39
This article is protected by copyright. All rights reserved Resistance to acetyl-CoA carboxylase inhibiting herbicides Shiv S Kaundun SYNGENTA Jealott's Hill International Research Centre Biological Sciences Bracknell Berkshire RG42 6EY United Kingdom Tel: +44(0)1344414596 Fax: +44(0)1344414996 E-mail: [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ps.3790

Resistance to acetyl-CoA carboxylase-inhibiting herbicides

  • Upload
    shiv-s

  • View
    226

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Resistance to acetyl-CoA carboxylase inhibiting herbicides Shiv S Kaundun

SYNGENTA

Jealott's Hill International Research Centre

Biological Sciences

Bracknell

Berkshire

RG42 6EY

United Kingdom

Tel: +44(0)1344414596

Fax: +44(0)1344414996

E-mail: [email protected]

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ps.3790

Page 2: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Abstract

Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds

and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies

have shown that resistance generally evolves independently and can be conferred by target

site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The

level of resistance depends on herbicides, recommended field rates, weed species, plant

growth stages, specific amino acid changes and the number of gene copies and mutant

ACCase alleles. Non-target site or in essence metabolic resistance is prevalent, multi-genic

and favoured under low-dose selection. Metabolic resistance can be specific but also broad,

affecting other modes of action. Some target site and metabolic resistant biotypes are

characterised by a fitness penalty. However, the significance on resistance regression in the

absence of ACCase herbicides is yet to be determined over a practical time frame. More

recently, a fitness benefit has been reported in some populations containing the I1781L

mutation, in terms of vegetative and reproductive outputs and delayed germination. Several

DNA-based methods have been developed to detect known ACCase resistance mutations

unlike metabolic resistance as the genes remain elusive to date. Therefore, confirmation of

resistance is still carried out via whole plant herbicide bioassays. A growing number of

monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing

the options for grass weed control. Whilst the science of ACCase herbicide resistance has

progressed significantly over the past 10 years, several avenues provided in the present

review remain to be explored for a better understanding of resistance to this important mode

of action.

Key words: Acetyl-CoA carboxylase, ACCase, resistance mechanism, fitness, resistance

detection, resistant crops

Page 3: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

1. Introduction

Weeds compete with crops for light, water and soil nutrients. They are by far the most

challenging pests in agricultural production systems1. If uncontrolled, ensuing average yield

losses are estimated at 35% for six major crops worldwide2. The advent of herbicides has

contributed significantly in protecting crop yields and increasing farmers’ profitability3. One

such single-site herbicide mode of action introduced in the mid-1970s consists of inhibitors

of acetyl-CoA carboxylase (ACCase)4. ACCase herbicides are mainly used for grass weed

control in dicotyledonous crops with a few compounds applied in small-grain cereal crops

and rice5. Given their convenience for managing grass weeds post-emergence, ACCase

herbicides were quickly adopted as they also represented a marked improvement over the

then commonly used method of selective grass weed control. Current overall annual sales

exceed one billion USD and account for 5% of all commercial herbicides6. Over time,

however, extensive and recurrent use of ACCase herbicides has selected for resistance in key

grass weed species encompassing 20 genera7. Resistance is reported in 33 countries,

especially in areas with intensive use of ACCase herbicides often applied as the sole method

for grass weed control. Two comprehensive reviews on the mechanisms and evolutionary

dynamics of resistance to ACCase resistance have been carried out in 19948 and 20059. The

present analysis will therefore summarise the current understanding of resistance with

emphasis on studies conducted over the last eight years.

2. ACCase target and herbicides

Acetyl-CoA carboxylase (EC 6.4.1.2) is a ubiquitous, biotin dependent enzyme that catalyses

the carboxylation of acetyl-CoA into malonyl-CoA using ATP as a source of energy and

bicarbonate as a source of carbon10, 11. Catalysis is conducted in two steps: carboxylation of

the biotin co-factor followed by the transfer of the carboxyl group onto acetyl-CoA using the

Page 4: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

transcarboxylase activity of the enzyme. Biotin must visit both the biotin carboxylase and the

carboxyltransferase sites and as such, a swinging arm model has been proposed to represent

this translocation12. Malonyl-CoA is required for de novo fatty acid synthesis in the plastid

and for elongation of very long chain fatty acid and secondary plant metabolites such as

flavonoids and suberins in the cytoplasm13.

Plants have two different ACCases, namely, cytoplasmic and plastidic14. Both isoforms

consist of three major functional domains: biotin carboxyl-carrier (BCC), biotin carboxylase

(BC) and carboxyl transferase (CT) which is further subdivided into α and β subunits15. In

grasses of the Poaceae family, plastidic ACCase is homomeric with BCC, BC and CT located

on a single polypeptide16. In contrast, the domains are encoded by different genes that are co-

ordinately expressed to form a functional heteromeric enzyme in most other plant species17.

Exceptions to this dichotomy include some members of the Geraniaceae family which have a

homomeric plastidic ACCase characteristic of grasses, and some Brassica and Arabidopsis

species that contain both a homomeric and heteromeric ACCase in their chloroplasts10, 17, 18.

Active cytoplasmic and chloroplastic ACCases from grass weeds function as a homodimer as

suggested by initial biochemical studies and confirmed recently by crystallography19, 20. The

dimer is made up of two head to tail monomers generating two active sites.

ACCase herbicides inhibit de novo fatty acid synthesis in sensitive grass weeds leading to

rapid necrosis and plant death21. The compounds can be divided into three classes, namely,

aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs) and phenylpyrazolin (DEN),

based on their chemical structures22. Currently ten FOPS, nine DIMs and one DEN herbicides

are commercially available both for controlling grass weeds and volunteer crops. The latest

and leading ACCase herbicide is pinoxaden introduced in 2006 for selective grass weed

control in wheat, barley and triticale23. Fenoxaprop-P-ethyl, launched some 30 years ago,

remains an important product for use in small-grain cereal crops, rice and soybean24.

Page 5: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

FOP and DIM herbicides have long been suspected to affect lipid synthesis in plants25.

Convincing proof of disruption of plastidic ACCase activity was generated by pioneering

work on isolated chloroplasts from corn26 and barley27. Subsequent kinetic studies indicated

that FOP and DIM herbicides showed nearly competitive inhibition with respect to the acetyl-

CoA substrate28, 29. Additionally, FOP and DIM herbicides were suggested to have

overlapping sites at the CT domain as they were mutually exclusive. Recently, the precise

binding of haloxyfop, tepraloxydim and pinoxaden was determined using yeast CT domain as

a surrogate30-32. Haloxyfop and tepraloxydim were attached to the active site, particularly at

the interface of the dimer. The DIM and FOP herbicides shared two main anchoring points

but overall probed distinct regions of the dimer interface. Pinoxaden and tepraloxydim were

bound at a very similar location in spite of their very different chemical structures30, 31.

Contrary to tepraloxydim and especially pinoxaden, haloxyfop binding required large

conformational changes32. More precisely, movement of the side chains of tyrosine 1738 and

phenylalanine 1956 is necessary to generate a large hydrophobic pocket for the pyridinyl ring

of haloxyfop to sit in.

Whilst most grass weeds are controlled with ACCase herbicides, some Vulpia, Poa and

Festuca species are inherently tolerant due to an insensitive ACCase resulting from a fixed

leucine residue at codon position 1781 (A. myosuroides equivalent: as is conventional for

weed ACCases) as confirmed for the last two species33-35. Selectivity in monocotyledonous

crops is in most cases provided by the use of safeners allowing faster and higher levels of

herbicide detoxification in the crop versus the target weeds36. Broadleaved species on the

other hand are innately less sensitive due to major differences in plastidic isoforms between

grass and dicotyledonous species37. A more comprehensive review on the ACCase target and

herbicides can be found in several earlier publications10, 12, 16, 17, 22.

Page 6: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

3. Occurrence, evolution and spread of resistance

The first case of resistance to ACCase herbicides was reported in 1982 in a Lolium rigidum

population from an Australian wheat field38. The number of resistance cases both in terms of

species and acreages has increased steadily over the last 30 years7. Resistance is particularly

widespread in L. rigidum throughout the Australian wheat belt, in practically every single

cereal farm infested with A. myosuroides in the UK39 and in A. fatua in large areas in Western

Canada40. Other affected grass weed populations described recently include Phalaris minor

from India41, Greece42 and Iran43, Phalaris paradoxa from Italy44 and Israel45, Sorghum

halepense from Greece46 and USA47, Brachiaria plantaginea from Brazil48, Digitaria

sanguinalis from France49, Apera spica-venti from Central and Eastern Europe50, Alopecurus

japonicus51 and Beckmannia syzigachne52 from China along with many other species from

various regions as summarised on the International Survey of Herbicide Resistant Weeds

website7. The areas concerned remain nevertheless an under-representation of the real status

of resistance to ACCase herbicides as there are some weed species and populations such as

Lolium spp., Sclerochloa kengiana and Fimbristilis miliacea from North Africa, China and

Vietnam respectively which are not documented but are highly suspected to be affected by

resistance.

It is noteworthy that where comprehensive surveys have been carried out repeatedly within

the same agricultural zones, a significant escalation of resistance was observed in a relatively

short period of time. This is exemplified by an increase of 15 and 28 percentage points in

resistance in wild oats and rye grass in Western Canada (41%) and Australia (96%)

respectively40, 53. Overall, resistance tends to be widespread with regard to the ACCase

herbicides used earlier, progressively increasing to the ones introduced more recently44, 54-56.

For instance, resistance to clethodim, the most effective ACCase herbicide 57, has risen from

0.5% to 8% and 65% in three different random L. rigidum surveys carried out in Western

Page 7: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Australia in 1998, 2003 and 2010 respectively53, 58, 59. Similar trends are observed for

tepraloxydim which is increasingly being used to control some resistant black-grass

populations in the UK39. Equally, where ACCase herbicides have not been used extensively,

as is the case with the European A. spica-venti, resistance has been recorded in only 2% of a

total of 250 fields tested50. Interestingly, submitted to very similar selection pressures in

Australia, very high and lower levels of resistance to clodinafop-propargyl, pinoxaden and

sethoxydim are observed in L. rigidum and A. fatua respectively, thus reflecting differences

in the species’ abilities for evolving resistance to ACCase herbicides59, 60.

With a view to further investigate the mode of evolution of resistance to ACCase herbicides,

Cavan et al (1998) used anonymous simple sequence repeat (SSR) markers to examine the

genetic profiles of four different A. myosuroides patches that had survived a herbicide

application within a small agricultural field61. The genotypes were markedly diverse among

the four sites allowing for the conclusion of localised evolution of resistance, even within

short distances. Similar inferences could be made from several black-grass studies at the

local, country and regional levels based on signature ACCase sequences62 and known target

site resistance mutations63-66. Overall, the different studies have shown that there is enough

standing genetic variation within the grass populations for resistance to evolve

independently62, 63, 65-67. However, once resistance has reached a certain level, it can spread

very quickly within a field upon continuous ACCase herbicide selection pressure 68 or even

adjacent sites as demonstrated in two studies on black-grass and rye grass from France and

Australia69, 70. In the latter case, resistance to ACCase herbicides in a neighbouring organic

farm was as high as 2% while being at 21% in an adjacent conventional field69. Resistance

spreading via pollen is faster for allogamous as compared to autogamous species as

represented by A. myosuroides and A. fatua respectively71, 72. A less frequent form of

resistance spread but still worth underlining is via seed import from regions with high

Page 8: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

infestation of resistant grass weeds. For instance, analysis of a 20 kg batch of Australian

wheat exported to Japan in 2006 identified as many as 4673 L. rigidum seeds, 35% of which

were resistant to diclofop-methyl73.

Importantly, once resistance to ACCase herbicides has been established, it is difficult to

overcome even with the use of other herbicide modes of action and alternative methods of

weed control combined. A black-grass study conducted over a six-year period has shown that

while different cropping systems and other herbicide modes of action can result in an overall

decline of the weed seed bank, the frequency of ACCase resistant individuals within the field

did not decrease over this time frame74. Similar observations were made in a wheat field from

South-Eastern Italy infested with Lolium multiflorum resistant to ACCase herbicides75.

4. Mechanism of resistance

The knowledge of resistance mechanisms is important for the design of effective weed

control strategies to manage and delay the onset of resistance to ACCase herbicides.

Understandably, an overwhelming number of studies have been conducted on the most

problematic Lolium, Alopecurus and Avena species. Nonetheless, some minor species such as

Phalaris spp.44, 76, Eleusine indica77, B. syzigachne52 and Rottboellia cochinchinensis78 to

name but a few, have also been investigated recently. As with all other herbicide modes of

action, resistance to ACCase herbicides can be divided into target and non-target based

mechanisms.

4.1 Target site resistance

Target site resistance is essentially caused by single amino acid changes in the

carboxyltransferase domain impacting on the effective binding of ACCase herbicides57, 79. It

is therefore not surprising that some earlier studies have shown that target site resistance is

more or less inherited as a monogenic trait68, 80-82. Two exceptions to this rule are three-fold

Page 9: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

increases in ACCase-specific activity in two resistant S. halepense and Leptochloa chinensis

populations from the USA and Thailand respectively83, 84. These exceptions could be

dismissed on the basis of intrinsic differences between sensitive and resistant populations

being compared. In fact, the involvement of a resistant ACCase was suggested in a L.

multiflorum population more than 20 years ago85. However, it was not until the early 2000s

before a first potential target site resistance mutation was uncovered in a Setaria viridis86 and

a L. rigidum87 population. At the last major review on ACCase herbicides, five different

resistance codons were described mainly in A. myosuroides and classified into two main

categories: FOP-specific (2027, 2041 and 2096) and FOP/DIM (1781 and 2078)9. The

discovery was facilitated by the relatively conserved nature of ACCase in A. myosuroides88, 89

compared to species such as Lolium spp. in which several other amino acid changes not

implicated in resistance are often present alongside the resistance mutations90-94.

Over the last eight years, around 30 different mechanism studies involving a dozen weed

species have also identified target site resistance to at least one ACCase herbicide (see

supplementary table). The precise amino acid changes implicated could often be determined

thanks to the relatively conserved nature of plastidic ACCase and universal PCR

methodologies for analysing the CT binding domain in grasses (Table 1)35. Most studies

detected the same five mutations described earlier in A. myosuroides. Additionally, two other

resistance codons at positions 1999 and 2088 were uncovered, principally in Lolium spp. and

Avena spp.. Fourteen allelic variants have thus far been implicated in resistance, namely,

I1781L/V/A/T, W1999C/L/S, W2027C, I2041N/V, D2078G, C2088R, G2096A/S57, 92, 95-97.

The frequency of the mutations varied according to the weed species and regions examined,

and appeared to be governed by the local herbicide selection pressure applied65. For example,

the I1781L mutation is overwhelmingly present in black-grass in the UK and France whilst

the G2096A is predominant in Germany98. Analysis of a large number of Lolium spp.

Page 10: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

populations from the UK and Australia showed a predominance of the D2078G and I2041N

mutations respectively99, 100, potentially reflecting the alternating use of FOPs and DIMs in

small-grain cereal and dicotyledonous break crops in the UK, and a more prolonged FOPs

use in continuous wheat cropping systems in Australia. Importantly, DNA analysis from a

few hundred herbarium black-grass plants pre-dating any synthetic herbicide use revealed the

presence of an I1781L mutation in one of the individuals tested101 thus indicating that some

ACCase mutations are intrinsically more prevalent than initially assumed102.

One of the issues with several resistance mechanism studies is with regard to heterogeneous

weed populations being compared to an unrelated sensitive population to estimate the

resistance indices associated with the different target site mutations. Thus, resistance was in

some cases diluted or overestimated due to the presence of wild and heterozygous mutant

individuals and additional underlying non-target site resistance present in the populations. To

address this problem, a yeast-gene replacement assay was developed allowing comparison of

wild and mutant strains differing only at the single mutated amino acid position being

investigated103-105. In addition to being very quick, this method does not require actual weed

populations for testing. The downside is that some mutations such as the C2088R and

G2096A are not viable with this approach and, as with enzyme assays, translation to whole

plants is not always straightforward especially for mutations that carry a moderate level of

resistance. For instance, Jang et al (2013) estimated slightly higher levels of resistance to

sethoxydim relative to pinoxaden for the W2027C mutation in the yeast-gene replacement

assay103. Conversely, whole plant herbicide and molecular data suggested that the efficacy of

the DEN, but not the DIMs, was affected by the W2027C mutation in black-grass and

Japanese foxtail56, 106, 107. Alternatively, individual plants from the same population and

genetic background could be genotyped for wild type and mutant alleles prior to carrying out

dose responses with a range of herbicides, thus overcoming the issue posed by confounding

Page 11: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

effects of target site resistance and non-target site resistance. In this manner, the importance

of mutations at codon positions 1781, 1999, 2078 and 2088 could be more precisely

assessed91, 92, 96, 97.

Contrary to earlier classifications9, numerous recent investigations have clearly shown that

with the exception of the D2078G and C2088R mutations that confer broad resistance to all

herbicides tested76, 77, 91, 97, 106, 108-110, the levels of resistance depend on specific amino acid

changes, the number of resistant alleles, weed species, plant growth stages and recommended

field rates of herbicides. For instance, plants with the I2041N were found to be sensitive to

cycloxydim in A. myosuroides but resistant in P. paradoxa45, 106. Clethodim at the Australian

field rate was found to control L. rigidum plants that were heterozygous for the I1781L

mutation but was mostly ineffective on homozygous LL1781 mutant individuals109. In

contrast, I1781L mutant A. myosuroides and L. multiflorum plants were mostly controlled at

the European field rates106, 108, 111. Similarly, whilst the W1999C mutation impacted highly on

the efficacy of fenoxaprop-P-ethyl, it was found to be sensitive to clodinafop-propargyl and

sethoxydim in Avena sterilis105. Likewise, the W1999S mutation conferred high levels of

resistance to FOP and DEN herbicides, partial resistance to sethoxydim and cycloxydim

whilst being sensitive to clethodim and tepraloxydim92. Variable levels of resistance were

also associated with the I1781T mutation at the heterozygous state96. The 1781 threonine

allelic variant impacted moderately on clodinafop-propargyl and cycloxydim, but was

sensitive to pinoxaden, tepraloxydim and clethodim. It is noteworthy that Hordeum and a few

Bromus species35, 109 which are fixed for the C2088F mutation and also present in some

individual ryegrass and wild oat plants (data not published), are sensitive to all effective

ACCase herbicides. Thus, conclusions on the importance of a novel allelic variant at a known

resistance codon, such as the I1781A95 or W1999L108, 112 or any other position, can only be

Page 12: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

established via proper rigorous co-segregation or dose response studies based on wild and

mutant subpopulations sharing the same genetic background.

Interestingly, in hexaploid weed species such as Echinochloa spp. and Avena spp., all three

homeologous ACCase genes were found to be expressed105, 113, 114. Individual plants from a

single Australian A. fatua population could carry one, two or all three of the I1781L, D2078G

and C2088R mutations detected114. The individual mutations endowed relatively lower levels

of resistance in the hexaploid species compared to diploid species. This potential dilution

effect could explain the relatively slower evolution of ACCase resistance in Avena spp.

compared to diploid species53, 60. It could also account for the difference in the levels of

resistance computed for pinoxaden with regard to the I2041N mutation in Avena fatua on the

one side110, and Alopecurus56, Lolium108 and Phalaris45 species on the other side.

Additionally, wheat mutagenesis studies have shown that the level of resistance to ACCase

herbicides depends on the specific A, B or D genome where the mutation is located, further

adding to the complexity of resistance in hexaploid species115.

Yeast ACCase crystal structures in complex with FOP, DIM and DEN herbicides revealed

that out of the seven codons involved in target site resistance, only the 1781, 1999 and 2041

amino acid residues were directly implicated in the binding of the herbicides103. Taking

advantage of the conserved nature of amino acid sequences around the vicinity of the CT

domain binding site, homology models were built for Setaria italica and A. myosuroides with

a view to rationalise the importance of I1781L, W2027C, I2041N and D2078G mutations on

ACCase herbicide efficacy116-120. Molecular docking and molecular dynamic simulations

indicated that the W2027C mutation for example, though remote, caused conformational

changes in the binding site of FOP herbicides117. In particular, significant changes were

associated with phenylalanine 377, tyrosine 161 and tryptophan 346 which are critical for

FOP binding. Consequently, the pi-pi interaction between the herbicides and phenylalanine

Page 13: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

377 and tyrosine 161 was decreased accounting for the molecular basis of resistance caused

by the W2027C mutation (figure 1).

4.2 Non-target site resistance

Non-target site resistance (NTSR) is now increasingly recognised as being the predominant

resistance mechanism to ACCase herbicides121. Several recent large scale black-grass surveys

have shown that most resistant individuals did not contain a known target site mutation65, 122.

Similar observations were made in Lolium multiflorum populations from the UK based on

both molecular and glasshouse biological studies 123. Additionally, when investigated in

detail, non-target site resistance to at least one ACCase herbicide is often present in

populations containing target site resistance 92, 96, 124, 125. Also, it has often been assumed that

NTSR confers lower levels of resistance that can sometimes be controlled when plants are

treated at an early growth stage. Over time, however, the build-up of NTSR resistance has

reached very high levels, especially to earlier ACCase herbicides such as diclofop-methyl91,

126. In some cases the level of resistance conferred by NTSR has even surpassed those of the

most common target site mechanisms. In a black-grass population for example, NTSR was

found to be a significantly bigger contributor to resistance to clodinafop-propargyl and

pinoxaden than target site mutations at position 178196.

Non-target site resistance to herbicides encompasses a range of diverse mechanisms

including reduced penetration, impaired translocation, sequestration and enhanced

metabolism of the toxophores79. The suggestion in the 1990s of the ability of some weed

populations to resist ACCase herbicides via membrane repolarisation could not be

substantiated by subsequent experiments127, 128. Similarly, the few anecdotal reports of

resistance caused by reduced ACCase herbicide penetration and sequestration need further

confirmation129, 130. More recently, the involvement of phi and lambda classes of GST have

Page 14: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

been reported in some multiple herbicide resistant black-grass and ryegrass populations131, 132.

Resistance was suggested to be endowed via the scavenging peroxidase activities of these

specific GST enzymes as well as a concomitant production of protective flavonoids to

counteract the free noxious radicals generated by the herbicide action. This hypothesis was

further strengthened with heterologous expression of GSTF1 in Arabidopsis thaliana and

demonstration of increased tolerance to ACCase and other herbicide modes of action that

inhibit elongation of fatty acids and photosystem II132.

In most cases though, NTSR to ACCase herbicides is conferred by the ability of some weed

populations to degrade metabolisable FOP, DIM and DEN compounds into non-toxic

entities79. Metabolic resistance was first convincingly established in black-grass and ryegrass

populations using radiolabelled 14C herbicides133, 134. Since then, direct evidence of

metabolism-based resistance has been generated in a handful of weed species and populations

only124, 129, 135, very probably due to the lack of radio-chemicals, licensed equipment and

trained personnel required for such procedures. Alternatively, metabolic resistance has been

inferred indirectly from the use of synergists that inhibit detoxifying enzymes involved in

ACCase herbicide metabolism, the absence of known target site mutations and differential

responses to closely metabolisable and non-metabolisable FOP and DIM herbicides91, 122, 125,

136. The synergists used include compounds such as amitrole, 1-aminobenzotriazole (ABT),

piperonyl butoxide (PBO) and malathion that impact on p450 enzymes137. However, the data

from these approaches should be taken with caution as resistance could be due to target site

mutations yet to be uncovered and also because the ability to augment herbicide activity can

be synergist, herbicide, population and species specific. For instance, ABT, but not malathion

or tetcyclasis, was shown to improve the efficacy of diclofop-methyl in a resistant L. rigidum

population133. The activity of tralkoxydim also affected by metabolic resistance in this

population was unaltered by any of the synergists used. Similarly none of the three

Page 15: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

cytochrome p450 inhibitors, i.e. ABT, malathion or tetcyclasis could reverse fenoxaprop-P-

ethyl metabolism in a black-grass population from the UK138. Conversely, malathion in

mixture with fenoxaprop-P-ethyl and pinoxaden allowed suppression of A. fatua populations

suspected to be characterised by metabolic resistance125.

Metabolic resistance to ACCase herbicides can result from constitutively over-expressed

enzymes or be induced by external factors. In particular, elevated levels of cyp p450 enzymes

involved in phase 1, and GST and O-glucosyl transferases that operate in phase II

detoxification were identified in the Peldon black-grass population139. A similar observation

was recorded in several other black-grass populations with respect to GST enzymes140.

Resistance could also be induced via the use of safeners such as mefenpyr diethyl in

increasing the peroxidase protective activities of phi and lambda gluthathione transferases141.

The level of GST involved in metabolism can also vary depending on plant growth stages and

environmental conditions142.

Metabolic resistance is favoured under low-dose selection of minor genes that individually

confer low levels of resistance, but when accumulated confer significant levels of resistance

to ACCase herbicides. This was elegantly demonstrated under glasshouse conditions by the

recurrent selection at low doses of diclofop-methyl of progressively recalcitrant individuals

from an initially sensitive L. rigidum population143, 144. Resistance to practical field rates of

diclofop-methyl was attained after three generations, starting from a genetic pool of a few

hundred sensitive plants only. A comparable scenario is thought to function under field

conditions because not all plants receive effective rates of ACCase herbicides due to sub-

optimal spray conditions, shading upon high plant densities and staggered seed

germination145. Subsequent studies confirmed metabolism of diclofop-methyl to the acid

equivalent followed by further degradation into non-toxic metabolites similar to what is

achieved in wheat146. Worryingly, metabolism-based resistance acquired via low-dose

Page 16: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

selection could also endow resistance to two other modes of action 145. This gives further

credence to earlier observations of NTSR selected by ACCase herbicides affecting the

acetolactate synthase herbicides iodo-/mesosulfuron in A. myosuroides56, 147. Whilst

metabolic resistance selected by ACCase herbicides is clearly demonstrated to cut across

herbicide modes of action, it can also be compound-specific within and between ACCase

subclasses. Non-target site resistance to fenoxaprop-P-ethyl was found to be more prevalent

than clodinafop-propargyl and pinoxaden in French black-grass populations 56. Likewise,

several ryegrass and wild oat studies involving NTSR biotypes have shown that pinoxaden is

less affected than clodinafop-propargyl, although both compounds use the same safener

cloquintocet-mexyl55, 91, 92, 126, 148.

Metabolic resistance is multigenic and complex as indirectly inferred from numerous cross

resistance analyses. This was further confirmed by two recent genetic studies in the ryegrass

population SLR31149 and several black-grass populations from France 147 following initial

studies by Preston et al. (2003)150. In particular, p450-based metabolic resistance showed

dominant nuclear inheritance in SLR31, thus indicating that resistance can be spread by both

pollen and seeds149. Additionally, segregation patterns of F2 and BC families were consistent

with resistance conferred by two additive genes even at high diclofop-methyl rates. In the

same manner, examination of a large number of F1 families from black-grass crosses

revealed that up to three dominant loci may be involved in conferring non-target site

resistance to ACCase herbicides in a single plant147. Whilst some of the enzyme systems

involved in NTSR to ACCase herbicides could be identified via biochemical assays in a few

cases or deduced indirectly via use of inhibitors of putative implicated enzymes141, 151, 152,

only two genes involved in protective scavenging actions of GST enzymes have been

identified so far131, 132.

Page 17: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

5. Fitness associated with traits conferring resistance to ACCase herbicides

Adaptive traits to external stresses are often accompanied by negative pleiotropic changes in

the phenotype resulting in a fitness drag153. The potential fitness cost associated with evolved

ACCase resistant traits has been examined in seven different weed species (Table 2).

However, results from some of the studies could not be interpreted adequately, primarily

because the mechanism of resistance was not determined and sensitive and resistant

populations being compared did not share the same genetic background154-158. Ideally, life

history traits, most particularly, fecundity should be assessed in competition under different

field conditions using properly characterised and comparable weed lines159. In this respect,

Menchari et al (2008) determined the cost of resistance associated with three different target

site mutations, namely, I1781L, I2041N and D2078G, using wild, heterozygous and

homozygous mutant subpopulations arising from the same parental population160. Three

parameters were measured under different field conditions in two different years. There were

no fitness costs associated with the L1781 and N2041 alleles. On the other hand, plants

containing the G2078 allele were on average shorter, produced less biomass and fewer seeds

than their wild D2078 counterparts. Furthermore, the fitness costs were dependent on

population genetic backgrounds and field environments. The authors also examined

germination dynamics and seedling emergence among the same wild and 1781, 2041 and

2078 mutant genotypes161. Wild type I2041 and mutant N2041 plants behaved in a very

similar manner. Plants containing the mutant G2078 allele were characterised by an

incompletely dominant acceleration of seed germination and a segregation distortion against

mutant embryos. In contrast, L1781 individuals showed an incompletely dominant delay in

seed germination and a decrease in fatal germination. The delayed germination associated

with the L1781 allele was interpreted as being beneficial in agricultural systems that use

early-season herbicides as part of weed management practices in that it would allow a higher

Page 18: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

proportion of the L1781 seeds to escape the herbicide treatment. Likewise, a fitness benefit

was recorded for a mutant L1781 foxtail sub-line both in terms of early growth under

glasshouse conditions and early growth, flowering, tiller and seed production under field

conditions162. However, the higher seed production of the L1781 genotype was

counterbalanced by lower seed survival in the field. The advantages of the L1781 mutant

versus wild I1781 sub-lines were rationalised by the presence of a tightly linked higher

fitness gene in the resistant biotype. This is a reasonable hypothesis given that enzyme assays

did not identify a difference in activities between wild and mutant ACCases at codon position

1781109, 163.

Conversely, no fitness cost in growth characteristics and reproductive output was associated

with the L1781 genotypic component of the multiple resistant ryegrass population SLR31

characterised by additional p450-based metabolism, except for germination levels under

shallow burial 164, 165. The p450 metabolic sub-line produced less above-ground biomass than

the wild type component from SLR31 but overall the reproductive output was similar164.

When tested under intraspecific and interspecific competition with wheat, the p450-based

genotype was at a disadvantage both in terms of biomass and reproductive output166, in line

with an impaired ability to contest for resources as suggested by the resource-based theory

that predicts a negative trade-off between growth and plant defence166-168. Importantly, it is

hypothesised that an associated fitness cost will result in the resistant populations declining in

the absence of herbicides169. This remains to be investigated for characterised ACCase target

site resistant and non-target site resistant weed populations under different field environments

and management strategies.

6. Methods for detecting resistance to ACCase herbicides

Page 19: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

The large number of resistant cases, especially in Australia, UK and Western Canada, should

not obscure the fact that to date a significant proportion of grass weed populations can still be

controlled by effective ACCase herbicides. Whilst it is widely recognised that diversity in

weed management practices is key for maintaining the long-term efficacy of herbicides170,

the reality is that reactive measures are taken only when farmers are confronted with

resistance in their own fields171. Therefore, the availability of rapid early diagnostics tools for

confirming product failures is imperative for slowing down the evolution of resistance to

ACCase herbicides. The discovery of precise nucleotide changes involved in target site

resistance and the growing accessibility of molecular biology techniques have allowed

development of a wide range of methodologies for detecting the known resistance

mutations35, 63, 65, 72, 99, 112, 172-175. However, these methods have rarely been used outside

research due to the high costs involved, restrictions to target site resistance only and

ambiguity arising from multiple amino acid changes at specific resistance codon positions176,

177. Equally, methods based on pollen178, seeds179, enzyme140, 180 and metabolism 176 assays

have not been widely adopted because they do not cover all possible resistance mechanisms

and are therefore prone to false negative prediction of resistance. To date, the classical whole

plant test using seeds collected at the end of the growing season remains the most commonly

employed method for confirming resistance to ACCase herbicides181, 182. Recently, two other

promising methods have been described commencing with plants collected from the field

either after or before herbicide application183, 184. In the latter method, denoted the Syngenta

Resistance In-Season Quick (RISQ) test, weed seedlings at the 1-3 leaf stage sampled from

fields very early in the growing season are transplanted onto agar containing discriminating

rates of herbicides. Ten days later, survivors are recorded in comparison with standard

sensitive and resistant populations184. The test is commercially available in Australia allowing

Page 20: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

willing practitioners to determine the resistance status of their grass weed populations prior to

herbicide application in the field.

7. Development of crops resistant to ACCase herbicides

Post-emergence grass weed management in several monocotyledonous crops is limited and

often based on a few selective ACCase and ALS herbicides. Therefore, introducing a

resistance trait that endows high levels of tolerance to poorly metabolisable ACCase

herbicides has been identified as an interesting prospect for increasing the arsenal for grass

weed control in these crops. This would allow targeting weeds that are genetically close or

respond to safening in a similar manner to the crop, examples of which include jointed

goatgrass and some Brome species in wheat and weedy rice in rice. It also provides the

opportunity for controlling the large number of grass weed populations that have evolved

resistance primarily due to enhanced herbicide metabolism. Several crop lines resistant to

ACCase herbicides have been created starting with sethoxydim resistant corn in the early

1990s185, 186. Resistance was either imparted by a target site mutation using a non-GM

approach or via genetic engineering of the aryloxyalkanoate dioxygenase (aad-1) gene into

corn providing tolerance to both quizalofop and 2,4-D (Table 3). To date however, the

commercial significance of these ACCase resistant crop lines is low but may increase with

growing importance of weeds such as Bromus spp., and weedy rice. Importantly, if these

lines are to be adopted, strategies should be put in place to mitigate the risk of resistance

evolution. These should include proscribing use of the same ACCase herbicide in

monocotyledonous and subsequent dicotyledonous break crops. Caution should also be

exercised to prevent transmission of the ACCase resistant trait into closely related grass weed

species.

Page 21: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

8. Future research

Studies on resistance to ACCase herbicides have so far been dominated by three grass weeds

represented by Lolium, Avena and Alopecurus species benefitting from active research groups

in their respective regions. The knowledge gathered from these model species could be

leveraged to investigate the mechanisms and evolutionary dynamics of resistance in the other

growing number of grass weed species that have evolved resistance to ACCase herbicides.

The existing method for directly confirming enhanced metabolism of ACCase herbicides in

grass weeds is very time consuming and restricted to laboratories equipped with radio-

chemical facilities129, 135, 146. There is therefore a need for developing simpler non-

radiolabelled assays, potentially based on Liquid Chromatography-Mass Spectrometry (LC-

MS) procedures, for quickly confirming metabolic resistance. Also, more than 20 years after

demonstrating resistance to ACCase herbicides due to enhanced p450-based metabolism, the

genes involved are yet to be identified. New sequencing and other genome-wide

technologies could be exploited to unravel the genes associated with non-target site resistance

by using well characterised genetic materials in downstream molecular applications187,

bearing in mind that resistance is likely to be very complex, constitutive or induced,

depending on plant growth stages, herbicide use rates and other environmental conditions.

Molecular biology techniques have greatly improved our understanding of target site

resistance. Yet, it is not always easy to comprehend how some subtle differences in the

binding site impact on different ACCase herbicides. ACCase crystal structures from relevant

grass weeds could be generated and used instead of surrogate yeast ACCase for determining

how minor changes in the target enzyme of grass weeds can have profound effects on

ACCase herbicide efficacy. Additionally, the knowledge gathered from crystallography

studies could be applied to develop the next generation of ACCase herbicides that are less

prone to resistance evolution. Fitness cost is central in understanding the evolutionary

Page 22: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

dynamics of resistance to ACCase herbicides. This has been assessed properly in rye and

black-grass for some target site mutations and a single non-target site resistant biotype only

but not for any polyploid species which encompass some of the most problematic weeds that

have evolved resistance to ACCase herbicides. In order to circumvent practical issues

involved in carrying out field studies, a robust agreed glasshouse-based procedure, including

intraspecific and interspecific competition, should be put in place for assessing fitness costs

associated with different target site mutations and non-target site resistance genes in multiple

grass weed species. Additionally, more surveys should be conducted in the field to follow the

evolution of resistance genes/individuals under different herbicide and non-chemical weed

management strategies. The forecast for global ACCase herbicide usage is a slight decline in

the years to come, partly due to continued adoption of glyphosate tolerant crops6. However,

topically, a significant increase in ACCase use of up to four applications in a single growing

season is recorded for controlling glyphosate resistant weeds as is the case with S. halepense

in Argentina. An early-season in-field kit could be established for quickly confirming new

cases of resistance to ACCase herbicides so that an educated choice of herbicides can be

made for effective weed management. Ideally, a computer-based modelling approach

combining chemical and non-chemical methods could be used for developing pro-active

weed management strategies for maintaining the long-term sustainable use of ACCase

herbicides.

Acknowledgement

The author is very grateful to Karthik Putta for preparing some of the tables; Rita Kaundun

and several Syngenta colleagues for reviewing an earlier draft of this manuscript.

Page 23: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

References

1.  Oerke EC and Dehne HW, Safeguarding production‐losses in major crops and the role of crop protection. Crop Prot; 23(275‐285 DOI Electronic Resource Number (2004). 

2.  Oerke  EC,  Crop  losses  to  pests.  J  Agric  Sci;  144(  31‐43  DOI  Electronic  Resource Number (2006). 

3.  Naylor REL. What is a weed? In Weed Management Handbook, ed. by Naylor REL. Blackwell Science, pp. 1‐15 (2002). 

4.  Secor J, Cseke C and Owen JW. The discovery of the selective inhibition of acetyl‐coenzyme A carboxylase activity by two classes of graminicides.  In Brighton Crop Protection Conference Weeds, pp. 145‐154 (1989). 

5.  Hirai K. Herbicide classes in development. In Herbicide classes in development, ed. by Boger P, Wakabayashi K and Hirai K. Springer‐Verlag, Berlin‐Heidelberg, pp. 234‐238 (2002). 

6.  McDougall P, Agriservice. Resource Number (2013). 7.  Heap IM, International Survey of Herbicide‐Resistant Weeds. http://www.weedscience.com. 

Resource Number (2013). 8.  Devine MD  and  Shimabukuro  RH.  Resistance  to  acetyl  coenzyme A  carboxylase  inhibiting 

herbicides. In Herbicide resistance in plants: biology and biochemistry, ed. by Powles SB and Holtum JAM. Lewis Boca Raton, pp. 141‐169 (1994). 

9.  Délye C, Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci; 53(5): 728‐746 DOI Electronic Resource Number (2005). 

10.  Nikolau BJ, Ohlrogge JB and Wurtele ES, Plant biotin‐containing carboxylases. Arch Biochem Biophys; 414(211‐222 DOI Electronic Resource Number (2003). 

11.  Shorrosh BS, Dixon RA and Ohlrogge JB, Molecular cloning, characterization, and elicitation of acetyl‐CoA carboxylase from alfalfa. Proc Natl Acad Sci USA; 91(4323‐4327 DOI Electronic Resource Number (1994). 

12.  Tong L, Structure and  function of biotin‐dependent carboxylases. Cell Mol Life Sci; 70(863‐891 DOI Electronic Resource Number (2013). 

13.  Harwood JL, Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol; 39(101–138 DOI Electronic Resource Number (1988). 

14.  Konishi  T  and  Sasaki  Y,  Compartmentalization  of  two  forms  of  acetyl‐CoA  carboxylase  in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci USA; 91(3598‐3601 DOI Electronic Resource Number (1994). 

15.  Gornicki P, Podkowinski  J, Scappino  LA, DiMaio  J, Ward E and Haselkorn R, Wheat acetyl‐coenzyme A carboxylase:cDNA and protein structure. Proc Natl Acad Sci USA; 91(6860‐6864 DOI Electronic Resource Number (1994). 

16.  Incledon BJ and Hall CJ, Acetyl‐coenzyme A carboxylase: quaternary structure and inhibition by graminicidal herbicides. Pestic Biochem Physiol; 57(3): 255‐271 DOI Electronic Resource Number (1997). 

17.  Sasaki Y and Nagano Y, Plant acetyl‐CoA carboxylase: structure, biosynthesis, regulation, and gene  manipulation  for  plant  breeding.  Biosci  Biotechnol  Biochem;  68(1175‐1184  DOI Electronic Resource Number (2004). 

18.  Christopher JT and Holtum AM, The dicotyledonous species Erodium moschatum (L) L'Hér. ex Aiton  is  sensitive  to  haloxyfop  herbicide  due  to  herbicide‐sensitive  acetyl‐coenzyme  A carboxylase. Planta; 207(2): 275‐279 DOI Electronic Resource Number (1998). 

Page 24: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

19.  Zhang H, Yang Z, Shen Y and Tong L, Crystal structure of the carboxyltransferase domain of acetyl‐coenzyme  A  carboxylase.  Science;  299(2064‐2067 DOI  Electronic  Resource Number (2003). 

20.  Egli MA, Gegenbach BG, Gronwald JW, Somers DA and Wyse DL, Characterisation of maize acetyl‐coenzyme A carboxylase. Plant Physiol; 101: 499‐506(Resource Number (1993). 

21.  Devine MD. Acetyl‐CoA  carboxylase  inhibitors.  In Herbicide  classes  in development, ed. by Boger P, Wakabayashi K and Hirai K. Springer‐Verlag: Berlin, pp. 103‐137 (2002). 

22.  Wenger  J, Niderman T and Mathews C. Acetyl‐CoA carboxylase  inhibitors.  In Modern Crop Protection Compounds, ed. by Kramer W, Schirmer U, Jeschke P and Witschel M. Wiley‐VCH, pp. 447‐477 (2012). 

23.  Hofer U, Muehlebach M, Hole S and Zoschke A, Pinoxaden – for broad spectrum grass weed management  in  cereal  crops.  J  Plant  Dis  Prot;  113(1):  989‐995  DOI  Electronic  Resource Number (2006). 

24.  Bieringer G, Horlein G,  Langeluddeke  P  and Handte  R.  A  new  selective  herbicide  for  the control of  annual  and perennial warm  climate  grass weeds  in broadleaf  crops.  In Proc Br Crop Prot, Weeds, 11 (1982). 

25.  Hoppe HH, Effect of diclofop‐methyl on protein, nucleic acid, and lipid biosynthesis in tips of radicles  from Zea mays  L. Z Pflanzenphysiol; 102(89‐197 DOI Electronic Resource Number (1981). 

26.  Burton JD, Gronwald JW, Somers DA, Connelly JA, Gengenbach BG and Wyse DL,  Inhibition of  plant  acetyl‐coenzyme  a  carboxylase  by  the  herbicides  sethoxydim  and  haloxyfop. Biochem Biophys Res Comm; 148(3): 1039‐1044 DOI Electronic Resource Number (1987). 

27.  Focke M and Lichtenthaler HK, Inhibition of the acetyl‐CoA carboxylase of barley chloroplasts by  cycloxydim  and  sethoxydim.  Z  Naturforsch;  42(1361–1363  DOI  Electronic  Resource Number (1987). 

28.  Rendina AR, Craig‐Kennard AC, Beaudoin JD and Breen MK, Inhibition of acetyl‐coenzyme A carboxylase  by  two  classes  of  grass‐selective  herbicides.  J  Sci Agric  Food  Chem;  38(1282‐1287 DOI Electronic Resource Number (1990). 

29.  Burton  JD, Gronwald  JW, Keith RA,  Somers DA, Gengenbach BG and Wyse DL, Kinetics of inhibition of acetyl‐coenzyme A  carboxylase by  sethoxydim and haloxyfop. Pestic Biochem Physiol; 39(2): 100‐109 DOI Electronic Resource Number (1991). 

30.  Xiang S, Callaghan MM, Watson KG and Tong L, A different mechanism for the inhibition of the  carboxyltransferase  domain  of  acetyl‐coenzyme  A  carboxylase  by  tepraloxydim.  Proc Natl Acad Sci USA; 106(20723‐20727 DOI Electronic Resource Number (2009). 

31.  Yu LPC, Kim YS and Tong L, Mechanism for the inhibition of the carboxyltransferase domain of  acetyl‐coenzyme A  carboxylase by pinoxaden. Proc Natl Acad  Sci USA; 107(51): 22072‐22077 DOI Electronic Resource Number (2010). 

32.  Zhang H, Tweel B and Tong L, Molecular basis  for the  inhibition of the carboxyltransferase domain  of  acetyl‐coenzyme‐A  carboxylase  by  haloxyfop  and  diclofop.  Proc  Natl  Acad  Sci USA; 101(16): 5910‐5915 DOI Electronic Resource Number (2004). 

33.  Yu Q, Shane  Friesen  LJ, Zhang XQ and Powles SB, Tolerance  to acetolactate  synthase and acetyl‐coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co‐existing  resistance  mechanisms.  Pestic  Biochem  Physiol;  78(1):  21‐30  DOI  Electronic Resource Number (2004). 

34.  Herbert D, Cole DJ, Pallett K and Harwood J, Susceptibilities of different test systems  from maize  (Zea mays),  Poa  annua,  and  Festuca  rubra  to  herbicides  that  inhibit  the  enzyme acetyl‐coenzyme A carboxylase. Pest Biochem Physiol; 55(129‐139 DOI Electronic Resource Number (1996). 

35.  Délye C and Michel S,  'Universal' primers  for PCR‐sequencing of grass chloroplastic acetyl‐CoA carboxylase domains involved in resistance to herbicides. Weed Res; 45(5): 323‐330 DOI Electronic Resource Number (2005). 

Page 25: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

36.  Rosinger C, Bartsch K and  Schukte W.  Safeners  for herbicides.  In Modern Crop Protection Compounds, ed. by Kramer W, Schirmer U, Jeschke P and Witschel M. Wiley‐VCH, pp. 371‐398 (2012). 

37.  Konishi T, Shinohara K, Yamada K and Sasaki Y, Acetyl‐CoA carboxylase in higher plants: most plants other  than Gramineae  have both  the prokaryotic  and  the  eukaryotic  forms of  this enzyme. Plant Cell Physiol; 37(117‐122 DOI Electronic Resource Number (1996). 

38.  Heap I and Knight R, A population of ryegrass tolerant to the herbicide diclofop‐methyl. Aust J Agric Res; 48(156‐157 DOI Electronic Resource Number (1982). 

39.  Moss  SR, Marshall  R, Hull  R  and  Alarcon‐Reverte  R.  Current  status  of  herbicide‐resistant weeds  in  the United Kingdom.  In Aspects of Applied Biology: Crop Protection  in  Southern Britain (2011). 

40.  Beckie  HJ,  Lozinski  C,  Shirriff  S  and  Brenzil  CA,  Herbicide‐resistant  weeds  in  Canadian prairies: 2007‐2013. Weed Technol; 27(171‐183 DOI Electronic Resource Number (2013). 

41.  Chhokar RS and Sharma RK, Multiple herbicide resistance  in  littleseed canarygrass (Phalaris minor):  a  threat  to  wheat  production  in  India.  Weed  Biol  Manag;  8(2):  112‐123  DOI Electronic Resource Number (2008). 

42.  Travlos  I, Evaluation of herbicide‐resistance status on populations of  littleseed canarygrass (Phalaris Minor  Retz.)  from  Southern  Greece  and  suggestions  for  their  effective  control. Journal of Plant Protection Research; 52(308‐313 DOI Electronic Resource Number (2012). 

43.  Gherekhloo J, Rashed Mohassel MH, Mahalati MN, Zand E, Ghanbari ALI, Osuna MD and De Prado  R,  Confirmed  resistance  to  aryloxyphenoxypropionate  herbicides  in  Phalaris minor populations in Iran. Weed Biol Manag; 11(1): 29‐37 DOI Electronic Resource Number (2011). 

44.  Collavo A, Panozzo S, Lucchesi G, Scarabel L and Sattin M, Characterisation and management of Phalaris paradoxa resistant to ACCase‐inhibitors. Crop Prot; 30(3): 293‐299 DOI Electronic Resource Number (2011). 

45.  Hochberg O,  Sibony M  and Rubin B,  The  response  of ACCase‐resistant  Phalaris  paradoxa populations  involves  two  different  target  site  mutations.  Weed  Res;  49(1):  37‐46  DOI Electronic Resource Number (2009). 

46.  Kaloumenos  NS  and  Eleftherohorinos  IG,  Identification  of  a  johnsongrass  (Sorghum halepense)  biotype  resistant  to  ACCase‐Inhibiting  herbicides  in  Northern  Greece.  Weed Technol; 23(3): 470‐476 DOI Electronic Resource Number (2009). 

47.  Burke IC, Wilcut JW and Cranmer J, Cross‐resistance of a johnsongrass (Sorghum halepense) biotype  to  aryloxyphenoxypropionate  and  cyclohexanedione  herbicides.  Weed  Technol; 20(3): 571‐575 DOI Electronic Resource Number (2006). 

48.  Gazziero DLP, Brighenti AM, Voll E, Prete CEC,  Sumiya M and Kajihara  L, Variabilidade no grau de resistencia de capim‐marmelada (Brachiaria plantaginea) aos herbicidas clethodim, tepraloxydim e  sethoxydim. Planta Daninha; 22(397‐402 DOI Electronic Resource Number (2004). 

49.  Gasquez J and Bay G. Digitaria sanguinalis: a new species resistant to the ACCase inhibitors in France. In 20ème Conférence du COLUMA Journées Internationales sur  la Lutte contre les Mauvaises  Herbes,  Dijon,  France,  11‐12  décembre,  2007.  Association  Nationale  pour  la Protection des Plantes (ANPP), pp. 141‐148 (2007). 

50.  Massa D and Gerhards R, Investigations on herbicide resistance in European silky bent grass ( Apera spica‐venti ) populations. J Plant Dis Prot; 118(31‐39 DOI Electronic Resource Number (2011). 

51.  Mohamed  IA,  Li  R,  You  Z  and  Li  Z,  Japanese  Foxtail  (Alopecurus  japonicus)  resistance  to fenoxaprop  and  pinoxaden  in  China.  Weed  Sci;  60(2):  167‐171  DOI  Electronic  Resource Number (2011). 

52.  Li L, Bi Y, Liu L, Yuan G and Wang J, Molecular basis for resistance to fenoxaprop‐P‐ethyl  in American sloughgrass (Beckmannia syzigachne Stedu.). Pestic Biochem Physiol; 105(118‐121 DOI Electronic Resource Number (2013). 

Page 26: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

53.  Owen M, Martinez  N  and  Powles  P, Multiple  herbicide‐resistant  Lolium  rigidum  (annual ryegrass)  now  dominates  across  the  Western  Australian  grain  belt.  Weed  Res; DOI:10.1111/wre.12068(Resource Number (2014). 

54.  Rauch TA, Thill DC, Gersdorf SA and Price WJ, Widespread occurrence of herbicide‐resistant Italian  ryegrass  (Lolium  multiflorum)  in  Northern  Idaho  and  Eastern  Washington.  Weed Technol; 24(3): 281‐288 DOI Electronic Resource Number (2010). 

55.  Alarcon‐Reverte  R  and Moss  SR,  Resistance  to  ACCase  inhibiting  herbicides  in  the weed Lolium multiflorum (Italian rye‐grass). Commun Agric Appl Biol Sci; 73(899‐902 DOI Electronic Resource Number (2008). 

56.  Petit C, Bay G, Pernin F and Délye C, Prevalence of cross‐ or multiple resistance to the acetyl‐coenzyme  A  carboxylase  inhibitors  fenoxaprop,  clodinafop  and  pinoxaden  in  black‐grass (Alopecurus  myosuroides  Huds.)  in  France.  Pest  Manag  Sci;  66(168‐177  DOI  Electronic Resource Number (2010). 

57.  Beckie  H  and  Tardif  FJ,  Herbicide  cross  resistance  in  weeds.  Crop  Prot;  35(15‐28  DOI Electronic Resource Number (2012). 

58.  Llewellyn  RS  and  Powles  SB,  High  levels  of  herbicide  resistance  in  rigid  ryegrass  (Lolium rigidum)  in the wheat belt of Western Australia. Weed Technol; 15(242‐248 DOI Electronic Resource Number (2001). 

59.  Owen  MJ,  Walsh  MJ,  Llewellyn  RS  and  Powles  SB,  Widespread  occurrence  of  multiple herbicide  resistance  in Western  Australian  annual  ryegrass  (Lolium  rigidum)  populations. Aust J Agric Res; 58(711‐718 DOI Electronic Resource Number (2007). 

60.  Owen MJ and Powles SB, Distribution and  frequency of herbicide‐resistant wild oat (Avena spp.)  across  the Western Australian  grain  belt.  Crop  Pasture  Sci;  60(25‐31 DOI  Electronic Resource Number (2009). 

61.  Cavan  G,  Biss  P  and  Moss  SR,  Localized  origins  of  herbicide  resistance  in  Alopecurus myosuroides. Weed Res; 38(239‐245 DOI Electronic Resource Number (1998). 

62.  Délye C, Straub C, Michel S and Le Corre V, Nucleotide variability at the acetyl coenzyme A carboxylase  gene  and  the  signature  of  herbicide  selection  in  the  grass weed  Alopecurus myosuroides (Huds.). Mol Biol Evol; 21(5): 884‐892 DOI Electronic Resource Number (2004). 

63.  Menchari  Y,  Camilleri  C, Michel  S,  Brunel  D,  Dessaint  F,  Le  Corre  V  and  Délye  C, Weed response to herbicides: regional‐scale distribution of herbicide resistance alleles in the grass weed  Alopecurus  myosuroides.  New  Phytol;  171(4):  861‐873  DOI  Electronic  Resource Number (2006). 

64.  Hess M, Beffa R, Kaiser J, Laber B, Menne HJ and Strek H, Status and development of ACCase and ALS  inhibitor resistant black‐grass  (Alopecurus myosuroides Huds)  in neighboring  fields in Germany. Julius‐Kuhn‐Arch; 434(163–170 DOI Electronic Resource Number (2012). 

65.  Délye C, Michel S, Berard A, Chauvel B, Brunel B, Guillemin  JP, Dessaint F and  LeCorre V, Geographical variation  in resistance to acetyl‐coenzyme A carboxylase‐inhibiting herbicides across  the  range  of  the  arable  weed  Alopecurus myosuroides  (black‐grass).  New  Phytol; 186(1005‐1017 DOI Electronic Resource Number (2010). 

66.  Délye C, Straub C, Matéjicek A and Michel M, Multiple origins  for black‐grass  (Alopecurus myosuroides  Huds)  target‐site‐based  resistance  to  herbicides  inhibiting  acetyl‐CoA carboxylase. Pest Manag Sci; 60(1): 35‐41 DOI Electronic Resource Number (2004). 

67.  Délye C,  Jasieniuk M and  Le Corre V, Deciphering  the evolution of herbicide  resistance  in weeds. Trends Genet; 29(649‐658 DOI Electronic Resource Number (2013). 

68.  Moss  SR,  Cocker  KM,  Brown,  A.C.,  Hall  L  and  Field  LM,  Characterisation  of  target‐site resistance to ACCase‐inhibiting herbicides in the weed Alopecurus myosuroides (black‐grass). Pest Manag Sci; 59(2): 190‐201 DOI Electronic Resource Number (2003). 

69.  Busi  R, Michel  S,  Powles  SB  and  Délye  C,  Gene  flow  increases  the  initial  frequency  of herbicide resistance alleles in unselected Lolium rigidum populations. Agric Ecosyst Environ; 142(403‐409 DOI Electronic Resource Number (2011). 

Page 27: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

70.  Délye C,  Clément  JAJ,  Pernin  F,  Chauvel B  and  Le  Corre V, High  gene  flow  promotes  the genetic  homogeneity  of  arable weed  populations  at  the  landscape  level.  Basic Appl  Ecol; 11(6): 504‐512 DOI Electronic Resource Number (2010). 

71.  Murray BG, Morrison  IN and Friesen LF, Pollen‐mediated gene  flow  in wild oat. Weed Sci; 50(3): 321‐325 DOI Electronic Resource Number (2002). 

72.  Petersen J, Dresbach‐Runkel M and Wagner J, A method to determine the pollen‐mediated spread of  target‐site  resistance  to acetyl‐coenzyme A  carboxylase  inhibitors  in black grass (Alopecurus myosuroides Huds.).  J Plant Dis Prot; 3(117): 122‐128 DOI Electronic Resource Number (2010). 

73.  Shimono Y, Takiguchi Y and Konuma A, Contamination of  internationally  traded wheat by herbicide‐resistant  Lolium  rigidum.  Weed  Biol  Manag;  10(4):  219‐228  DOI  Electronic Resource Number (2010). 

74.  Chauvel  B,  Guillemin  JP  and  Colbach  N,  Evolution  of  a  herbicide‐resistant  population  of Alopecurus myosuroides Huds in a long term cropping system experiment. Crop Prot; 28(343‐349 DOI Electronic Resource Number (2009). 

75.  Collavo  A,  Strek  H,  Beffa  R  and  Sattin M, Management  of  an  ACCase‐inhibitor‐resistant Lolium  rigidum population based on  the use of ALS  inhibitors: weed population evolution observed  over  a  7 year  field‐scale  investigation.  Pest  Manag  Sci;  69(2):  200‐208  DOI Electronic Resource Number (2013). 

76.  Gherekhloo J, Osuna MD and De Prado R, Biochemical and molecular basis of resistance to ACCase‐inhibiting herbicides  in  Iranian  Phalaris minor populations. Weed Res; 52(367‐372 DOI Electronic Resource Number (2012). 

77.  Osuna M, Goulart I, Vidal R, Kalsing A, Ruiz Santaella J and De Prado R, Resistance to ACCase inhibitors  in  Eleusine  indica  from  Brazil  involves  a  target  site mutation.  Planta  Daninha; 30(3): 675‐681 DOI Electronic Resource Number (2012). 

78.  Avila W, Bolaños A and Valverde BE, Characterization of the cross‐resistance mechanism to herbicides inhibiting acetyl coenzyme‐A carboxylase in itchgrass (Rottboellia cochinchinensis) biotypes from Bolivia. Crop Prot; 26(3): 342‐348 DOI Electronic Resource Number (2007). 

79.  Powles S and Yu Q, Evolution  in action: plants  reistant  to herbicides. Annu Rev Plant Biol; 61(317–347 DOI Electronic Resource Number (2010). 

80.  Christoffers MJ, Berg ML and Messersmith CG, An  isoleucine to  leucine mutation  in acetyl‐CoA  carboxylase  confers  herbicide  resistance  in wild  oat. Genome;  45(6):  1049‐1056 DOI Electronic Resource Number (2002). 

81.  Tardif  FJ,  Preston  C,  Holtum  JAM  and  Powles  SB,  Resistance  to  acetyl‐coenzyme  a carboxylase‐inhibiting  herbicides  endowed  by  a  single  major  gene  encoding  a  resistant target site  in a biotype of Lolium  rigidum. Aust  J Plant Physiol; 23(1): 15‐23 DOI Electronic Resource Number (1996). 

82.  Kershner  KS,  Al‐Khatib  K,  Krothapalli  K  and  Tuinstra  MR,  Genetic  resistance  to  acetyl‐coenzyme A carboxylase‐inhibiting herbicides  in grain sorghum. Crop Sci; 52(1): 64‐73 DOI Electronic Resource Number (2012). 

83.  Bradley  KW,  Wu  J,  Hatzios  KK  and  Hagood  Jr  ES,  The  mechanism  of  resistance  to aryloxyphenoxypropionate  and  cyclohexanedione  herbicides  in  a  johnsongrass  biotype. Weed Sci; 49(4): 477‐484 DOI Electronic Resource Number (2001). 

84.  Pornprom T, Mahatamnuchoke P and Usui K, The role of altered acetyl‐CoA carboxylase  in conferring resistance to fenoxaprop‐P‐ethyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees). Pest Manag Sci; 62(1109‐1115 DOI Electronic Resource Number (2006). 

85.  Gronwald JW, Eberlein CV, Betts KJ, Baerg RJ, Ehlke NJ and Wyse DL, Mechanism of diclofop resistance  in  an  Italian  ryegrass  (Lolium  multiflorum  Lam.)  biotype.  Pestic  Biochem  and Physiol; 44(2): 126‐139 DOI Electronic Resource Number (1992). 

Page 28: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

86.  Zhang X and Devine D. A possible point mutation  in  the plastidic ACCase gene  conferring resistance to sethoxydim  in green  foxtail  (Setaria viridis).  In Weed Sci Soc Am Abstr 40: 33 Abstract no 81 (2000). 

87.  Zagnitko O, Jelenska J, Tevzadze G, Haselkorn R and Gornicki P, An isoleucine/leucine residue in  the carboxyltransferase domain of acetyl‐CoA carboxylase  is critical  for  interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc Natl Acad Sci USA; 98(12): 6617‐6622 DOI Electronic Resource Number (2001). 

88.  Délye C, Zhang XQ, Michel S, Matéjicek A and Powles SB, Molecular bases for sensitivity to acetyl‐coenzyme A carboxylase  inhibitors  in black‐grass. Plant Physiol; 137(3): 794‐806 DOI Electronic Resource Number (2005). 

89.  Délye C, Zhang XQ, Chalopin C, Michel S and Powles  SB, An  isoleucine  residue within  the carboxyl‐transferase  domain  of  multidomain  acetyl‐coenzyme  A  carboxylase  is  a  major determinant  of  sensitivity  to  aryloxyphenoxypropionate  but  not  to  cyclohexanedione inhibitors. Plant Physiol; 132(3): 1716‐1723 DOI Electronic Resource Number (2003). 

90.  White GM, Moss  SR  and  Karp  A, Differences  in  the molecular  basis  of  resistance  to  the cyclohexanedione  herbicide  sethoxydim  in  Lolium multiflorum. Weed  Res;  45(6):  440‐448 DOI Electronic Resource Number (2005). 

91.  Kaundun SS, An aspartate to glycine change in the carboxyl transferase domain of acetyl‐CoA carboxylase  is  in part associated with  resistance to ACCase  inhibitor herbicides  in a Lolium multiflorum  population.  Pest Manag  Sci;  66(1249‐1256  DOI  Electronic  Resource  Number (2010). 

92.  Kaundun SS, Bailly GC, Dale RP, Hutchings S‐J and McIndoe E, A novel W1999S mutation and non‐target site resistance  impact on acetyl‐CoA carboxylase  inhibiting herbicides to varying degrees  in  a  UK  Lolium  multiflorum  population.  PLoS  ONE  8(2):  e58012 doi:101371/journalpone0058012 Resource Number (2013). 

93.  Zhang  XQ  and  Powles  SB,  The  molecular  bases  for  resistance  to  acetyl  co‐enzyme  A carboxylase  (ACCase)  inhibiting herbicides  in two target‐based resistant biotypes of annual ryegrass (Lolium rigidum). Planta; 223(3): 550‐557 DOI Electronic Resource Number (2006). 

94.  Zhang XQ and Powles SB, Six amino acid substitutions in the carboxyl‐transferase domain of the plastidic acetyl‐CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytol; 172(4): 636‐645 DOI Electronic Resource Number (2006). 

95.  Heckart  D,  Vencill  WK,  Parrott  WA,  Raymer  P  and  Murphy  TR.  ACCase  resistant  large crabgrass  (Digitaria  sanguinalis)  in  Georgia.  In  Southern  Weed  Science  Society  Annual Meeting (2008). 

96.  Kaundun  SS, Hutchings  S‐J, Dale RP and McIndoe E, Role of a novel  I1781T mutation  and other mechanisms in conferring resistance to acetyl‐CoA carboxylase inhibiting herbicides in a black grass population. PLoS ONE 8(7): e69568 doi:101371/journalpone0069568 Resource Number (2013). 

97.  Kaundun  SS, Hutchings  S‐J, Dale  R  and McIndoe  E,  Broad  resistance  to ACCase  inhibiting herbicides  in  a  ryegrass  population  Is  due  only  to  a  cysteine  to  arginine mutation  in  the target  enzyme.  Plosone;  7(6):  e39759.  doi:10.1371/journal.pone.0039759(Resource Number (2012). 

98.  Ruiz‐Santaella J and Laber B. Mapping of herbicide resistant weeds in Great Britain, Germany and  France.  In  2nd  Workshop  of  the  EWRS  Weed  Mapping  Working  Group:  Jukioinen, Finland; 21‐23 September (2011). 

99.  Alarcon‐Reverte R, Shanley S, Kaundun S, Karp A and Moss S, A SNaPshot assay for the rapid and  simple detection of known point mutations conferring  resistance  to ACCase‐inhibiting herbicides in Lolium spp. Weed Res; 53(12‐20 DOI Electronic Resource Number (2013). 

100.  Malone  JM,  Boutsalis  P,  Baker  J  and  Preston  C, Distribution  of  herbicide‐resistant  acetyl‐coenzyme  A  carboxylase  alleles  in  Lolium  rigidum  across  grain  cropping  areas  of  South Australia. Weed Res; 54(78–86 DOI Electronic Resource Number (2014). 

Page 29: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

101.  Délye C, Deulvot C and Chauvel B, DNA analysis of herbarium specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre‐dated herbicides. PLoS ONE 8(10): e75117 doi:101371/journalpone0075117 Resource Number (2013). 

102.  Sammons R, Heering D, Danicola N, Glick H and Elmore G, Sustainability and stewardship of glyphosate  and  glyphosate‐resistant  crops.  Weed  Technol;  21(347‐354  DOI  Electronic Resource Number (2007). 

103.  Jang S, Marjanovic  J and Gornicki P, Resistance  to herbicides  caused by  single amino acid mutations  in acetyl‐CoA carboxylase  in  resistant populations of grassy weeds. New Phytol; 197(4): 1110‐1116 DOI Electronic Resource Number (2013). 

104.  Nikolskaya  T,  Zagnitko  O,  Tevzadze  G,  Haselkorn  R  and  Gornicki  P,  Herbicide  sensitivity determinant of wheat plastid acetyl‐CoA carboxylase is located in a 400‐amino acid fragment of  the  carboxyltransferase  domain.  Proc  Natl  Acad  Sci  USA;  96(25):  14647‐14651  DOI Electronic Resource Number (1999). 

105.  Liu W, Harrison DK,  Chalupska D, Gornicki  P, O'Donnell  CC,  Adkins  SW, Haselkorn  R  and Williams RR, Single‐site mutations  in  the carboxyltransferase domain of plastid acetyl‐CoA carboxylase  confer  resistance  to grass‐specific herbicides. Proc Natl Acad  Sci USA; 104(9): 3627‐3632 DOI Electronic Resource Number (2007). 

106.  Délye C, Matéjicek A and Michel S, Cross‐resistance patterns to ACCase‐inhibiting herbicides conferred  by mutant  ACCase  isoforms  in  Alopecurus myosuroides Huds.  (black‐grass),  re‐examined  at  the  recommended  herbicide  field  rate.  Pest Manag  Sci;  64(1179‐1186  DOI Electronic Resource Number (2008). 

107.  Xu H, Zhu X, Wang H, Li J and Dong L, Mechanism of resistance to fenoxaprop  in Japanese foxtail  (Alopecurus  japonicus)  from  China.  Pestic  Biochem  Physiol;  107(0):  25‐31  DOI Electronic Resource Number (2013). 

108.  Scarabel  L,  Panozzo  S,  Varotto  S  and  Sattin M,  Allelic  variation  of  the  ACCase  gene  and response to ACCase‐inhibiting herbicides in pinoxaden‐resistant Lolium spp. Pest Manag Sci; 67(932‐941 DOI Electronic Resource Number (2011). 

109.  Yu Q, Collavo A, Zheng M‐Q, Owen M, Sattin M and Powles SB, Diversity of acetyl‐coenzyme A carboxylase mutations  in  resistant Lolium populations: evaluation using clethodim. Plant Physiol; 145(2): 547‐558 DOI Electronic Resource Number (2007). 

110.  Cruz‐Hipolito  H,  Osuna  MD,  Domínguez‐Valenzuela  JA,  Espinoza  N  and  De  Prado  R, Mechanism  of  resistance  to  ACCase‐Inhibiting  herbicides  in wild Oat  (Avena  fatua)  from Latin  America.  J  Agric  Food  Chem;  59(13):  7261‐7267  DOI  Electronic  Resource  Number (2011). 

111.  Moss SR, Riches C and Stormonth D. Clethodim:  its potential to combat herbicide‐resistant Alopecurus myosuroides (black‐grass). In Aspects of Applied Biology, pp. 39‐45 (2012). 

112.  Délye  C,  Pernin  F  and  Michel  S,  Universal’  PCR  assays  detecting  mutations  in  acetyl‐coenzyme A carboxylase or acetolactate synthase that endow herbicide resistance  in grass weeds. Weed Res; 51(353‐362 DOI Electronic Resource Number (2011). 

113.  Iwakami S, Uchino A, Watanabe H, Yamasue Y and  Inamura T,  Isolation and expression of genes  for acetolactate  synthase and acetyl‐CoA  carboxylase  in Echinochloa phyllopogon, a polyploid weed species. Pest Manag Sci; 68(7): 1098‐1106 DOI Electronic Resource Number (2012). 

114.  Yu Q,  Ahmad‐Hamdani MS,  Han  H,  Christoffers MJ  and  Powles  SB,  Herbicide  resistance‐endowing  ACCase  gene  mutations  in  hexaploid  wild  oat  (Avena  fatua):  insights  into resistance  evolution  in  a  hexaploid  species.  Heredity;  110(3):  220‐231  DOI  Electronic Resource Number (2013). 

115.  Ostlie MH.  Development  and  characterisation  of  wheat mutants  resistant  to  acetyl  CoA carboxylase inhibitors. Colorado State University, Fort Collins, Colorado, (2012). 

116.  Zhu X‐L, Zhang L, Chen Q, Wan J and Yang G‐F, Interactions of aryloxyphenoxypropionic acids with  sensitive  and  resistant  acetyl‐coenzyme  A  carboxylase  by  homology  modeling  and 

Page 30: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

molecular dynamic simulations. J Chem Inf Model; 46(4): 1819‐1826 DOI Electronic Resource Number (2006). 

117.  Zhu X‐L, Yang W‐C, Yu N‐X, Yang S‐G and Yang G‐F, Computational simulations of structural role  of  the  active‐site  W374C  mutation  of  acetyl‐coenzyme‐A  carboxylase:  multi‐drug resistance mechanism. J Mol Model; 17(3): 495‐503 DOI Electronic Resource Number (2011). 

118.  Zhu X‐L, Ge‐Fei H,  Zhan C‐G  and  Yang G‐F, Computational  simulations of  the  interactions between  acetyl‐coenzyme‐A  carboxylase  and  clodinafop:  resistance  mechanism  due  to active  and  nonactive  site mutations.  J  Chem  Inf Model;  49(8):  1936‐1943  DOI  Electronic Resource Number (2009). 

119.  Tao  J,  Zhang  G,  Zhang  A,  Zheng  L  and  Cao  S,  Study  on  the  enantioselectivity  inhibition mechanism of acetyl‐coenzyme A carboxylase toward haloxyfop by homology modeling and MM‐PBSA analysis. J Mol Model; 18(8): 3783‐3792 DOI Electronic Resource Number (2012). 

120.  Zhu  XL  and  Yang GF, A  comparative  study  of  drug  resistance mechanism  associated with active site and non‐active site mutations:  I388N and D425G mutants of acetyl‐coenzyme‐A carboxylase.  Curr  Comput  Aided  Drug  Des;  8(1):  62‐69  DOI  Electronic  Resource  Number (2012). 

121.  Délye C, Gardin JAC, Boucansaud K, Chauvel B and Petit C, Non‐target‐site‐based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res; 51(5): 433‐437 DOI Electronic Resource Number (2011). 

122.  Delye C, Menchari Y, Guillemin JP, Matéjicek A, Michel S, Camilleri C and Chauvel B, Status of black‐grass (Alopecurus myosuroides) resistance to acetyl coenzyme A carboxylase inhibitors in France. Weed Res; 47(95‐105 DOI Electronic Resource Number (2007). 

123.  Alarcon‐Reverte R. Understanding and combatting the threat posed by Lolium multiflorum as a weed of arable crops. PhD thesis. University of Reading, UK. 240 pp. (2010). 

124.  Ahmad‐Hamdani  MS,  Yu  Q,  Han  H,  Cawthray  GR,  Wang  SF  and  Powles  SB,  Herbicide resistance  endowed by  enhanced  rates of herbicide metabolism  in wild oat  (Avena  spp.). Weed Sci; 61(1): 55‐62 DOI Electronic Resource Number (2012). 

125.  Beckie H, Warwick S and Sauder C, Basis of resistance  in Canadian populations of wild oat (Avena fatua). Weed Sci; 60(10‐18 DOI Electronic Resource Number (2012). 

126.  Kuk  YI,  Burgos  NR  and  Scott  RC,  Resistance  profile  of  diclofop‐resistant  Italian  ryegrass (Lolium multiflorum)  to ACCase‐ and ALS‐inhibiting herbicides  in Arkansas, USA. Weed Sci; 56(4): 614‐623 DOI Electronic Resource Number (2008). 

127.  Holtum JAM, Hausler RE, Devine MD and Powles SB, Recovery of transmembrane potentials in  plants  resistant  to  aryloxyphenoxypropionate  herbicides:  a  phenomenon  awaiting explanation. Weed Sci; 42(293‐301 DOI Electronic Resource Number (1994). 

128.  Renault  S,  Shukla  A,  Giblin  EM, MacKenzie  SL  and  Devine MD,  Plasma membrane  lipid composition and herbicide effects on  lipoxygenase activity do not contribute to differential membrane  responses  in  herbicide‐resistant  and  susceptible  wild  oat  (Avena  fatua  L.) biotypes. J Agric Food Chem; 45(3269‐3275 DOI Electronic Resource Number (1997). 

129.  de  Prado  JL, Osuna MD, Heredia A  and  de  Prado  R,  Lolium  rigidum,  a  pool  of  resistance mechanisms  to  ACCase  inhibitor  herbicides.  J  Agric  Food  Chem;  53(6):  2185‐2191  DOI Electronic Resource Number (2005). 

130.  Dinelli G, Bonetti A, Marotti  I, Minelli M and Catizone P, Possible  involvement of herbicide sequestration  in  the  resistance  to diclofop‐methyl  in  Italian biotypes of  Lolium  spp. Pestic Biochem Physiol; 81(1): 1‐12 DOI Electronic Resource Number (2005). 

131.  Cummins  I,  Cole  DJ  and  Edwards  R,  A  role  for  glutathione  transferases  functioning  as glutathione  peroxidases  in  resistance  to multiple  herbicides  in  black‐grass.  Plant  J;  18(3): 285‐292 DOI Electronic Resource Number (1999). 

132.  Cummins I, Wortley D, Sabbadin F, He Z, Coxon C, Strakera H, Sellars J, Knight K, Edwards L, Hughes D, Kaundun S, Jane Hutchings S, Steel PG and Edwards R, A key role for a glutathione 

Page 31: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

transferase  in  multiple  herbicide  resistance  in  grass  weeds.  Proc  Natl  Acad  Sci  USA; 110(5812‐5817 DOI Electronic Resource Number (2013). 

133.  Preston C, Tardif FJ, Christopher JT and Powles SB, Multiple resistance to dissimilar herbicide chemistries  in  a  biotype  of  Lolium  rigidum  due  to  enhanced  activity  of  several  herbicide degrading enzymes. Pestic Biochem Physiol; 54(2): 123‐134 DOI Electronic Resource Number (1996). 

134.  Menendez  J and De Prado R, Diclofop‐methyl  cross‐resistance  in a  chlorotoluron‐resistant biotype of Alopecurus myosuroides. Pestic Biochem Physiol; 56(2): 123‐133 DOI Electronic Resource Number (1996). 

135.  Bakkali Y, Late watergrass (Echinochloa phyllopogon): Mechanisms involved in the resistance to  fenoxaprop‐P‐ethyl.  J Agric Food Chem; 55(4052–4058 DOI Electronic Resource Number (2007). 

136.  Yu Q, Abdallah I, Han H, Owen O and Powles S, Distinct non‐target site mechanisms endow resistance  to  glyphosate,  ACCase  and  ALS‐inhibiting  herbicides  in  multiple  herbicide‐resistant Lolium rigidum. Planta; 230(713‐723 DOI Electronic Resource Number (2009). 

137.  Preston  C  and  Powles  SB,  Amitrole  inhibits  diclofop metabolism  and  synergises  diclofop‐methyl  in  a  diclofop‐methyl‐resistant  biotype  of  Lolium  rigidum  Pest  Biochem  Physiol; 62(179‐189 DOI Electronic Resource Number (1998). 

138.  Hall  LM, Moss  SR and Powles  SB, Mechanisms of  resistance  to aryloxyphenoxypropionate herbicides  in  two  resistant  biotypes  of  Alopecurus  myosuroides  (black‐grass):  herbicide metabolism as a cross‐resistance mechanism. Pest Biochem Physiol; 57(87‐98 DOI Electronic Resource Number (1997). 

139.  Brazier M, Cole DJ and Edwards R, O‐Glucosyltransferase activities toward phenolic natural products and xenobiotics  in wheat and herbicide‐resistant and herbicide‐susceptible black‐grass  (Alopecurus myosuroides).  Phytochemistry;  59(2):  149‐156  DOI  Electronic  Resource Number (2002). 

140.  Reade JP H and Cobb AH, New, quick tests for herbicide resistance in black‐grass (Alopecurus myosuroides Huds)  based  on  increased  glutathione  S‐transferase  activity  and  abundance. Pest Manag Sci; 58(1): 26‐32 DOI Electronic Resource Number (2002). 

141.  Cummins  I,  Bryant  DN  and  Edwards  R,  Safener  responsiveness  and  multiple  herbicide resistance  in the weed black‐grass  (Alopecurus myosuroides). Plant Biotechnol  J; 7(807‐820 DOI Electronic Resource Number (2009). 

142.  Milner  LJ,  Reade  JP H  and  Cobb  AH, Developmental  changes  in  glutathione  S‐transferase activity  in herbicide‐resistant populations of Alopecurus myosuroides Huds  (black‐grass)  in the field. Pest Manag Sci; 57(12): 1100‐1106 DOI Electronic Resource Number (2001). 

143.  Neve P and Powles SB, High survival frequencies at low herbicide use rates in populations of Lolium  rigidum  result  in  rapid evolution of herbicide  resistance. Heredity; 110(6): 1‐8 DOI Electronic Resource Number (2005). 

144.  Neve P and Powles SB, Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide  resistance  in  Lolium  rigidum.  Theor Appl Genet;  110(6):  1154‐1166 DOI Electronic Resource Number (2005). 

145.  Manalil S, Busi R, Renton M and Powles SB, Rapid evolution of herbicide resistance by  low herbicide dosages. Weed Sci; 59(210‐217 DOI Electronic Resource Number (2011). 

146.  Yu Q, Han H, Cawthray GR, Wang SF and Powles SB, Enhanced rates of herbicide metabolism in  low herbicide‐dose selected resistant Lolium rigidum. Plant Cell Environ; 36(818‐827 DOI Electronic Resource Number (2013). 

147.  Petit C, Duhieu B, Boucansaud K and Délye D, Complex genetic  control of non‐target‐site‐based  resistance  to herbicides  inhibiting acetyl‐coenzyme A  carboxylase  and acetolactate‐synthase  in  Alopecurus  myosuroides  Huds.  Plant  Science;  178(501–509  DOI  Electronic Resource Number (2010). 

Page 32: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

148.  Uludag  A,  Park  KW,  Cannon  J  and  Mallory‐Smith  CA,  Cross  resistance  of  acetyl‐CoA carboxylase  (ACCase)  inhibitor–resistant  wild  oat  (Avena  fatua)  biotypes  in  the  Pacific Northwest. Weed Technol; 22(1): 142‐145 DOI Electronic Resource Number (2008). 

149.  Busi R, Vila‐Aiub MM  and Powles  SB, Genetic  control of  a  cytochrome P450 metabolism‐based  herbicide  resistance mechanism  in  Lolium  rigidum.  Heredity;  106(5):  817‐824  DOI Electronic Resource Number (2011). 

150.  Preston C,  Inheritance and  linkage of metabolism‐based herbicide  cross‐resistance  in  rigid ryegrass (Lolium rigidum). Weed Sci; 51(4–12 DOI Electronic Resource Number (2003). 

151.  Cummins I, Moss SR, Cole DJ and Edwards R, Gluthathione transferases in herbicide‐resistant and herbicide‐susceptible black‐grass  (Alopecurus myosuroides). Pestic Sci; 51(244‐250 DOI Electronic Resource Number (1997). 

152.  Reade  JPH  and  Cobb  A,  Purification,  characterization  and  comparison  of  gluthatione  S‐transferases  from black‐grass  (Alopecurus myosuroides Huds) biotypes. Pestic  Sci; 55(993‐999 DOI Electronic Resource Number (1999). 

153.  Purrington CB, Cost of  resistance. Curr Opin Plant Biol; 3(305‐308 DOI Electronic Resource Number (2000). 

154.  Lehnhoff EA, Keith BK, Dyer WE, Peterson RK and Menalled F, Multiple herbicide resistance wild oat and  impacts on physiology, germinability, and seed production. Agron  J; 105(854‐862 DOI Electronic Resource Number (2013). 

155.  Wiederholt  RJ  and  Stoltenberg  DE,  Absence  of  differential  fitness  between  giant  foxtail (Setaria  faberi)  accessions  resistant  and  susceptible  to  acetyl‐coenzyme  A  carboxylase inhibitors. Weed Sci; 44(1): 18‐24 DOI Electronic Resource Number (1996). 

156.  Dastoori M,  Shahbazi  S,  Bayat  V,  didehbaz Moghanolo  G, Malekian  A  and  Amiri  S,  The relative fitness of ACCase inhibitor resistant and susceptible annual ryegrass (Lolium rigidum) accessions  affected  by  the  different  temperatures  and  light  periods.  Intl  J  Agri  Crop  Sci; 4(220‐225 DOI Electronic Resource Number (2012). 

157.  Travlos  IS, Competition between ACCase‐inhibitor resistant and susceptible sterile wild oat (Avena sterilis) biotypes. Weed Sci; 61(1): 26‐31 DOI Electronic Resource Number (2012). 

158.  Wiederholt  RJ  and  Stoltenberg  DE,  Similar  fitness  between  large  crabgrass  (Digitaria sanguinalis) accessions resistant or susceptible to acetyl‐coenzyme A carboxylase inhibitors. Weed Techol; 10(42‐49 DOI Electronic Resource Number (1996). 

159.  Vila‐Aiub  MM,  Neve  P  and  Powles  S,  Fitness  costs  associated  with  evolved  herbicide resistance  alleles  in  plants.  New  Phytol;  184(751‐767  DOI  Electronic  Resource  Number (2009). 

160.  Menchari Y, Chauvel B, Darmency H and Delye C, Fitness costs associated with three mutant acetyl‐coenzyme  A  carboxylase  alleles  endowing  herbicide  resistance  in  black‐grass Alopecurus myosuroides. J Appl Ecol; 45(939‐947 DOI Electronic Resource Number (2008). 

161.  Délye  C, Menchari  Y, Michel  S,  Cadet  É  and  Le  Corre  V,  A  new  insight  into  arable weed adaptive  evolution:  mutations  endowing  herbicide  resistance  also  affect  germination dynamics  and  seedling  emergence.  Ann  Bot;  111(4):  681‐691  DOI  Electronic  Resource Number (2013). 

162.  Wang T, Picard JC, Tian X and Darmency H, A herbicide‐resistant ACCase 1781 Setaria mutant shows  higher  fitness  than  wild  type.  Heredity;  105(4):  394‐400  DOI  Electronic  Resource Number (2010). 

163.  Délye C, Wang T and Darmency H, An isoleucine‐leucine substitution in chloroplastic acetyl‐CoA carboxylase from green foxtail (Setaria viridis L. Beauv.)  is responsible for resistance to the  cyclohexanedione  herbicide  sethoxydim.  Planta;  214(3):  421‐427  DOI  Electronic Resource Number (2002). 

164.  Vila‐Aiub MM,  Neve  P  and  Powles  SB,  Resistance  cost  of  a  cytochrome  P450  herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol; 167(787‐796 DOI Electronic Resource Number (2005). 

Page 33: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

165.  Vila‐Aiub MM, Neve P, Steadman KJ and Powles SB, Ecological fitness of a multiple herbicide‐resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J Appl Ecol; 42(2): 288‐298 DOI Electronic Resource Number (2005). 

166.  Vila‐Aiub MM, Neve P and Powles SB, Evidence for an ecological cost of enhanced herbicide metabolism in Lolium rigidum. J Ecol; 97(772‐780 DOI Electronic Resource Number (2009). 

167.  Bergelson J and Purrington CB, Surveying patterns in the cost of resistance in plants. Am Nat; 148(536‐558 DOI Electronic Resource Number (1996). 

168.  Herms DA and Matson WJ, The dilemma of plants ‐ to grow or defend. Q Rev Biol; 67(283‐335 DOI Electronic Resource Number (1992). 

169.  Maxwell  BD,  Roush  ML  and  Radosevich  SR,  Predicting  the  evolution  and  dynamics  of herbicide  resistance  in weed  populations. Weed  Technol;  4(2‐13 DOI  Electronic  Resource Number (1990). 

170.  Norsworthy  JK, Ward  SM,  Shaw  DR,  Llewellyn  RS, Nichols  RL, Webster  TM,  Bradley  KW, Frisvold G, Powles SB, Burgos NR, Witt WW and Barrett M, Reducing the risks of herbicide resistance:  best  management  practices  and  recommendations.  Weed  Sci;  60(31‐62  DOI Electronic Resource Number (2012). 

171.  Burgos  N,  Tranel  PG,  Strebig  JC,  M  DV,  Shaner  D,  Norsworthy  JK  and  Ritz  C,  Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci; 61(4‐20 DOI Electronic Resource Number (2013). 

172.  Délye  C,  Matéjicek  A  and  Gasquez  J,  PCR‐based  detection  of  resistance  to  acetyl‐CoA carboxylase‐inhibiting herbicides in black‐grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag Sci; 58(474‐478 DOI Electronic Resource Number (2002). 

173.  Kaundun SS, Cleere SM, Stanger CP, Burbidge JM and Windass JD, Real‐time quantitative PCR assays for quantification of L1781 ACCase inhibitor resistance allele in leaf and seed pools of Lolium  populations.  Pest Manag  Sci;  62(11):  1082‐1091 DOI  Electronic  Resource Number (2006). 

174.  Kaundun  SS  and Windass  JD,  Derived  cleaved  amplified  polymorphic  sequence,  a  simple method to detect a key point mutation conferring acetyl CoA carboxylase inhibitor herbicide resistance in grass weeds. Weed Res; 46(1): 34‐39 DOI Electronic Resource Number (2006). 

175.  Marshall  R,  Hanley  SJ,  Hull  R  and  Moss  SR,  The  presence  of  two  different  target‐site resistance mechanisms in individual plants of Alopecurus myosuroides Huds., identified using a quick molecular  test  for  the characterisation of six and seven ACCase SNPs. Pest Manag Sci; 69(727‐737 DOI Electronic Resource Number (2012). 

176.  Abram  M,  Quicker  and  more  extensive  resistance  test.  Farmers  weekly;  151(51  DOI Electronic Resource Number (2009). 

177.  Dawson  A,  Syngenta  CSI's    offer  possible  option  for  resistant  wild  oats.  Manitoba  co‐operator; July edition(Resource Number (2008). 

178.  Letouzé  A  and  Gasquez  J,  A  pollen  test  to  detect  ACCase  target‐site  resistance  within Alopecurus myosuroides  populations. Weed  Res;  40(2):  151‐162  DOI  Electronic  Resource Number (2000). 

179.  Bourgeois  L,  Kenkel NC  and Morrison  IN,  Characterization  of  cross‐resistance  petterns  in acetyl‐CoA carboxylase inhibitor resistant wild oat (Avena fatua). Weed Sci; 45(750‐755 DOI Electronic Resource Number (1997). 

180.  Yang C, Dong L, Li  J and Moss SR,  Identification of  Japanese  foxtail  (Alopecurus  japonicus) resistant  to  haloxyfop  using  three  different  assay  techniques. Weed  Sci;  55(537‐540  DOI Electronic Resource Number (2007). 

181.  Beckie HJ, I.M. H, Smeda RJ and Hall LM, Screening for herbicide resistance in weeds. Weed Technol; 14(428‐445 DOI Electronic Resource Number (2000). 

182.  Moss SR, Albertini A, Arlt K, Blair A, Collings L, Bulcke R, Eelen H, Claude JP, Cordingley M, Murfitt R, Gasquez J, Vacher C, Goodliffe P, Cranstone K, Kudsk P, Mathiassen S, De Prado R, 

Page 34: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Prosch D, Rubin B, Schmidt O, Walter H, Thuerwaechter F, Howard S, Turner M, Waelder L and Cornes D. Screening for herbicide resistance  in black‐grass (Alopecurus myosuroides): A "ring"  test.  In Proceedings of  the 50th  International  Symposium on Crop Protection, Gent, Belgium, pp. 671‐679 (1998). 

183.  Boutsalis  P,  Syngenta  quick‐test:  a  rapid whole‐plant  test  for  herbicide  resistance. Weed Technol; 15(2): 257‐263 DOI Electronic Resource Number (2001). 

184.  Kaundun SS, Hutchings S‐J, Bailly G, Dale R and Glanfield P, Syngenta 'RISQ' test: a novel in‐season  method  for  detecting  resistance  to  post‐emergence  ACCase  and  ALS  inhibitor herbicides in grass weeds. Weed Res; 51(284‐293 DOI Electronic Resource Number (2010). 

185.  Somers DA, Parker WB, Wyse DL, Gronwald JW and Gengenbach BG, Method for  imparting cyclohexanedione and/or aryloxyphenoxypropanioc acid herbicide tolerance to maize plants. US Patent 5,290,696 (1994). 

186.  Parker WB, Marshall LC, Burton JD, Somers DA, Wyse DL, Gronwald JW and Gengenbach BG, Dominant mutations causing alterations  in acetyl‐coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc Natl Acad Sci USA; 87(18): 7175‐7179 DOI Electronic Resource Number (1990). 

187.  Delye  C,  Unravelling  the  genetic  bases  of  non‐target‐site‐based  resistance  (NTSR)  to herbicides: a major challenge for weed science  in the forthcoming decade. Pest Manag Sci; 69(176‐187 DOI Electronic Resource Number (2013). 

188.  Yu Q, Cairns A and Powles S, Glyphosate, paraquat and ACCase multiple herbicide resistance evolved  in a Lolium rigidum biotype. Planta; 225(499‐513 DOI Electronic Resource Number (2007). 

189.  Bailly G, Dale R, Archer  SA, Wright DJ  and Kaundun  S, Role of  residual herbicides  for  the management of multiple herbicide resistance to ACCase and ALS  inhibitors  in a black‐grass population Crop Prot; 34(96‐103 DOI Electronic Resource Number (2012). 

190.  Cruz‐Hipolito H, Domínguez‐Valenzuela  J, Osuna M and Prado R, Resistance mechanism  to acetyl  coenzyme  A  carboxylase  inhibiting  herbicides  in  Phalaris  paradoxa  collected  in Mexican wheat fields. Plant Soil; 355(1‐2): 121‐130 DOI Electronic Resource Number (2012). 

191.  Tang  H,  Li  J,  dong  L,  Dong  A,  Lu  B  and  Zhu  X, Molecular  bases  for  resistance  to  acetyl‐coenzyme A carboxylase inhibitor in Japanese foxtail (Alopecurus japonicus). Pest Manag Sci; 68(1241‐1247 DOI Electronic Resource Number (2012). 

192.  Huan Z‐B, Jin T, Zhang S‐Y and Wang J‐X, Cloning and sequence analysis of plastid acetyl‐CoA carboxylase cDNA from two Echinochloa crus‐galli biotypes. J Pestic Sci; 36(0): 461‐466 DOI Electronic Resource Number (2011). 

193.  Burke  IC,  Burton  JD,  York  AC,  Cranmer  J  and  Wilcut  JW,  Mechanism  of  resistance  to clethodim  in  a  johnsongrass  (Sorghum  halepense)  biotype. Weed  Sci;  54(3):  401‐406 DOI Electronic Resource Number (2006). 

194.  Maneechote  C,  Samanwong  S,  Zhang  XQ  and  Powles  SB,  Resistance  to  ACCase‐inhibiting herbicides  in  sprangletop  (Leptochloa  chinensis). Weed  Sci;  53(3):  290‐295 DOI  Electronic Resource Number (2005). 

195.  Vila‐Aiub MM, Neve P, Steadman K and Powles SB, Ecological fitness of a multiple herbicide‐resistant Lolium rigidum population: dynamics of seed germination and seedling emergence in resistant and susceptible phenotypes. J Appl Ecol; 42(2): 288‐298 DOI Electronic Resource Number (2005). 

196.  Wright TR,  Shan G, Walsh TA,  Lira  JM, Cui C, Song P, Zhuang M, Arnold NL,  Lin G, Yau K, Russell  SM,  Cicchillo  RM,  Peterson MA,  Simpson DM,  Zhou N,  Ponsamuel  J  and  Zhang  Z, Robust  crop  resistance  to  broadleaf  and  grass  herbicides  provided  by  aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci USA; 107(20240–20245 DOI Electronic Resource Number (2010). 

197.  Wright  TR,  Lira  JM,  Merlo  DJ  and  Hopkins  N,  Novel  herbicide  resistance  gene.  WO 2005/107437 (2005). 

Page 35: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

198.  Mankin SL, Ulrich S, Hong H, Wenck AR, Neuteboom L, Whitt SR and Carlson DR, Herbicide tolerant plants. WO 2011/028832 A2 (2011). 

199.  Hinga M, Griffin S, Moon MS, Rasmussen RD and Cuevas F, Methods and compositions  to produce rice resistant to ACCase inhibitors. WO 2013/016210 A1 (2013). 

200.  Ostlie M, Haley S, Westra P and Valdez V, Acetyl co‐enzyme A carboxylase herbicide resistant plants. WO 2012/106321 (2012). 

201.  Tuinstra  MR  and  Al‐Khatib  K,  Acetyl‐CoA  carboxylase  herbicide  resistant  sorghum.  WO 2008089061 A3 (2010). 

202.  Heckart  DL,  Parrott  WA  and  Raymer  PL,  Obtaining  sethoxydim  resistance  in  seashore paspalum. Crop Sci; 50(6): 2632‐2640 DOI Electronic Resource Number (2010). 

203.  Raymer  PL, Heckart D  and  Parrott WA, Development  of  acetyl‐CoA  carboxylase  inhibitor‐type herbicide‐resistant grass species. WO 2009/155580 A1 (2009). 

 

Page 36: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Figure 1: Impact of the W2027C (equivalent to W374C on picture) mutation on the binding

of FOP herbicides exemplified here with diclofop. Overlay between wild and mutant diclofop

and its corresponding W374C complex. The wild type complex is in grey and cyan while the

mutant W374C complex is in blue and yellow (extracted from: 117)

Π- Π

 

Page 37: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Table 1. List of monocotyledonous species with published carboxyltransferase domain

sequences (>90% coverage of CT domain)

Species Accession number Source Length Alignmen

t length*

% Identity

*

Aegilops tauschii EU660897.1 genomic

DNA 12379

8 1647 91.2 Alopecurus japonicus JQ068820.1 mRNA 7589 1638 99.51 Alopecurus myosuroides AJ310767.1 mRNA 7589 1638 100

Avena fatua JF785552.1 genomic

DNA 2039 1647 93.26

Beckmannia syzigachne KF501579.1 genomic

DNA 10174 1638 96.52 Brachypodium distachyon

XM_003581327.1 mRNA 7553 1647 90.29

Echinochloa crus-galli HQ395758.1 mRNA 7527 1643 87.89

Lolium multiflorum AY710293.1 genomic

DNA 3044 1644 92.52

Lolium rigidum DQ184646.1 genomic

DNA 1563 1563 92.58

Phalaris minor AY196481.1 genomic

DNA 2027 1647 94.05

Phalaris paradoxa AM745339.1 genomic

DNA 1520 1520 94.01 Setaria italica AF294805.1 mRNA 7630 1642 88.31

Setaria viridis AM408428.1 genomic

DNA 12934 1642 88.31

Sorghum bicolor XM_002446133.

1 mRNA 7537 1640 88.11

Triticum aestivum EU660900.1 genomic

DNA 97428 1647 91.5

Triticum turgidum EU660898.1 genomic

DNA 16576

4 1647 91.62

Triticum urartu EU660896.1 genomic

DNA 98890 1647 91.5 Zea mays U58598.1 mRNA 5442 1640 87.56

*Alignment length and sequence identity with respect to the carboxyltransferase domain of

Alopecurus myosuroides accession AJ310767

Page 38: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Table 2. Fitness cost and benefit associated with evolved traits conferring resistance to ACCase herbicides

Species Mechanism Impact associated with herbicide resistance References

Relative growth rate

Shoot dry biomass Seed yield Seed germination

Relative competitive ability

A. myosuroides I1781L Not affected Not affected Not affected Delayed germination; decrease fatal germination ND 160, 161

D2078G Decreased Decreased Decreased Earlier germination ND 160, 161

I2041N Not affected Not affected Not affected Not affected ND 160, 161

L. rigidum P450

metabolism Decreased Decreased Not affected Not affected ND 164, 195

L. rigidum I1781L Not affected Not affected Not affected Low germination under shallow burial ND 164, 195

L. rigidum P450

metabolism Decreased Decreased Decreased ND Decreased 166

L. rigidum Not

investigated ND ND ND Decreased under normal temperature ND 156

A. sterilis Not

investigated Not affected ND Not affected Not affected Slight competitive edge 157

A. fatua

Multiple Herbicide resistance Not affected less tillers Decreased Earlier germination ND 154

S. viridis x S. italica I1781L Increased ND Increased

Earlier germination, Lower emergence potential ND 162

S. faberi Not

investigated Not affected Not affected Not affected ND Not affected 155

D. sanguinalis Not

investigated ND Not affected Not affected ND Not affected 158

ND: Not determined

Page 39: Resistance to acetyl-CoA carboxylase-inhibiting herbicides

This article is protected by copyright. All rights reserved 

Table 3. Examples of monocotyledonous crops that have been modified to resist ACCase

herbicides

Crop Mechanism of resistance

Selecting Herbicide Method References

Corn TSR-I1781L Sethoxydim tissue culture 185, 186

Corn Metabolism Quizalofop aad-1 gene 196, 197

Rice TSR-I1781L Cycloxydim tissue culture 198

Rice TSR-G2096S Quizalofop AZ mutagenesis 199

Wheat TSR-A2004V Quizalofop EMS mutagenesis 115, 200

Sorghum TSR-W2027C Fluazifop wild biotypes 82, 201

Turfgrass TSR-I1781L Sethoxydim tissue culture 202, 203

TSR: target site resistance; AZ: sodium azide; EMS: ethyl methanesulfonate; aad-1:

aryloxyalkanoate dioxygenase