a PSF with narrower side–lobe, one can “beat” the resolution limitations imposed by the

angular acceptance (NA) of the system.

Pupil function design always results in(i) narrower main lobe but accentuated

side–lobes(ii) lower power transmitted through the

systemBoth effects are BADBAD on the image

MIT 2.71/2.710 Optics11/24/04 wk12-b-31

Page 32: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Apodization

MIT 2.71/2.710 Optics11/24/04 wk12-b-32

f1=20cmλ=0.5µm ( ) ⎟⎟

⎞⎜⎜⎝

⎛ ′′−⎟⎠⎞

⎜⎝⎛ ′′

=′′2

circcircRr

RrrH

Page 33: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Apodization

MIT 2.71/2.710 Optics11/24/04 wk12-b-33

f1=20cmλ=0.5µm ( ) ⎟⎟

⎞⎜⎜⎝

⎛ ′′−×⎟

⎠⎞

⎜⎝⎛ ′′

=′′ 20

2

2expcirc

Rr

RrrH

Page 34: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Unapodized (clear–aperture) MTF

MIT 2.71/2.710 Optics11/24/04 wk12-b-34

f1=20cmλ=0.5µm ( ) ⎟

⎠⎞

⎜⎝⎛ ′′

⊗⎟⎠⎞

⎜⎝⎛ ′′

=′′Rr

RrrH circcirc~

auto-correlation

Page 35: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Unapodized (clear–aperture) MTF

f1=20cmλ=0.5µm

MIT 2.71/2.710 Optics11/24/04 wk12-b-35

Page 36: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Unapodized (clear–aperture) PSF

f1=20cmλ=0.5µm

MIT 2.71/2.710 Optics11/24/04 wk12-b-36

Page 37: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Apodized (annular) MTF

f1=20cmλ=0.5µm

MIT 2.71/2.710 Optics11/24/04 wk12-b-37

Page 38: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Apodized (annular) PSF

f1=20cmλ=0.5µm

MIT 2.71/2.710 Optics11/24/04 wk12-b-38

Page 39: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Apodized (Gaussian) MTF

f1=20cmλ=0.5µm

MIT 2.71/2.710 Optics11/24/04 wk12-b-39

Page 40: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Apodized (Gaussian) PSF

f1=20cmλ=0.5µm

MIT 2.71/2.710 Optics11/24/04 wk12-b-40

Page 41: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Conclusions (?)

• Annular–type pupil functions typically narrow the main lobe of the PSF at the expense of higher side lobes

• Gaussian–type pupil functions typically suppress the side lobes but broaden the main lobe of the PSF

• Compromise? → application dependent– for point–like objects (e.g., stars) annular apodizers

may be a good idea– for low–frequency objects (e.g., diffuse tissue)

Gaussian apodizers may image with fewer artifacts• Caveat: Gaussian amplitude apodizers very difficult to

fabricate and introduce energy loss ⇒ binary phase apodizers (lossless by nature) are used instead; typically designed by numerical optimization

MIT 2.71/2.710 Optics11/24/04 wk12-b-41

Page 42: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Common misinterpretationsSuper-resolution

By engineering the pupil function (“apodizing”) to result in a PSF with narrower side–lobe, one can “beat” the resolution limitations imposed by the

angular acceptance (NA) of the system.

main lobe size ↓ ⇔ sidelobes ↑and vice versa

main lobe size ↑ ⇔ sidelobes ↓

power loss an important factor

compromise application dependentMIT 2.71/2.710 Optics11/24/04 wk12-b-42

Page 43: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Common misinterpretations

“This super cool digital camera has resolutionof 5 Mega pixels (5 million pixels).”

This is the most common and worst misuse of the term “resolution.”They are actually referring to the

spacespace––bandwidth product (SBP)bandwidth product (SBP)of the camera

MIT 2.71/2.710 Optics11/24/04 wk12-b-43

Page 44: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

What can a camera resolve?Answer depends on the magnification and

PSF of the optical system attached to the camera

PSF of opticalsystem

pixels oncamera die

Pixels significantly smaller than the system PSFare somewhat underutilized (the effective SBP is reduced)

MIT 2.71/2.710 Optics11/24/04 wk12-b-44

Page 45: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Summary of misinterpretationsof “resolution” and their refutations

• It is pointless to attempt to resolve beyond the Rayleigh criterion (however defined)– NO: difficulty increases gradually as feature size

shrinks, and difficulty is noise dependent• Apodization can be used to beat the resolution limit

imposed by the numerical aperture– NO: watch sidelobe growth and power efficiency loss

• The resolution of my camera is N×M pixels– NO: the maximum possible SBP of your system may be

N×M pixels but you can easily underutilize it by using a suboptimal optical system

MIT 2.71/2.710 Optics11/24/04 wk12-b-45

Page 46: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

So, what is resolution?

• Our ability to resolve two point objects (in general, two distinct features in a more general object) based on the image

• It is related to the NA but not exclusively limited by it• Resolution, as it relates to NA:

– Resolution improves as NA increases• Other factors affecting resolution:

– aberrations / apodization (i.e., the exact shape of the PSF)– NOISE!

• Is there an easy answer? – No …… but when in doubt quote 0.61λ/(NA) as an estimate (not as an exact limit).

MIT 2.71/2.710 Optics11/24/04 wk12-b-46

Page 47: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Wavefront modulation

• Photographic film• Spatial light modulators• Binary optics

MIT 2.71/2.710 Optics11/24/04 wk12-b-47

Page 48: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Photographic films / platesprotective layer

emulsion with silver halide (e.g. AgBr)grains

base (glass, mylar, acetate)

Exposure: Ag+ + e– → Ag (or 2Ag+ + 2e– → Ag2 )

development speckCollection of development specks = latent image

Development (1st chemical bath): converts specks to metallic silver

Fixing the emulsion (2nd chemical bath): removal of unexposed silver halide

MIT 2.71/2.710 Optics11/24/04 wk12-b-48

Page 49: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Photographic film / plates• Exposure (energy) : energy incident per unit area on a photographic

emulsion during the exposure process (units: mJ/cm2)

• Intensity transmittance : average ratio of intensity transmitted over intensity incident after development

• Photographic density

Exposure = incident intensity × exposure time E=Iexpose × T

( )⎭⎬⎫

⎩⎨⎧

=yxI

yxIyx,at incident

,at ed transmittaverage

local,τ

DD −=⇔⎟⎠⎞

⎜⎝⎛= 10 1log10 ττ

MIT 2.71/2.710 Optics11/24/04 wk12-b-49

Page 50: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Photographic film / plates• Hurter-Driffield curve • Gamma curve

γ high/low : high/low contrast film

log E

D

Gross fog

ToeLinear region(slope γ)

Shoulder

Saturationregion

development time

γ

1

2

5 10 15 (min)

MIT 2.71/2.710 Optics11/24/04 wk12-b-50

Page 51: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Kelley model of photographic processOptical imagingduring exposure

(linear)

H&D curve

(nonlinear)

additional blurdue to chemicaldiffusion(linear)

MIT 2.71/2.710 Optics11/24/04 wk12-b-51

log E

DH&D curve

measureddensity

inferred logarithmicexposure

Page 52: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

The Modulation Transfer Function

Exposure:adjacency effect

(due to chemical diffusion)MxuEEE 010 2cos π+=

MIT 2.71/2.710 Optics11/24/04 wk12-b-52

( ) xuEuMEE 0100 2cos π+=′u0

“Effective exposure”:

1.0

0.5

Page 53: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Bleaching / phase modulation

exposure

emulsion

MIT 2.71/2.710 Optics11/24/04 wk12-b-53

( )zyx ,,ε∆

tanning bleach(relief grating)

non-tanning bleach(index grating)

Page 54: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Spatial Light Modulators

• Liquid crystals• Magneto-Optic• Micro-mirror• Grating Light Valve• Multiple Quantum Well• Acousto-Optic

MIT 2.71/2.710 Optics11/24/04 wk12-b-54

Page 55: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Liquid crystal modulators

• Nematic• Smectic (smectic-C* phase: ferroelectric)• Cholesteric

MIT 2.71/2.710 Optics11/24/04 wk12-b-55

crossed polarizers

OFF

crossed polarizers

V(acts as λ/2 plate;rotates polarizationby 90°)

Page 56: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Micro-mirror technology

Images removed due to copyright concerns

Lucent (Bell Labs)

Texas Instruments DMD/DLPSandiaMIT 2.71/2.710 Optics

11/24/04 wk12-b-56

Page 57: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Micro-mirror display

Image removed due to copyright concerns

http://www.howstuffworks.comMIT 2.71/2.710 Optics11/24/04 wk12-b-57

Page 58: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Micromirrors for adaptive optics

Image removed due to copyright concerns

Véran, J.-P. & Durand, D. 2000, ASP Conf. Ser 216, 345 (2000). MIT 2.71/2.710 Optics11/24/04 wk12-b-58

Page 59: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Grating Light Valve (GLV) display

Images removed due to copyright concerns

www.meko.co.uk

Silicon Light Machines, www.siliconlight.com

MIT 2.71/2.710 Optics11/24/04 wk12-b-59

Page 60: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Binary Optics

Refractive Diffractive Binary(prism) (blazed grating)

efficiency of 1st diffracted order fromstep-wise (binary) approximation toblazed grating with N steps over 2π range

⎟⎠⎞

⎜⎝⎛= N2

1sinc21η

MIT 2.71/2.710 Optics11/24/04 wk12-b-60

Page 61: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Binary Optics: binary grating

0

( )xtAmplitude maskAmplitude mask1 X

x

MIT 2.71/2.710 Optics11/24/04 wk12-b-61

Page 62: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Binary Optics: binary grating( )xtPhase maskPhase mask

1 X

x

–1

MIT 2.71/2.710 Optics11/24/04 wk12-b-62

( ) ( )[ ]xixt φ exp=0

π( )xφ X

x

Page 63: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Fourier series for binary phase grating

1( )xt X

x

–1

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnxin

nπ2exp

2sinc

0≠n

MIT 2.71/2.710 Optics11/24/04 wk12-b-63

Page 64: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Fourier series for binary phase grating

1( )xt X

x

–1

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnxin

nπ2exp

2sinc

0≠n

identify physical meaning:• plane waves• orientation of nth plane wave:

• diffracted orders

Xnn λθ =sin

MIT 2.71/2.710 Optics11/24/04 wk12-b-64

Page 65: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Fourier series for binary phase grating

1( )xt X

x

–1

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnxin

nπ2exp

2sinc

0≠n

nθidentify physical meaning:• plane waves• orientation of nth plane wave:

• diffracted orders

Xnn λθ =sin

MIT 2.71/2.710 Optics11/24/04 wk12-b-65

Page 66: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Fourier series for binary phase grating

1( )xt X

x

–1

identify physical meaning:• plane waves• orientation of nth plane wave:

• diffracted orders

Xnn λθ =sin

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnxin

nπ2exp

2sinc

0≠n

only! orders odd 2

sinc ⇒⎟⎠⎞

⎜⎝⎛ n

MIT 2.71/2.710 Optics11/24/04 wk12-b-66

Page 67: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Fourier series for binary phase grating

1( )xt X

x

–1

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnxin

nπ2exp

2sinc

0≠n

Fourier transform:•

• result is

( ) ( )002exp uuxui −↔δπ

⎟⎠⎞

⎜⎝⎛ −⎟

⎠⎞

⎜⎝⎛∑

+∞

−∞= Xnun

2sinc

0≠n

(Fourier series)

MIT 2.71/2.710 Optics11/24/04 wk12-b-67

Page 68: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Diffracted spectrum from binary phase grating

1( )xt X

x

–1

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnxin

nπ2exp

2sinc

0≠n

ℑ ℑ

1( ) uT

1/X

0

⎟⎠⎞

⎜⎝⎛

2sinc n

⎟⎠⎞

⎜⎝⎛ −⎟

⎠⎞

⎜⎝⎛= ∑

+∞

−∞= Xnun

2sinc

0≠n

u

MIT 2.71/2.710 Optics11/24/04 wk12-b-68

Page 69: Resolution • Wavefront modulation · 2019-09-12 · Coherent imaging as a linear, shift-invariant system MIT 2.71/2.710 Optics 11/24/04 wk12-b-3 Thin transparency t()x, y g1()x,

Fourier-plane diffraction from finite binary phase grating

MIT 2.71/2.710 Optics11/24/04 wk12-b-69

f f

(x” not to scale)