17
RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

Embed Size (px)

Citation preview

Page 1: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

RESEARCH PROPOSALM V CHILUKURI

FACULTY OF ENGINEERINGMULTIMEDIA UNIVERSITY

Green Technology

Page 2: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

INTRODUCTION

Power System FactToday’s electricity system is 99.97 percent reliable, yet still allows for power outages and interruptions that cost

Americans at least $150 billion each year — about $500 for every man, woman and child.

Current ScenarioIn 2009, over 16 percent of all energy used is expected to be in the form of electricity, up from 9 percent in 19731. Currently, the average efficiency of the world's legacy electricity grids is around only 33 percent. This contrasts with 60 percent efficiency for grids based on the latest technology.

Page 3: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART GRID

A smarter grid applies technologies, tools and techniques

(ICT) available now to bring knowledge to power knowledge capable of making the grid work far more efficiently...

Ensuring its reliability to degrees never before possible. Maintaining its affordability. Reinforcing our global competitiveness. Fully accommodating renewable and traditional energy

sources. Potentially reducing our carbon footprint. Introducing advancements and efficiencies yet to be

envisioned.

Page 4: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART GRID IN A NUTSHELL

Broadly speaking, Smart Grid companies add computer intelligence and networking to what is otherwise a 'dumb' electrical network.

Other examples of Smart Grid activities include: making the process of traditional electricity generation more efficient; connecting sustainable energy sources to the existing grid, and smart meters.

Page 5: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART GRID: GREEN

For example, some Smart Grid technologies assist with load leveling of the electrical grid. This allows a power generating company to run cleaner power sources, such as nuclear or hydroelectric, at full output, 24-hours a day, while reducing the need to provide more carbon emitting gas, coal or oil plants in a surge (usually for only a couple of hours per day), to meet peak demand. Further, by reducing variability in demand, fewer new power plants need to be constructed.

Page 6: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART GRID - SCOPE

Page 7: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

GREEN TECHNOLOGY ROADMAP

Page 8: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

BACKGROUND

Many utilities are somewhere in the process of developing a roadmap forimplementation of a communications, control, and data managementarchitecture that can facilitate monitoring, control, and automation functions

atall levels of the power system. This “smart grid” will provide opportunities forimproving reliability, energy efficiency, management of assets, customerservices, and demand management.One of the keys to success in implementation of a smart grid that can enable awide range of intelligent applications well into the future is to use a standards

basedapproach and focus on interoperability of technologies. Requirementsfor technologies and systems are being developed through thecharacterization of advanced applications that will use the technologies – usecases. There is an opportunity for the industry to enhance the interoperabilityof technologies and the development of appropriate standards through thesharing of use cases and common requirements that are developed fromthese use cases© 2007 Electric Power Research Institute, Inc. All rights reserved. 8cases.

Page 9: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

Integrated Renewable Energy Systems

Advanced Hybrid Renewable Energy Systems for Distributed Generation

Fuel CellFuel Cell

Wind-MillWind-Mill

Min-HydroMin-HydroPhotovoltaicPhotovoltaicIntegrated Renewable Energy Generation & Storage System

Page 10: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART METERING

Advanced Metering Infrastructure (AMI) is an approach tointegrating consumers based upon the development of open standards. It provides consumers with the ability to use electricity more efficiently and provides utilities with the ability to detect problems on their systems and operate them more Efficiently. AMI enables consumer-friendly efficiency concepts like “Prices to Devices” to work like this: Assuming that energy is priced on what it costs in near real-time – a Smart Grid imperative – price signals are relayed to “smart” home controllers or end-consumer devices like thermostats, washer/dryers and refrigerators – the home’s major energy-users. The devices, in turn, process the Information based on consumers’ learned wishes and power accordingly. The house or office responds to the occupants, Because this interaction occurs largely “in the background,” with minimal human intervention, there’s a dramatic savings on energy that would otherwise be consumed. rather than vice-versa.

Page 11: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

INTEGRATED RENEWABLE ENERGY SYSTEMS

Page 12: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

DISTRIBUTED GENERATION

Distributed generation is the use of small-scale power

generation technologies located close to the load being

served, capable of lowering costs, improving reliability,

reducing emissions and expanding energy options.

Page 13: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

BOTTOM LINE

Major manufacturers and utilities should explore partnerships with, and consider acquisitions of, smart energy companies. Companies should not be distracted by falling oil prices. Supply remains volatile, and demand uncertain. And while the price of oil has dropped over 50 percent from its 2008 peak, energy costs remain well above their long-term trends.

Governments around the world should look at the cost effectiveness of trade offs between sustainable energy subsidies compared with commitments to upgrading the existing grid. The global downturn may make significant government support for SmartGrid spending unlikely, although some administrations are likely to adopt a policy of stimulative infrastructure spending on their electrical grids, some of which will be for SmartGrid equipment. But profit-oriented utilities and enterprises should continue to explore and deploy SmartGrid technologies that offer high returns on investment, even without government support, to conserve costs.

Governments unable to finance SmartGrid investment could instead promote the technology via information campaigns and stimulate adoption through tax incentives. And as governments increasingly focus on energy security, investing in the SmartGrid could be used to reduce dependence on non-domestic energy sources. It could also make the grid more resistant to military or terrorist attacks, by physical or digital means.

Venture capitalists (VC) should devote increasing resources to understanding smart energy technologies. VC investment in the sectorm remains strong, even during the current economic crisis, with SmartGrid companies receiving the second largest slice of the GreenTech pie, behind only solar energy.

http://www.deloitte.co.uk/TMTPredictions/technology/SmartGrid-electricity-grid-efficiency.cfm

Page 14: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART GRID 2030

Page 15: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

INVENTION

In celebrating the beginning of the 21st century, the NationalAcademy of Engineering set about identifying the single mostimportant engineering achievement of the 20th century. TheAcademy compiled an estimable list of 20 accomplishments which have affected virtually everyone in the developed world.

The internet took thirteenth place on this list, and “highways”eleventh. Sitting at the top of the list was electrification asmade possible by the grid, “the most significant engineeringachievement of the 20th Century.”

Page 16: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

SMART GRID: DEFINITION & FUNCTIONS

Electricity delivery network modernized using latest digital/information technologies to meet key defining

functions

1. Enable Active Participation by Customers2. Accommodate All Generation and Storage Options3. Enable New Products, Services, and Markets4. Provide Power Quality for the Digital Economy5. Optimize Asset Utilization and Operate Efficiently6. Anticipate and Respond to System Disturbances7. Operate Resiliently Against Attacks and Natural Disasters

7 smart grid characteristics reaffirmed through the Smart Grid Implementation Workshop held June 2008

Page 17: RESEARCH PROPOSAL M V CHILUKURI FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY Green Technology

REFERENCES

1. Eric Lightner - Director, Smart Grid Task Force Evolution and Progress of Smart Grid Development at the Department of Energy Presented at FERC/NARUC Smart Grid Collaborative Workshop, July 23, 2008.

2. THE SMART GRID – An Introduction, US DOE Report