14
RESEARCH Open Access Global exponential synchronization of delayed BAM neural networks with reaction-diffusion terms and the Neumann boundary conditions WeiYuan Zhang 1,2* and JunMin Li 1 * Correspondence: ahzwy@163. com 1 School of Science, Xidian University, Shaan Xi Xian 710071, P.R. China Full list of author information is available at the end of the article Abstract In this article, a delay-differential equation modeling a bidirectional associative memory (BAM) neural networks (NNs) with reaction-diffusion terms is investigated. A feedback control law is derived to achieve the state global exponential synchronization of two identical BAM NNs with reaction-diffusion terms by constructing a suitable Lyapunov functional, using the drive-response approach and some inequality technique. A novel global exponential synchronization criterion is given in terms of inequalities, which can be checked easily. A numerical example is provided to demonstrate the effectiveness of the proposed results. Keywords: neural networks, reaction-diffusion, delays, global exponential synchroni- zation, Lyapunov functional 1. Introduction Aihara et al. [1] firstly proposed chaotic neural network (NN) models to simulate the chaotic behavior of biological neurons. Consequently, chaotic NNs have drawn consid- erable attention and have successfully been applied in combinational optimization, secure communication, information science, and so on [2-4]. Since NNs related to bidirectional associative memory (BAM) have been proposed by Kosko [5], the BAM NNs have been one of the most interesting research topics and extensively studied because of its potential applications in pattern recognition, etc. Hence, the study of the stability and periodic oscillatory solution of BAM with delays has raised considerable interest in recent years, see for example [6-12] and the references cited therein. Strictly speaking, diffusion effects cannot be avoided in the NNs when electrons are moving in asymmetric electromagnetic fields. Therefore, we must consider that the activations vary in space as well as in time. In [13-27], the authors have considered various dynamical behaviors such as the stability, periodic oscillation, and synchroniza- tion of NNs with diffusion terms, which are expressed by partial differential equations. For instance, the authors of [16] discuss the impulsive control and synchronization for a class of delayed reaction-diffusion NNs with the Dirichlet boundary conditions in terms of p-norm. In [25], the synchronization scheme is discussed for a class of delayed NNs with reaction-diffusion terms. In [26], an adaptive synchronization con- troller is derived to achieve the exponential synchronization of the drive-response structure of NNs with reaction-diffusion terms. Meanwhile, although the models of Zhang and Li Boundary Value Problems 2012, 2012:2 http://www.boundaryvalueproblems.com/content/2012/1/2 © 2012 Zhang and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

RESEARCH Open Access Global exponential synchronization ......RESEARCH Open Access Global exponential synchronization of delayed BAM neural networks with reaction-diffusion terms and

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • RESEARCH Open Access

    Global exponential synchronization of delayedBAM neural networks with reaction-diffusionterms and the Neumann boundary conditionsWeiYuan Zhang1,2* and JunMin Li1

    * Correspondence: [email protected] of Science, XidianUniversity, Shaan Xi Xi’an 710071,P.R. ChinaFull list of author information isavailable at the end of the article

    Abstract

    In this article, a delay-differential equation modeling a bidirectional associativememory (BAM) neural networks (NNs) with reaction-diffusion terms is investigated. Afeedback control law is derived to achieve the state global exponentialsynchronization of two identical BAM NNs with reaction-diffusion terms byconstructing a suitable Lyapunov functional, using the drive-response approach andsome inequality technique. A novel global exponential synchronization criterion isgiven in terms of inequalities, which can be checked easily. A numerical example isprovided to demonstrate the effectiveness of the proposed results.

    Keywords: neural networks, reaction-diffusion, delays, global exponential synchroni-zation, Lyapunov functional

    1. IntroductionAihara et al. [1] firstly proposed chaotic neural network (NN) models to simulate the

    chaotic behavior of biological neurons. Consequently, chaotic NNs have drawn consid-

    erable attention and have successfully been applied in combinational optimization,

    secure communication, information science, and so on [2-4]. Since NNs related to

    bidirectional associative memory (BAM) have been proposed by Kosko [5], the BAM

    NNs have been one of the most interesting research topics and extensively studied

    because of its potential applications in pattern recognition, etc. Hence, the study of the

    stability and periodic oscillatory solution of BAM with delays has raised considerable

    interest in recent years, see for example [6-12] and the references cited therein.

    Strictly speaking, diffusion effects cannot be avoided in the NNs when electrons are

    moving in asymmetric electromagnetic fields. Therefore, we must consider that the

    activations vary in space as well as in time. In [13-27], the authors have considered

    various dynamical behaviors such as the stability, periodic oscillation, and synchroniza-

    tion of NNs with diffusion terms, which are expressed by partial differential equations.

    For instance, the authors of [16] discuss the impulsive control and synchronization for

    a class of delayed reaction-diffusion NNs with the Dirichlet boundary conditions in

    terms of p-norm. In [25], the synchronization scheme is discussed for a class of

    delayed NNs with reaction-diffusion terms. In [26], an adaptive synchronization con-

    troller is derived to achieve the exponential synchronization of the drive-response

    structure of NNs with reaction-diffusion terms. Meanwhile, although the models of

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    © 2012 Zhang and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction inany medium, provided the original work is properly cited.

    mailto:[email protected]:[email protected]://creativecommons.org/licenses/by/2.0

  • delayed feedback with discrete delays are good approximation in simple circuits

    consisting of a small number of cells, NNs usually have a spatial extent due to the pre-

    sence of a multitude of parallel pathways with a variety of axon sizes and lengths.

    Thus, there is a distribution of conduction velocities along these pathways and a distri-

    bution of propagation delays. Therefore, the models with discrete and continuously

    distributed delays are more appropriate.

    To the best of the authors’ knowledge, global exponential synchronization is seldom

    reported for the class of delayed BAM NNs with reaction-diffusion terms. In the the-

    ory of partial differential equations, Poincaré integral inequality is often utilized in the

    deduction of diffusion operator [28]. In this article, the problem of global exponential

    synchronization is investigated for the class of BAM NNs with time-varying and dis-

    tributed delays and reaction-diffusion terms by using Poincaré integral inequality,

    Young inequality technique, and Lyapunov method, which are very important in the-

    ories and applications and also are a very challenging problem. Several sufficient condi-

    tions are in the form of a few algebraic inequalities, which are very convenient to

    verify.

    2. Model description and preliminariesIn this article, a class of delayed BAM NNs with reaction-diffusion terms is described

    as follows

    ∂ui∂t

    =l∑

    k=1

    ∂xk

    (Dik

    ∂ui∂xk

    )− pi (ui (t, x))

    +n∑j=1

    bjifj(vj (t, x)

    )+

    n∑j=1

    b̃jifj(vj

    (t − θji (t) , x

    ))+

    n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(vj (s, x)

    )ds + Ii (t) ,

    ∂vj∂t

    =l∑

    k=1

    ∂xk

    (D∗jk

    ∂vj∂xk

    )− qj

    (vj (t, x)

    )+

    m∑i=1

    dijgi (ui (t, x))

    +m∑i=1

    d̃ijgi(ui

    (t − τij (t) , x

    ))+

    m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi (ui (s, x)) ds + Jj (t) ,

    (1)

    where x = (x1, x2 ,..,xl)T Î Ω ⊂ ℝl, Ω is a compact set with smooth boundary ∂Ω and

    mesΩ > 0 in space ℝl; u = (u1,u2,...,um)T Î ℝm, (v1,v2,...,vn)

    T Î ℝn, ui(t,x) and vj(t,x) andrepresent the states of the ith neurons and the jth neurons at time t and in space x,

    respectively. bji, b̃ji, b̄ji,dij, d̄ij, and d̃ij are known constants denoting the synaptic connec-

    tion strengths between the neurons, respectively; fi and gi denote the activation func-

    tions of the neurons and the signal propagation functions, respectively; Ii and Ji denote

    the external inputs on the ith and jth neurons, respectively; pi and qj are differentiable

    real functions with positive derivatives defining the neuron charging time, respectively;

    τij(t) and θji(t) represent continuous time-varying discrete delays, respectively; Dik ≥ 0

    and D∗jk ≥ 0 stand for the transmission diffusion coefficient along the ith and jth neu-rons, respectively. i = 1, 2, ..., m, k = 1, 2, l and j = 1, 2,..., n.

    System (1) is supplemented with the following boundary conditions and initial values

    ∂ui∂n̄

    :=(

    ∂ui∂x1

    ,∂ui∂x2

    , ...,∂ui∂xl

    )T= 0,

    ∂vj∂n̄

    :=(

    ∂vj∂x1

    ,∂vj∂x2

    , ...,∂vj∂xl

    )T= 0, t ≥ 0, x ∈ ∂�, (2)

    ui (s, x) = ϕui (s, x) , vj (s, x) = ϕvj (s, x) , (s, x) ∈ (−∞, 0] × �. (3)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 2 of 14

  • for any i = 1,2,..., m and j = 1,2,..., n where n̄ is the outer normal vector of

    ∂Ω,ϕ =(

    ϕuϕv

    )= (ϕu1, ...,ϕum,ϕv1, ...,ϕvn)T ∈ C are bounded and continuous, where

    C ={ϕ|ϕ =

    (ϕuϕv

    ),ϕ :

    ((−∞, 0] × Rm(−∞, 0] × Rn

    )→ Rm+n

    }. It is the Banach space of continuous

    functions which map

    ((−∞, 0](−∞, 0]

    )into ℝm+n with the topology of uniform converge for the

    norm

    ‖ϕ‖ =∥∥∥∥(

    ϕuϕv

    )∥∥∥∥ = sup−∞≤s≤0[∫

    m∑i=1

    |ϕui|rdx]+ sup

    −∞≤s≤0

    ⎡⎣∫

    n∑j=1

    ∣∣ϕvj∣∣rdx⎤⎦ , r ≥ 2.

    Throughout this article, we assume that the following conditions are made.

    (A1) The functions τij(t), θji(t) are piecewise-continuous of class C1 on the closure of

    each continuity subinterval and satisfy

    0 ≤ τij (t) ≤ τij, 0 ≤ θji (t) ≤ θji, τ̇ij (t) ≤ μτ < 1, θ̇ji (t) ≤ μθ < 1,τ = max

    1≤i≤m,1≤j≤n{τij

    }, θ = max

    1≤i≤m,1≤j≤n{θji

    },

    with some constants τij ≥ 0, θji ≥ 0, τ > 0, θ >0, for all t ≥ 0.

    (A2) The functions pi (·)and qj(·) are piecewise-continuous of class C1 on the closure

    of each continuity subinterval and satisfy

    ai = infζ∈R

    pi ′ (ζ ) > 0, pi (0) = 0,

    cj = infζ∈R

    qj′ (ζ ) > 0, qj (0) = 0.

    (A3) The activation functions are bounded and Lipschitz continuous, i.e., there exist

    positive constants Lfj and Lgi such that for all h1, h2 Î ℝ∣∣fj (η1) − fj (η2)∣∣ ≤ Lfj |η1 − η2| , ∣∣gi (η1) − gi (η2)∣∣ ≤ Lgi |η1 − η2| .

    (A4) The delay kernels Kji (s) , K̄ij (s) : [0,∞) → [0,∞) ,(i = 1, 2,...,m, j = 1, 2,...,n) arereal-valued non-negative continuous functions that satisfy the following conditions

    (i)∫ +∞0 Kji (s) ds = 1,

    ∫ +∞0 K̄ji (s) ds = 1,

    (ii)∫ +∞0 sKji (s) ds < ∞,

    ∫ +∞0 sK̄ij (s) ds < ∞,

    (iii)There exist a positive μ such that∫ +∞0

    seμsKji (s) ds < ∞,∫ +∞0

    seμsK̄ij (s) ds < ∞.

    We consider system (1) as the drive system. The response system is described by the

    following equations

    ∂ũi (t, x)∂t

    =l∑

    k=1

    ∂xk

    (Dik

    ∂ũi (t, x)∂xk

    )− pi

    (ũi (t, x)

    )+

    n∑j=1

    bjifj(ṽj (t, x)

    )

    +n∑j=1

    b̃jifj(ṽj

    (t − θji (t) , x

    ))+

    n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(ṽj (s, x)

    )ds + Ii (t) + σi (t, x) ,

    ∂ ṽj (t, x)∂t

    =l∑

    k=1

    ∂xk

    (D∗jk

    ∂ ṽj (t, x)∂xk

    )− qj

    (ṽj (t, x)

    )+

    m∑i=1

    dijgi(ũi (t, x)

    )

    +m∑i=1

    d̃ijgi(ũi

    (t − τij (t) , x

    ))+

    m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi(ũi (s, x)

    )ds + Jj (t) + ϑj (t, x) ,

    (4)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 3 of 14

  • where si (t,x) and ϑj(t,x) denote the external control inputs that will be appropriately

    designed for a certain control objective. We denote ũ (t, x) =(ũ1 (t, x) , ..., ũm (t, x)

    )T,ṽ (t, x) =

    (ṽ1 (t, x) , ..., ṽn (t, x)

    )T , σ (t, x) = (σ1 (t, x) , ..., σm (t, x))T and ϑ(t,x) = (ϑ1(t,x),...,ϑn(t,x))

    T.

    The boundary and initial conditions of system (4) are

    ∂ũi∂n̄

    :=(

    ∂ũi∂x1

    ,∂ũi∂x2

    , ...,∂ũi∂xl

    )T= 0,

    ∂ ṽj∂n̄

    :=(

    ∂ ṽj∂x1

    ,∂ ṽj∂x2

    , ...,∂ ṽj∂xl

    )T= 0 t ≥ 0, x ∈ ∂�, (5)

    and

    ũi (s, x) = ψui (s, x) , ṽj (s, x) = ψvj (s, x) , (s, x) ∈ (−∞, 0] × �, (6)

    where ψ =(

    ψũψṽ

    )=

    (ψũ1, ...,ψũm,ψṽ1, ...,ψṽn

    )T ∈ C.Definition 1. Drive-response systems (1) and (4) are said to be globally exponentially

    synchronized, if there are control inputs s(t,x), ϑ(t,x), and r ≥ 2, further there existconstants a > 0 and b ≥ 1 such that∥∥u (t, x) − ũ (t, x)∥∥ + ∥∥v (t, x) − ṽ (t, x)∥∥

    ≤ βe−2αt (‖ϕu (s, x) − ψũ (s, x)‖ + ‖ϕv (s, x) − ψṽ (s, x)‖), for all t ≥ 0,

    in which∥∥u (t, x) − ũ (t, x)∥∥ = ∫

    m∑i=1

    ∣∣ui (t, x) − ũi (t, x)∣∣rdx,∥∥v (t, x) − ṽ (t, x)∥∥ = ∫

    n∑j=1

    ∣∣vj (t, x) − ṽj (t, x)∣∣rdx, r ≥ 2, and (u(t,x), v(t,x)) and(ũ (t, x) , ṽ (t, x)

    )are the solutions of drive-response systems (1) and (4) satisfying

    boundary conditions and initial conditions (2), (3) and (5), (6), respectively.

    Lemma 1. [21] (Poincaré integral inequality). Let Ω be a bounded domain of ℝm

    with a smooth boundary ∂Ω of class C2 by Ω. u(x) is a real-valued function belonging

    to H10 (�) and∂u (x)

    ∂n̄|∂� = 0. Then

    ∫�

    |u (x)|2dx ≤ 1λ1

    ∫�

    |∇u (x)|2dx,

    which l1 is the lowest positive eigenvalue of the Neumann boundary problem⎧⎨⎩

    −�ϕ (x) = λ1ϕ (x) , x ∈ �,∂u (x)

    ∂n̄|∂� = 0, x ∈ ∂�. (7)

    3. Main resultsFrom the definition of synchronization, we can define the synchronization error signal

    ei (t, x) = ui (t, x) − ũi (t, x) ,ωj (t, x) = vj (t, x) − ṽj (t, x), e(t,x) = (e1(t,x),...,em(t,x))T, andω(t,x) = (ω1(t,x),..., ωn(t,x))

    T . Thus, error dynamics between systems (1) and (4) can be

    expressed by

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 4 of 14

  • ∂ei (t, x)∂t

    =l∑

    k=1

    ∂xk

    (Dik

    ∂ei (t, x)∂xk

    )− p̃i (ei (t, x)) +

    n∑j=1

    bjif̃j(ωj (t, x)

    )

    +n∑j=1

    b̃ji f̃j(ωj

    (t − θji (t) , x

    ))+

    n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) f̃j(ωj (s, x)

    )ds − σi (t, x) ,

    ∂ωj (t, x)∂t

    =l∑

    k=1

    ∂xk

    (D∗jk

    ∂ωj (t, x)∂xk

    )− q̃j

    (ωj (t, x)

    )+

    m∑i=1

    (dijg̃i (ei (t, x))

    )

    +m∑i=1

    (d̃ijg̃i

    (ei

    (t − τij (t) , x

    )))+

    m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) g̃i (ei (s, x)) ds − ϑj (t, x) ,

    (8)

    where f̃j(ωj (t, x)

    )= fj

    (vj (t, x)

    ) − fj (ṽj (t, x)) , g̃i (ei (t, x)) = gi (ui (t, x)) − gi (ũi (t, x)),p̃i (ei (t, x)) = pi (ui (t, x)) − pi

    (ũi (t, x)

    ), q̃j

    (ωj (t, x)

    )= qj

    (vj (t, x)

    ) − qj (ṽj (t, x)).The control inputs strategy with state feedback are designed as follows:

    σi (t, x) =m∑k=1

    μikek (t, x) ,ϑj (t, x) =n∑

    k=1

    ρjkωk (t, x) , i = 1, 2, ...,m, j = 1, 2, ...,n.

    that is,

    σ (t, x) = μe (t, x) ,ϑ (t, x) = ρω (t, x) , (9)

    where μ = (μik)m×m and ρ =(ρjk

    )n×n are the controller gain matrices.

    The global exponential synchronization of systems (1) and (4) can be solved if the

    controller matrices μ and r are suitably designed. We have the following result.Theorem 1. Under the assumptions (A1)-(A4), drive-response systems (1) and (4)

    are in global exponential synchronization, if there exist wi > 0(i = 1,2,..., n+m), r ≥ 2,

    gij > 0, bji > 0 such that the controller gain matrices μ and r in (9) satisfy

    wi

    ⎛⎜⎝−rnar−1i Diλ1 − rnari − rnμiiar−1i + 2 (r − 1)

    n∑j=1

    ari + (r − 1)n∑j=1

    ariβ−

    rr − 1

    ji + (r − 1)m∑

    k=1,i�=kari

    ⎞⎟⎠

    +n∑j=1

    wm+jmr(∣∣dij∣∣r(Lgi )r + ∣∣∣d̃ij∣∣∣r eτ1 − μτ

    (Lgi

    )r+∣∣∣d̄ij∣∣∣rγ rij(Lgi )r) + nr

    m∑k=1,i�=k

    |μki|rwk < 0

    and

    wm+j

    ⎛⎜⎝−rmcr−1j D∗j λ1 − rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj + (r − 1)

    m∑i=1

    crj γ−

    rr − 1

    ij

    ⎞⎟⎠

    +m∑i=1

    winr(∣∣bji∣∣r(Lfj )r + ∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj)r) +mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m < 0,(10)

    in which i = 1, 2, ..., m, j = 1, 2,..., n, Lfj and Lgi are Lipschitz constants,

    Di = min1≤k≤l

    Dik,D∗j = min1≤k≤l

    D∗jk,l1 is the lowest positive eigenvalue of problem (7).

    Proof. If (10) holds, we can always choose a positive number δ > 0 (may be very

    small) such that

    wi

    ⎛⎜⎝−rnar−1i Diλ1 − rnari − rnμiiar−1i + 2 (r − 1)

    n∑j=1

    ari + (r − 1)n∑j=1

    ariβ−

    rr − 1

    ji + (r − 1)m∑

    k=1,i�=kari

    ⎞⎟⎠

    +n∑j=1

    wm+jmr(∣∣dij∣∣r(Lgi )r + ∣∣∣d̃ij∣∣∣r eτ1 − μτ

    (Lgi

    )r+∣∣∣d̄ij∣∣∣rγ rij(Lgi )r) + nr

    m∑k=1,i�=k

    |μki|rwk + δ < 0

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 5 of 14

  • and

    wm+j

    ⎛⎜⎝−rmcr−1j D∗j λ1 − rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj + (r − 1)

    m∑i=1

    crj γ−

    rr − 1

    ij

    ⎞⎟⎠

    +m∑i=1

    winr

    ⎛⎝∣∣bji∣∣r(Lfj )r + ∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj )r) +mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m + δ < 0,(11)

    where i = 1, 2,..., m, j = 1, 2,..., n.

    Let us consider functions

    Fi(x∗i

    )= wi

    [−rnar−1i Diλ1 − rnari − rnμiiar−1i + 2 (r − 1)n∑j=1

    ari + (r − 1)m∑

    k=1,i�=kari

    + (r − 1)n∑j=1

    ariβ−

    rr − 1

    ji

    ∫ +∞0

    kji (s) ds + 2x∗i nar−1i

    ⎤⎥⎦ + n∑

    j=1

    wm+jmr(∣∣dij∣∣r(Lgi )r

    +∣∣∣d̃ij∣∣∣r eτ1 − μτ

    (Lgi

    )r+∣∣∣d̄ij∣∣∣rγ rij(Lgi )r

    ∫ +∞0

    e2x∗i sk̄ij (s) ds

    )+ nr

    m∑k=1,i�=k

    |μki|rwk

    and

    Gj(y∗j

    )= wm+j

    [−rmcr−1j D∗j λ1 − rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj

    + (r − 1)m∑i=1

    crjγ−

    r

    r − 1ij

    ∫ +∞0

    k̄ij (s) ds + 2y∗j mcr−1j

    ⎤⎥⎦ + m∑

    i=1

    winr(∣∣bji∣∣r(Lfj )r

    +∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj )r

    ∫ +∞0

    e2y∗j skji (s) ds

    )+mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m,

    (12)

    where x∗i , y∗j ∈ [0, +∞) ,i = 1, 2, ..., m, j = 1, 2, ..., n.

    From (12) and (A4), we derive

    Fi(0) < -δ < 0, Gj(0) < -δ

  • and

    Gj(νj)= wm+j

    (−rmcr−1j D∗j λ1 − rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj

    + (r − 1)m∑i=1

    crjγ−

    rr − 1

    ij

    ∫ +∞0

    k̄ij (s) ds +2νjmcr−1j

    )+

    m∑i=1

    winr(∣∣bji∣∣r(Lfj )r

    +∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj )r

    ∫ +∞0

    e2νj skji (s) ds)+mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m = 0.(13)

    By using α = min1≤i≤m,1≤j≤n

    {εi, νj

    }, obviously, we get

    Fi (α) = wi(−rnar−1i Diλ1 − rnari − rnμiiar−1i + 2 (r − 1)

    n∑j=1

    ari + (r − 1)m∑

    k=1,i�=kari

    + (r − 1)n∑j=1

    ariβ−

    rr − 1

    ji

    ∫ +∞0

    kji (s) ds + 2αnar−1i ) +

    n∑j=1

    wm+jmr(∣∣dij∣∣r(Lgi )r

    +∣∣∣d̃ij∣∣∣r eτ1 − μτ

    (Lgi

    )r+∣∣∣d̄ij∣∣∣rγ rij(Lgi )r

    ∫ +∞0

    e2αsk̄ij (s) ds)+ nr

    m∑k=1,i�=k

    |μki|rwk ≤ 0

    and

    Gj (α) = wm+j(−rmcr−1j D∗j λ1 − rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj

    + (r − 1)m∑i=1

    crj γ−

    rr − 1

    ij

    ∫ +∞0

    k̄ij (s) ds +2αmcr−1j

    )+

    m∑i=1

    winr(∣∣bji∣∣r(Lfj )r

    +∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj)r

    ∫ +∞0

    e2αskji (s) ds)+mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m ≤ 0.(14)

    Multiplying both sides of the first equation of (8) by ei (t,x) and integrating over Ω yields

    12ddt

    ∫�

    ei (t, x)2dx =∫

    l∑k=1

    ei (t, x)∂

    ∂xk

    (Dik

    ∂ei (t, x)∂xk

    )dx − p′ i (ξi)

    ∫�

    ei(t, x)2dx

    +∫

    n∑j=1

    bjiei (t, x) f̃j(ωj (t, x)

    )dx +

    n∑j=1

    ∫�

    b̃jiei (t, x) f̃j(ωj

    (t − θji (t) , x

    ))dx

    +n∑j=1

    ∫�

    b̄jiei (t, x)∫ t

    −∞kji (t − s) f̃j

    (ωj (s, x)

    )dsdx −

    ∫�

    m∑k=1

    ei (t, x) μikek (t, x) dx.

    (15)

    It is easy to calculate by the Neumann boundary conditions (2) that

    ∫�

    l∑k=1

    ei (t, x)∂

    ∂xk

    (Dik

    ∂ei (t, x)∂xk

    )dx =

    ∫�

    l∑k=1

    ei (t, x)∇(Dik

    ∂ei (t, x)∂xk

    )dx

    =∫

    ∂�

    l∑k=1

    ei (t, x)Dik∂ei (t, x)

    ∂xkdx −

    ∫�

    l∑k=1

    Dik

    (∂ei (t, x)

    ∂xk

    )2dx = −

    l∑k=1

    ∫�

    Dik

    (∂ei (t, x)

    ∂xk

    )2dx

    (16)

    Moreover, from Lemma 1, we can derive

    −l∑

    k=1

    ∫�

    Dik

    (∂ei (t, x)

    ∂xk

    )2dx ≤ −

    l∑k=1

    ∫�

    Di

    (∂ei (t, x)

    ∂xk

    )2dx ≤ −Diλ1 ‖ei (t, x)‖22 . (17)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 7 of 14

  • From (13)-(17), (A2), and (A3), we obtain that

    ddt

    ∫�

    |ei (t, x)|2dx ≤ −2Diλ1∫

    |ei (t, x)|2dx − 2ai∫

    |ei (t, x)|2dx

    +2∫

    n∑j=1

    ∣∣bji∣∣ |ei (t, x)| Lfj ∣∣ωj (t, x)∣∣dx + 2n∑j=1

    ∫�

    ∣∣∣b̃ji∣∣∣ |ei (t, x)| ∣∣∣f̃j (ωj (t − θji (t) , x))∣∣∣ dx+2

    n∑j=1

    ∫�

    ∣∣∣b̄ji∣∣∣∫ t

    −∞kji (t − s) |ei (t, x)|

    ∣∣∣f̃j (ωj (s, x))∣∣∣ dsdx − 2∫

    m∑k=1

    |ei (t, x)|μik |ek (t, x)| dx.

    (18)

    Multiplying both sides of the second equation of (8) by ωj (t,x), similarly, we also have

    ddt

    ∫�

    ∣∣ωj (t, x)∣∣2dx ≤ −2D∗j λ1∫�

    ∣∣ωj (t, x)∣∣2dx − 2cj∫

    ∣∣ωj (t, x)∣∣2dx+2

    ∫�

    m∑i=1

    ∣∣dij∣∣ Lgi |ei (t, x)| ∣∣ωj (t, x)∣∣dx + 2m∑i=1

    ∫�

    ∣∣∣d̃ij∣∣∣ ∣∣g̃i (ei (t − τij (t) , x))∣∣ ∣∣ωj (t, x)∣∣ dx+2

    m∑i=1

    ∫�

    ∣∣∣d̄ij∣∣∣∫ t

    −∞k̄ij (t − s)

    ∣∣g̃i (ei (s, x))∣∣ ∣∣ωj (t, x)∣∣ dsdx − 2∫

    n∑k=1

    ρjk |ωk (t, x)|∣∣ωj (t, x)∣∣dx.

    (19)

    Consider the following Lyapunov functional

    V (t) =∫

    m∑i=1

    wi[nar−1i |ei (t, x)|re2αt +

    n∑j=1

    ∣∣∣b̃ji∣∣∣rnr eθ1 − μθ∫ tt−θji(t)

    e2αξ∣∣∣f̃j (ωj (ξ , x))∣∣∣rdξ

    +n∑j=1

    ∣∣∣b̄ji∣∣∣rnrβ rji∫ +∞0

    kji (s)∫ tt−s

    e2α(s+ξ )∣∣∣f̃j (ωj (ξ , x))∣∣∣rdξds

    ⎤⎦ dx

    +∫

    n∑j=1

    wm+j[mcr−1j

    ∣∣ωj (t, x)∣∣re2αt + m∑i=1

    ∣∣∣d̃ij∣∣∣rmr eτ1 − μτ∫ tt−τij(t)

    e2αξ∣∣g̃i (ei (ξ , x))∣∣rdξ

    +m∑i=1

    ∣∣∣d̄ij∣∣∣rmrγ rij∫ +∞0

    k̄ij (s)∫ tt−s

    e2α(s+ξ )∣∣g̃i (ei (ξ , x))∣∣rdξds

    ]dx.

    (20)

    Its upper Dini-derivative along the solution to system (8) can be calculated as

    D+V (t) ≤∫

    m∑i=1

    wi

    [rnar−1i |ei (t, x)|r−1

    ∂ |ei (t, x)|∂t

    e2αt + 2αe2αtnar−1i |ei (t, x)|r

    +e2αtn∑j=1

    ∣∣∣b̃ji∣∣∣rnr eθ1 − μθ∣∣∣f̃j (ωj (t, x))∣∣∣r + e2αt n∑

    j=1

    ∣∣∣b̄ji∣∣∣rnrβ rji∫ +∞0

    e2αskji (s)∣∣∣f̃j (ωj (t, x))∣∣∣rds

    −n∑j=1

    ∣∣∣b̃ji∣∣∣rnr eθ1 − μθ(1 − θ̇ji (t)

    )e2α(t−θji(t))

    ∣∣∣f̃j (ωj (t − θji (t) , x))∣∣∣r

    −e2αtn∑j=1

    ∣∣∣b̄ji∣∣∣rnrβ rji∫ +∞0

    kji (s)∣∣∣f̃j (ωj (t − s, x))∣∣∣rds

    ⎤⎦ dx

    +∫

    n∑j=1

    wm+j

    [rmcr−1j

    ∣∣ωj (t, x)∣∣r−1 ∂∣∣ωj (t, x)∣∣

    ∂te2αt + 2αe2αtmcr−1j

    ∣∣ωj (t, x)∣∣r

    +e2αtm∑i=1

    ∣∣∣d̃ij∣∣∣rmr eτ1 − μτ∣∣g̃i (ei (t, x))∣∣r

    −m∑i=1

    ∣∣∣d̃ij∣∣∣rmr eτ1 − μτ e2α(t−τij(t))(1 − τ̇ij (t)

    )∣∣g̃i (ei (t − τij (t) , x))∣∣r

    +e2αtm∑i=1

    ∣∣∣d̄ij∣∣∣rmrγ rij∫ +∞0

    e2αsk̄ij (s)∣∣g̃i (ei (t, x))∣∣rds

    −e2αtm∑i=1

    ∣∣∣d̄ij∣∣∣rmrγ rij∫ +∞0

    k̄ij (s)∣∣g̃i (ei (t − s, x))∣∣rds

    ]dx

    (21)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 8 of 14

  • From (21) and Young inequality, we can conclude

    D+V (t) ≤∫

    e2αtm∑i=1

    [wi

    (−rnar−1i Diλ1 − rnari + 2 (r − 1)n∑j=1

    ari + 2αnar−1i + (r − 1)

    m∑k=1,i�=k

    ari

    −rnμiiar−1i + (r − 1)n∑j=1

    ariβ−

    rr − 1

    ji

    ∫ t−∞

    kji (t − s) ds

    ⎞⎟⎠ + n∑

    j=1

    wm+jmr(∣∣dij∣∣r(Lgi )r

    +∣∣∣d̃ij∣∣∣r eτ1 − μτ

    (Lgi

    )r+∣∣∣d̄ij∣∣∣rγ rij

    ∫ +∞0

    e2αsk̄ij (s)(Lgi

    )rds

    )+ nr

    m∑k=1,i�=k

    |μki|rwk⎤⎦ |ei (t, x)|rdx

    +∫

    e2αtn∑j=1

    [wm+j

    (−rmcr−1j D∗j λ1 − rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj

    + (r − 1)m∑i=1

    crj γ−

    rr − 1

    ij

    ∫ t−∞

    k̄ij (t − s) ds +2αmcr−1j)+

    m∑i=1

    winr(∣∣bji∣∣r(Lfj )r

    +∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj )r

    ∫ +∞0

    e2αskji (s) ds)+mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m⎤⎦ ∣∣ωj (t, x)∣∣rdx

    (22)

    From (10), we can conclude

    D+V (t) ≤ 0, and so V (t) ≤ V (0) , t ≥ 0 (23)

    Since

    V (0) =∫

    m∑i=1

    wi[nar−1i |ei (0, x)|r

    +n∑j=1

    ∣∣∣b̃ji∣∣∣rnr eθ1 − μθ∫ 0

    −θji(t)

    ∣∣∣f̃j (ωj (ξ , x))∣∣∣rdξ

    +n∑j=1

    ∣∣∣b̄ji∣∣∣rnrβ rji∫ +∞0

    kji (s)∫ 0

    −se2α(s+ξ )

    ∣∣∣f̃j (ωj (ξ , x))∣∣∣rdξds⎤⎦ dx

    +∫

    n∑j=1

    wm+j[mcr−1j

    ∣∣ωj (0, x)∣∣r + m∑i=1

    ∣∣∣d̃ij∣∣∣rmr eτ1 − μτ∫ 0

    −τij(t)

    ∣∣g̃i (ei (ξ , x))∣∣rdξ+

    m∑i=1

    ∣∣∣d̄ij∣∣∣rmrγ rij∫ +∞0

    k̄ij (s)∫ 0

    −se2α(s+ξ )

    ∣∣g̃i (ei (ξ , x))∣∣rdξds]dx

    ≤{max1≤i≤m

    {wi} + max1≤j≤n

    {wm+j

    }max1≤j≤n

    [m∑i=1

    ∣∣∣d̄ij∣∣∣rmr(Lgi )rγ rij∫ +∞0

    k̄ij (s) se2αsds

    ]

    + max1≤j≤n

    {wm+j

    }max1≤j≤n

    [m∑i=1

    ∣∣∣d̃ij∣∣∣r(Lgi )rmr eτ τ1 − μτ]}

    ‖ϕu (s, x) − ψu (s, x)‖r

    +{max1≤j≤n

    {wm+j

    }+ max

    1≤i≤m{wi} max

    1≤i≤m

    ⎡⎣ n∑

    j=1

    ∣∣∣b̄ji∣∣∣rnr(Lfj )rβ rji∫ +∞0

    se2αskji (s)ds

    ⎤⎦

    + max1≤i≤m

    {wi} max1≤i≤m

    ⎡⎣ n∑

    j=1

    ∣∣∣b̃ji∣∣∣rnr(Lgj )r eθ θ1 − μθ⎤⎦⎫⎬⎭ ‖ϕv (s, x) − ψv (s, x)‖r

    (24)

    Noting that

    e2αt(

    min1≤i≤m+n

    wi

    )(‖e (t, x)‖ + ‖ω (t, x)‖) ≤ V (t) , t ≥ 0. (25)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 9 of 14

  • Let

    β = max{max1≤i≤m

    {wi}+ max1≤j≤n

    {wm+j

    }max1≤j≤n

    [m∑i=1

    ∣∣∣d̄ij∣∣∣rmr(Lgi )rγ rij∫ +∞0

    k̄ij (s) se2αsds

    ]

    + max1≤j≤n

    {wm+j

    }max1≤j≤n

    [m∑i=1

    ∣∣∣d̃ij∣∣∣r(Lgi )rmr eτ τ1 − μτ],

    max1≤j≤n

    {wm+j

    }+ max

    1≤i≤m{wi} max

    1≤i≤m

    ⎡⎣ n∑

    j=1

    ∣∣∣b̄ji∣∣∣rnr(Lfj )rβ rji∫ +∞0

    se2αskji (s)ds

    ⎤⎦

    + max1≤i≤m

    {wi} max1≤i≤m

    [n∑j=1

    ∣∣∣b̃ji∣∣∣rnr(Lgj )r eθ θ1 − μθ]}/

    min1≤i≤m+n

    {wi}.

    Clearly, b ≥ 1.It follows that

    ‖e (t, x)‖ + ‖ω (t, x)‖ ≤ βe−2αt (‖ϕu (s, x) − ψũ (s, x)‖ + ‖ϕv (s, x) − ψṽ (s, x)‖) . (26)

    for any t ≥ 0 where b ≥ 1 is a constant. This implies that drive-response systems (1)and (4) are globally exponentially synchronized. This completes the proof of Theorem 1.

    Remark 1. In Theorem 1, the Poincaré integral inequality is used firstly. This is a

    very important step. Thus, the derived sufficient condition includes diffusion terms.

    We note that, in the proof in the previous articles [24-26], a negative integral term

    with gradient is left out in their deduction. This leads to those criteria that are irrele-

    vant to the diffusion term. Therefore, Theorem 1 is essentially new and more effective-

    ness than those obtained.

    Remark 2. It is noted that we construct a novel Lyapunov functional here as defined

    in (20) since the considered model contains time-varying and distributed delays and

    reaction-diffusion terms. We can see that the results and research method obtained in

    this article can also be extended to many other types of NNs with reaction-diffusion

    terms, e.g., the cellular NNs, cohen-grossberg NNs, etc.

    Remark 3. In our result, the effects of the reaction-diffusion terms on the synchroni-

    zation are considered. Furthermore, we note a very interesting fact, that is, as long as

    diffusion coefficients in the system are large enough, then condition (10) can always

    satisfy. This shows that a large enough diffusion coefficient may always make the sys-

    tem globally exponentially synchronous.

    Some famous NN models are a special case of model (1). In system (1), ignoring the role

    of reaction-diffusion, then system (1) will degenerate into the following delayed BAM NNs

    u̇i = −pi (ui (t)) +n∑j=1

    bjifj(vj (t)

    )+

    n∑j=1

    b̃jifj(vj

    (t − θji (t)

    ))

    +n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(vj (s)

    )ds + Ii (t) ,

    v̇j = −qj(vj (t)

    )+

    m∑i=1

    dijgi (ui (t)) +m∑i=1

    d̃ijgi(ui

    (t − τij (t)

    ))

    +m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi (ui (s)) ds + Jj (t)

    (27)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 10 of 14

  • and the corresponding response system (4) will become the following form

    ˙̃ui (t) = −pi(ũi (t)

    )+

    n∑j=1

    bjifj(ṽj (t)

    )+

    n∑j=1

    b̃jifj(ṽj

    (t − θji (t)

    ))

    +n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(ṽj (s)

    )ds + Ii (t) + σi (t) ,

    ˙̃vj (t) = −qj(ṽj (t)

    )+

    m∑i=1

    dijgi(ũi (t)

    )+

    m∑i=1

    d̃ijgi(ũi

    (t − τij (t)

    ))

    +m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi(ũi (s)

    )ds + Jj (t) + ϑj (t) .

    (28)

    Define the synchronization error signal ei (t) = ui (t) − ũi (t) ,ωj (t) = vj (t) − ṽj (t),then the error dynamics between systems (27) and (28) can be expressed by

    ėi (t) = −p̃i (ei (t)) +n∑j=1

    bjif̃j(ωj (t)

    )+

    n∑j=1

    b̃ji f̃j(ωj

    (t − θji (t)

    ))

    +n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) f̃j(ωj (s)

    )ds − σi (t) ,

    ω̇j (t) = −q̃j(ωj (t)

    )+

    m∑i=1

    dijg̃i (ei (t)) +m∑i=1

    d̃ijg̃i(ei

    (t − τij (t)

    ))

    +m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) g̃i (ei (s)) ds − ϑj (t) ,

    (29)

    We consider the following control inputs strategy

    σi (t) =m∑k=1

    μikek (t) ,ϑj (t) =n∑

    k=1

    ρjkωk (t) , i = 1, 2, ...,m, j = 1, 2, ..., n. (30)

    As a consequence of Theorem 1, we have the following result:

    Corollary 1. Under the assumptions (A1)-(A4), drive-response systems (27) and (28)

    are in global exponential synchronization, if there exist wi > 0 (i = 1, 2,...,n+m), r ≥ 2,

    gij > 0, bji > 0 such that the controller gain matrices μ and r in (9) satisfy

    wi

    ⎛⎜⎝−rnari − rnμiiar−1i + 2 (r − 1)

    n∑j=1

    ari + (r − 1)n∑j=1

    ariβ−

    rr − 1

    ji + (r − 1)m∑

    k=1,i�=kari

    ⎞⎟⎠

    +n∑j=1

    wm+jmr(∣∣dij∣∣r(Lgi )r + ∣∣∣d̃ij∣∣∣r eτ1 − μτ

    (Lgi

    )r+∣∣∣d̄ij∣∣∣rγ rij(Lgi )r) + nr

    m∑k=1,i�=k

    |μki|rwk < 0

    and

    wm+j

    ⎛⎜⎝−rmcrj − rmρjjcr−1j + 2 (r − 1)

    m∑i=1

    crj + (r − 1)n∑

    k=1,j�=kcrj + (r − 1)

    m∑i=1

    crj γ−

    rr − 1

    ij

    ⎞⎟⎠

    +m∑i=1

    winr(∣∣bji∣∣r(Lfj )r + ∣∣∣b̃ji∣∣∣r eθ1 − μθ

    (Lfj

    )r+∣∣∣b̄ji∣∣∣rβ rji(Lfj)r) +mr

    n∑k=1,j�=k

    ∣∣ρkj∣∣rwk+m < 0,(31)

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 11 of 14

  • in which i = 1, 2,..., m, j = 1, 2,..., n, Lfj and Lgi are Lipschitz constants.

    4. Illustration exampleTo illustrate the effectiveness of our criterion, we give the following example.

    Example 1. Consider the following system on

    ∂ui∂t

    =∂2ui∂x2

    − aiui (t, x) +n∑j=1

    bjifj(vj (t, x)

    )+

    n∑j=1

    b̃jifj(vj

    (t − θji (t) , x

    ))

    +n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(vj (s, x)

    )ds + Ii,

    ∂vj∂t

    =∂2vj∂x2

    − cjvj (t, x) +m∑i=1

    dijgi (ui (t, x)) +m∑i=1

    d̃ijgi(ui

    (t − τij (t) , x

    ))

    +m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi (ui (s, x)) ds + Jj,

    ∂ui∂t

    =∂2ui∂x2

    − aiui (t, x) +n∑j=1

    bjifj(vj (t, x)

    )+

    n∑j=1

    b̃jifj(vj

    (t − θji (t) , x

    ))

    +n∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(vj (s, x)

    )ds + Ii,

    ∂vj∂t

    =∂2vj∂x2

    − cjvj (t, x) +m∑i=1

    dijgi (ui (t, x)) +m∑i=1

    d̃ijgi(ui

    (t − τij (t) , x

    ))

    +m∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi (ui (s, x)) ds + Jj,

    (32)

    and

    ∂ũi (t, x)∂t

    =∂2ũi (t, x)

    ∂x2− aiũi (t, x) +

    2∑j=1

    bjifj(ṽj (t, x)

    )+

    2∑j=1

    b̃jifj(ṽj

    (t − θji (t) , x

    ))

    +2∑j=1

    b̄ji

    ∫ t−∞

    kji (t − s) fj(ṽj (s, x)

    )ds + Ii (t) +

    2∑k=1

    μikek (t, x) ,

    ∂ ṽj (t, x)

    ∂t=

    ∂2ṽj (t, x)

    ∂x2− cjṽj (t, x) +

    2∑i=1

    dijgi(ũi (t, x)

    )+

    2∑i=1

    d̃ijgi(ũi

    (t − τij (t) , x

    ))

    +2∑i=1

    d̄ij

    ∫ t−∞

    k̄ij (t − s) gi(ũi (s, x)

    )ds + Jj (t) +

    2∑k=1

    ρjkωk (t, x) ,

    (33)

    where n = m = r = 2, kji (t) = k̄ij (t) = te−t , fj (η) = gi (η) =12

    (|η + 1| + |η − 1|) ,

    Lfj = Lf̄j = L

    gi = L

    ḡi = 1, i, j = 1, 2. λ1 = 5, τ = θ = ln 2. a1 = 1, a2 = 2, c1 = 2, c2 = 1,

    μτ = μθ = 0.2, d11 = 0.5, d12 = 1, d21 = 0.5, d22 = 0.2, d̄11 = 0.2, d̄12 = 0.6, d̄21 = 0.5,

    d̄22 = 0.8, b11 = 0.5, b12 = 0.6, b21 = 1, b22 = −0.8, b̄11 = −1, b̄12 = 0.2, b̄21 = 0.5, b̄22 = 0.4.

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 12 of 14

  • μ11 = 0.5,μ12 = 0.3,μ21 = 0.7,μ22 = 0.1, ρ11 = 0.6,ρ12 = 2,ρ21 = 1,ρ22 = 0.4.

    By simple calculation with w1 = w2 = w3 = w4 = 1, b11 = b12 = b21 = b22 = 1,and g11 = g12 = g21 = g22 = 1, we get

    −rnar−11 λ1 − rnar1 − rnμ11ar−11 + 2 (r − 1)2∑j=1

    ar1 + (r − 1)2∑j=1

    ar1β−

    rr − 1

    j1 + (r − 1) ar1

    +2∑j=1

    mr(∣∣d1j∣∣r(Lg1)r + ∣∣∣d̄1j∣∣∣rγ r1j(Lḡ1)r

    ⎞⎠ + nr|μ12|r = −12.04 < 0,

    −rnar−12 λ1 − rnar2 − rnμ22ar−12 + 2 (r − 1)2∑j=1

    ar2 + (r − 1)2∑j=1

    ar2β−

    rr − 1

    j2 + (r − 1) ar2

    +2∑j=1

    mr(∣∣d2j∣∣r(Lg2)r +∣∣∣d̄2j∣∣∣rγ r2j(Lḡ2)r) + nr|μ21|r = −22.12 < 0,

    −rmcr−11 λ1 − rmcr1 − rmρ11cr−11 + 2 (r − 1)2∑i=1

    cr1 + (r − 1) cr1 + (r − 1)2∑i=1

    cr1γ−

    r

    r − 1i1

    +2∑i=1

    nr(|b1i|r

    (Lf1

    )r+∣∣∣b̄1i∣∣∣rβ r1i(Lf̄1)r

    )+mr|ρ12|r = −9.8 < 0

    and

    −rmcr−12 λ1 − rmcr2 − rmρ22cr−12 + 2 (r − 1)2∑i=1

    cr2 + (r − 1) cr2 + (r − 1)2∑i=1

    cr2γ−

    rr − 1

    i2

    +2∑i=1

    nr(|b2i|r

    (Lf2

    )r+∣∣∣b̄2i∣∣∣rβ r2i(Lf̄2)r

    )+mr|ρ21|r = −9.4 < 0,

    Hence, it follows from Theorem 1 that (32) and (33) are globally exponentially

    synchronized.

    5. ConclusionsIn this article, global exponential synchronization has been considered for a class of

    BAM NNs with time-varying and distributed delays and reaction-diffusion terms. We

    have established a new sufficient condition which includes the diffusion coefficients by

    constructing the suitable Lyapunov functional, introducing many real parameters and

    applying inequality techniques. From condition (10) in Theorem 1, we see that diffu-

    sion coefficients directly affect the synchronization behavior of the delayed BAM NNs

    with reaction-diffusion terms. In comparison with previous literature, diffusion effects

    are taken into account in our models. A numerical example has been given to show

    the effectiveness of the obtained results.

    AcknowledgementsThis study was partially supported by the National Natural Science Foundation of China under Grant No. 60974139and partially supported by the Fundamental Research Funds for the Central Universities under Grant No. 72103676,the Natural Science Foundation of Shannxi Province, China under Grant No. 2010JQ1013, and the Special researchprojects in Shannxi Province Department of Education under Grant No. 2010JK896.

    Author details1School of Science, Xidian University, Shaan Xi Xi’an 710071, P.R. China 2Institute of Maths and Applied Mathematics,Xianyang Normal University, Xianyang, ShaanXi 712000, P.R. China

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 13 of 14

  • Authors’ contributionsWZ designed and performed all the steps of proof in this research and also wrote the paper. JL participated in thedesign of the study and suggest many good ideas that made this paper possible and helped to draft the firstmanuscript. All authors read and approved the final manuscript.

    Competing interestsThe authors declare that they have no competing interests.

    Received: 25 October 2011 Accepted: 13 January 2012 Published: 13 January 2012

    References1. Aihara, K, Takabe, T, Toyoda, M: Chaotic neural networks. Phys Lett A. 144, 333–340 (1990). doi:10.1016/0375-9601(90)

    90136-C2. Kwok, T, Smith, K: Experimental analysis of chaotic neural network models for combinatorial optimization under a

    unifying framework. Neural Netw. 13, 731–744 (2000). doi:10.1016/S0893-6080(00)00047-23. Yu, W, Cao, J: Cryptography based on delayed chaotic neural networks. Phys Lett A. 356, 333–338 (2006). doi:10.1016/j.

    physleta.2006.03.0694. Cheng, C, Liao, T, Yan, J, Wang, CH: Exponential synchronization of a class of neural networks with time-varying delays.

    IEEE Trans Syst Man Cybern B. 36, 209–215 (2006)5. Kosko, B: Bi-directional associative memories. IEEE Trans Syst Man Cybern. 18(1):49–60 (1988). doi:10.1109/21.870546. Cao, J, Wang, L: Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Trans Neural

    Netw. 13(2):457–463 (2002). doi:10.1109/72.9914317. Liu, X, Martin, R, Wu, M: Global exponential stability of bidirectional associative memory neural networks with time

    delays. IEEE Trans Neural Netw. 19(2):397–407 (2008)8. Lou, X, Cui, B: Stochastic exponential stability for Markovian jumping BAM neural networks with time-varying delays.

    IEEE Trans Syst Man Cybern. 37, 713–719 (2007)9. Park, JH: A novel criterion for global asymptotic stability of BAM neural networks with time delays. Chaos Solitons

    Fractals. 29(2):446–453 (2006). doi:10.1016/j.chaos.2005.08.01810. Park, JH, Kwon, OM: Delay-dependent stability criterion for bidirectional associative memory neural networks with

    interval time-varying delays. Mod Phys Lett B. 23(1):35–46 (2009). doi:10.1142/S021798490901780711. Park, JH, Park, CH, Kwon, OM, Lee, SM: A new stability criterion for bidirectional associative memory neural networks of

    neutral-type. Appl Math Comput. 199(2):716–722 (2008). doi:10.1016/j.amc.2007.10.03212. Park, JH, Kwon, OM: On improved delay-dependent criterion for global stability of bidirectional associative memory

    neural networks with time-varying delays. Appl Math Comput. 199(2):435–446 (2008). doi:10.1016/j.amc.2007.10.00113. Zhu, QX, Cao, J: Exponential stability analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with

    mixed delays. Neurocomputing. 74, 3084–3091 (2011). doi:10.1016/j.neucom.2011.04.03014. Song, Q, Cao, J: Global exponential stability and existence of periodic solutions in BAM with delays and reaction-

    diffusion terms. Chaos Solitons Fractals. 23(2):421–430 (2005). doi:10.1016/j.chaos.2004.04.01115. Cui, B, Lou, X: Global asymptotic stability of BAM neural networks with distributed delays and reaction-diffusion terms.

    Chaos Solitons Fractals. 27(5):1347–1354 (2006). doi:10.1016/j.chaos.2005.04.11216. Hu, C, Jiang, HJ, Teng, ZD: Impulsive control and synchronization for delayed neural networks with reaction-diffusion

    terms. IEEE Trans Neural Netw. 21(1):67–81 (2010)17. Wang, Z, Zhang, H: Global asymptotic stability of reaction-diffusion Cohen-Grossberg neural network with continuously

    distributed delays. IEEE Trans Neural Netw. 21(1):39–49 (2010)18. Wang, L, Zhang, R, Wang, Y: Global exponential stability of reaction-diffusion cellular neural networks with S-type

    distributed time delays. Nonlinear Anal Real World Appl. 10(2):1101–1113 (2009). doi:10.1016/j.nonrwa.2007.12.00219. Balasubramaniam, P, Vidhya, C: Global asymptotic stability of stochastic BAM neural networks with distributed delays

    and reaction-diffusion terms. J Comput Appl Math. 234, 3458–3466 (2010). doi:10.1016/j.cam.2010.05.00720. Lu, J, Lu, L: Global exponential stability and periodicity of reaction-diffusion recurrent neural networks with distributed

    delays and Dirichlet boundary conditions. Chaos Solitons Fractals. 39(4):1538–1549 (2009). doi:10.1016/j.chaos.2007.06.040

    21. Song, Q, Zhao, Z, Li, YM: Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms. Phys Lett A. 335(2-3):213–225 (2005). doi:10.1016/j.physleta.2004.12.007

    22. Zhang, W, Li, J: Global exponential stability of reaction-diffusion neural networks with discrete and distributed time-varying delays. Chin Phys B. 20(3):030701 (2011). doi:10.1088/1674-1056/20/3/030701

    23. Liao, XX, Yang, SZ, Cheng, SJ, Fu, YL: Stability of generalized networks with reaction-diffusion terms. Sci China (Series F).44, 87–94 (2001). doi:10.1007/BF02884813

    24. Lou, X, Cui, B: Asymptotic synchronization of a class of neural networks with reaction-diffusion terms and time-varyingdelays. Comput Math Appl. 52, 897–904 (2006). doi:10.1016/j.camwa.2006.05.013

    25. Wang, Y, Cao, J: Synchronization of a class of delayed neural networks with reaction-diffusion terms. Phys. Lett A. 369,201–211 (2007). doi:10.1016/j.physleta.2007.04.079

    26. Sheng, L, Yang, H, Lou, X: Adaptive exponential synchronization of delayed neural networks with reaction-diffusionterms. Chaos Solitons Fractals. 40, 930–939 (2009). doi:10.1016/j.chaos.2007.08.047

    27. Wang, K, Teng, Z, Jiang, H: Global exponential synchronization in delayed reaction-diffusion cellular neural networkswith the Dirichlet boundary conditions. Math Comput Model. 52, 12–24 (2010). doi:10.1016/j.mcm.2009.05.038

    28. Temam, R: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York (1998)

    doi:10.1186/1687-2770-2012-2Cite this article as: Zhang and Li: Global exponential synchronization of delayed BAM neural networks withreaction-diffusion terms and the Neumann boundary conditions. Boundary Value Problems 2012 2012:2.

    Zhang and Li Boundary Value Problems 2012, 2012:2http://www.boundaryvalueproblems.com/content/2012/1/2

    Page 14 of 14

    http://www.ncbi.nlm.nih.gov/pubmed/11152205?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/11152205?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18244446?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18334360?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18334360?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19932996?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19932996?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19923046?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19923046?dopt=Abstract

    Abstract1. Introduction2. Model description and preliminaries3. Main results4. Illustration example5. ConclusionsAcknowledgementsAuthor detailsAuthors' contributionsCompeting interestsReferences