7
J. Viet. Env. 2018, 10(1):49-55 DOI: 10.13141/jve.vol10.no1.pp49-55 49 * Corresponding author E-mail: [email protected] http://dx.doi.org/10.13141/JVE/ ISSN: 2193-6471 RESEARCH ARTICLE Quantification of direct and indirect greenhouse gas emissions from rice field cultivation with different rice straw management practices – A study in the autumn - winter season in An Giang Province, Vietnam Phát thải khí nhà kính trực tiếp và gián tiếp từ sản xuất lúa theo các biện pháp quản lý rơm rạ khác nhau – Một nghiên cứu ở vụ Thu Đông ở tỉnh An Giang, Việt Nam NGO Thi Thanh Truc 1 *; HO Vu Khanh 2 ; TRAN Sy Nam 3 ; DUONG Van Chin 4 ; NGUYEN Van Cong 3 ; NGUYEN Van Hung 5 1 Department Environmental and Resource Economics, College of Economics, Can Tho University, Can Tho, Vietnam; 2 Faculty of Environment and Natural Resources, Kien Giang University, Kien Giang Province, Vietnam; 3 Department of Environmental Science, College of Environment and Natural Resources, Can Tho University, Can Tho, Vietnam; 4 Loc Troi Group, An Giang Province, Vietnam; 5 International Rice Research Institute, Los Baños, Philippines This study resulted in a comparative analysis of greenhouse gas emissions (GHGE) for rice production with different in- field rice straw management practices based on an experiment conducted in An Giang Province of Vietnam, during the autumn - winter season of 2016. Direct field GHGE was analyzed based on in-situ measurement and the total direct and indirect GHGE were estimated by applying the life cycle assessment using Ecoinvent3 database which is incorpo- rated in SIMAPRO software. The experiment was conducted based on a completely random design with three treat- ments and three replications. The three treatments are [T1] Incorporation of straw and stubbles treated with Tricho- derma; [T2] Incorporation of stubbles and removal of straw; and [T3] In-field burning straw. Closed chamber protocol and gas chromatography (SRI 8610C) was used to measure and analyse CH 4 and N 2 O. CH 4 emission rate was not signif- icantly different (p>0.05) among the three treatments during sampling dates except on the days 17 and 24 after sowing (DAS). N 2 O emission rate was not significantly different (p>0.05) either. However, there were high variations of N 2 O emission after the dates of urea applied. Direct field emissions of CH 4 ,N 2 O and CO2 equivalent (CO 2eq ) are not signifi- cantly different among the three treatments, but the amount of CO2eq per kg straw in T1 of incorporating rice straw treated with Trichoderma is significantly higher than in T3 of in-field burning straw. LCA based analysis resulted in total GHGE in the range of 1.93-2.46 kg CO 2 -eq kg -1 paddy produced consisting of 53-66% from direct soil emissions. Incor- poration of straw treated with Trichoderma did not indicate the improvement of paddy yield. However, the organic matter, N-NH 4 + , and N-NO 3 - of this treatment was higher than those of the other researched treatments. This research was just conducted in one crop season, however, the results have initial implications for the other crop seasons. Nghiên cứu này phân tích phát thải khí nhà kính từ sản xuất lúa theo các biện pháp quản lý rơm rạ khác nhau dựa vào thí nghiệm được thực hiện ở vụ Thu Đông năm 2016 tại tỉnh An Giang, Việt Nam. Lượng phát thải khí nhà kính từ đất đã được phân tích dựa vào kết quả đo đạt tại ruộng và tổng lượng phát thải khí nhà kính trực tiếp và gián tiếp được ước tính bằng phương pháp vòng đời sử dụng cơ sở dữ liệu Ecoinvent3 gắn kết với phần mềm SIMAPRO. Thí nghiệm được bố trí hoàn toàn ngẫu nhiên gồm 3 nghiệm thức và 3 lần lặp lại. Các nghiệm thức gồm [T1] vùi rơm và rạ với Trichoderma, [T2] lấy rơm ra khỏi ruộng và vùi rạ và [T3] đốt rơm. Kỹ thuật buồng kín (closed chamber protocol) và máy sắc ký khí (SRI8610C) được sử dụng để đo đạt và phân tích khí CH 4 và N 2 O. Tốc độ phát thải khí CH 4 không khác biệt giữa ba nghiệm thức, ngoại trừ kết quả ở lần lấy mẫu 17 và 24 ngày sau sạ. Tốc độ phát thải N 2 O cũng không có sự khác biệt giữa các nghiệm thức. Tuy nhiên, tốc độ phát thải biến động rất lớn sau các ngày bón phân đạm. Lượng phát thải trực tiếp từ ruộng của CH 4 ,N 2 O và CO 2 tương đương (CO 2 -eq) không có sự khác biệt giữa ba nghiệm thức, nhưng lượng CO 2 -eq/kg rơm ở nghiệm thức vùi rơm và rạ với Trichoderma (T1) cao hơn nghiệm thức đốt rơm (T3). Kết quả phân tích LCA cho thấy lượng phát thải khí nhà kính dao động trong khoảng 1,93 – 2,46 kg CO 2 -eq/kg lúa với 53 – 66% lượng phát thải trực tiếp từ trong đất. Vùi rơm rạ với Trichoderma chưa cải thiện được năng suất lúa. Tuy nhiên, phần trăm chất hữu cơ và hàm lượng đạm hữu dụng trong đất của nghiệm thức này cao hơn so với hai nghiệm thức còn lại của thí nghiệm. Nghiên cứu này chỉ mới được thực hiện một vụ, nhưng đã mang lại nhiều kết quả có thể ứng dụng cho các vụ sau. Keywords: GHGE, methane, nitrous oxide, straw management practices

RESEARCH ARTICLE Quantification of direct and indirect

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55DOI:10.13141/jve.vol10.no1.pp49-55

49

*CorrespondingauthorE-mail:[email protected]

http://dx.doi.org/10.13141/JVE/ISSN:2193-6471

R E S E A R C H A R T I C L E

Quantification of direct and indirect greenhouse gas emissions from rice field cultivation with different rice straw management practices – A study in the autumn - winter season in An Giang Province, Vietnam

Phát thải khí nhà kính trực tiếp và gián tiếp từ sản xuất lúa theo các biện pháp quản lý rơm rạ khác nhau – Một nghiên cứu ở vụ Thu Đông ở tỉnh An Giang, Việt Nam

NGO Th i T h anh T r u c 1 * ; HO Vu Khanh 2 ; T RAN S y Nam3 ; DUONG Van Ch i n 4 ; NGUYEN Van Cong 3 ; NGUYEN Van Hung 5 1DepartmentEnvironmentalandResourceEconomics,CollegeofEconomics,CanThoUniversity,CanTho,Vietnam;2FacultyofEnvironmentandNaturalResources,KienGiangUniversity,KienGiangProvince,Vietnam;3DepartmentofEnvironmentalScience,CollegeofEnvironmentandNaturalResources,CanThoUniversity,CanTho,Vietnam;4LocTroiGroup,AnGiangProvince,Vietnam;5InternationalRiceResearchInstitute,LosBaños,Philippines

Thisstudyresultedinacomparativeanalysisofgreenhousegasemissions(GHGE)forriceproductionwithdifferentin-fieldricestrawmanagementpracticesbasedonanexperimentconductedinAnGiangProvinceofVietnam,duringtheautumn-winterseasonof2016.DirectfieldGHGEwasanalyzedbasedonin-situmeasurementandthetotaldirectandindirectGHGEwereestimatedbyapplyingthelifecycleassessmentusingEcoinvent3databasewhichisincorpo-ratedinSIMAPROsoftware.Theexperimentwasconductedbasedonacompletelyrandomdesignwiththreetreat-mentsandthreereplications.Thethreetreatmentsare[T1]IncorporationofstrawandstubblestreatedwithTricho-derma;[T2]Incorporationofstubblesandremovalofstraw;and[T3]In-fieldburningstraw.Closedchamberprotocolandgaschromatography(SRI8610C)wasusedtomeasureandanalyseCH4andN2O.CH4emissionratewasnotsignif-icantlydifferent(p>0.05)amongthethreetreatmentsduringsamplingdatesexceptonthedays17and24aftersowing(DAS).N2Oemissionratewasnotsignificantlydifferent(p>0.05)either.However,therewerehighvariationsofN2Oemissionafterthedatesofureaapplied.DirectfieldemissionsofCH4,N2OandCO2equivalent(CO2eq)arenotsignifi-cantlydifferentamongthethreetreatments,buttheamountofCO2eqperkgstrawinT1ofincorporatingricestrawtreatedwithTrichodermaissignificantlyhigherthaninT3ofin-fieldburningstraw.LCAbasedanalysisresultedintotalGHGEintherangeof1.93-2.46kgCO2-eqkg

-1paddyproducedconsistingof53-66%fromdirectsoilemissions.Incor-porationofstrawtreatedwithTrichodermadidnotindicatetheimprovementofpaddyyield.However,theorganicmatter,N-NH4

+,andN-NO3-ofthistreatmentwashigherthanthoseoftheotherresearchedtreatments.Thisresearch

wasjustconductedinonecropseason,however,theresultshaveinitialimplicationsfortheothercropseasons.

NghiêncứunàyphântíchphátthảikhínhàkínhtừsảnxuấtlúatheocácbiệnphápquảnlýrơmrạkhácnhaudựavàothínghiệmđượcthựchiệnởvụThuĐôngnăm2016tạitỉnhAnGiang,ViệtNam.LượngphátthảikhínhàkínhtừđấtđãđượcphântíchdựavàokếtquảđođạttạiruộngvàtổnglượngphátthảikhínhàkínhtrựctiếpvàgiántiếpđượcướctínhbằngphươngphápvòngđờisửdụngcơsởdữliệuEcoinvent3gắnkếtvớiphầnmềmSIMAPRO.Thínghiệmđượcbốtríhoàntoànngẫunhiêngồm3nghiệmthứcvà3 lầnlặplại.Cácnghiệmthứcgồm[T1]vùirơmvàrạvớiTrichoderma,[T2]lấyrơmrakhỏiruộngvàvùirạvà[T3]đốtrơm.Kỹthuậtbuồngkín(closedchamberprotocol)vàmáysắckýkhí(SRI8610C)đượcsửdụngđểđođạtvàphântíchkhíCH4vàN2O.TốcđộphátthảikhíCH4khôngkhácbiệtgiữabanghiệmthức,ngoạitrừkếtquảởlầnlấymẫu17và24ngàysausạ.TốcđộphátthảiN2Ocũngkhôngcósựkhácbiệtgiữacácnghiệmthức.Tuynhiên,tốcđộphátthảibiếnđộngrấtlớnsaucácngàybónphânđạm.LượngphátthảitrựctiếptừruộngcủaCH4,N2OvàCO2tươngđương(CO2-eq)khôngcósựkhácbiệtgiữabanghiệmthức,nhưnglượngCO2-eq/kgrơmởnghiệmthứcvùirơmvàrạvớiTrichoderma(T1)caohơnnghiệmthứcđốtrơm(T3).KếtquảphântíchLCAchothấylượngphátthảikhínhàkínhdaođộngtrongkhoảng1,93–2,46kgCO2-eq/kglúavới53–66%lượngphátthảitrựctiếptừtrongđất.VùirơmrạvớiTrichodermachưacảithiệnđượcnăngsuấtlúa.Tuynhiên,phầntrămchấthữucơvàhàmlượngđạmhữudụngtrongđấtcủanghiệmthứcnàycaohơnsovớihainghiệmthứccònlạicủathínghiệm.Nghiêncứunàychỉmớiđượcthựchiệnmộtvụ,nhưngđãmanglạinhiềukếtquảcóthểứngdụngchocácvụsau.

Keywords: GHGE,methane,nitrousoxide,strawmanagementpractices

Page 2: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55

50

1. Introduction Lowlandricecultivationisoneoftheimportantsourcesofgreenhousegasemissionsinagriculture(Bhattacharyyaetal.,2012).AccordingtoVSC(2014),Vietnamemittedap-proximately46thousandtonsofCO2eqfromriceproduc-tion,whichaccountedfor50.5%oftotalGHGEfromagri-culturalactivities.Causesofgreenhousegasemissions inriceproductionareirrigatedricecultivation,over-fertiliza-tion, unsustainable straw and water management, andhigh density of sowing (Wassmann, 2000; Trinh et al.,2013;Tinetal.,2015).MekongDeltaproducesabout24–26milliontonsofricestrawannually(GSO,2016;Araietal.,2015).However,themostcommonpracticeofricestrawmanagementisopenburning(54–98%)andincorporatingfreshricestraw(7-26%)(Nametal.,2014;Trucetal.,2012).Only2–13%ofricestrawisusedtoproducestrawmushroom(Volvariellavovaraceae)andfeedforcattle.Burningricestrawispop-ular due to intensification, limit of straw utilization, andlackofregulationonburningstraw(Trucetal.,2012and2013).Openburningricestrawcausesairpollutionandlossofnu-trients while incorporating fresh straw and stubble re-leasesgreenhousegasemissions,aswellasorganicpoisontotheyoungpaddy(Gaddeetal.,2009;Gaoetal.,2003;NguyenQuocKhangandNgoNgocHung,2014).Inordertorecommendthebetterpracticeofricestrawmanage-ment, an experiment on in-situ rice straw practice hasbeen conducted to estimate direct and indirect green-housegasemissions.ThefirsttreatmentwasincorporatingricestrawandstubblewithTrichoderma.Trichodermaactsasanactivatortospeedupthedecompositionprocessin15–25days,reducingorganicpoisonwhenincorporatedwithfreshstraworstubbletothepaddyfield;andsupple-mentingorganicnutrientsaswell(Sonetal.,2008;TuyenandTan,2001).Thetwoothertreatmentsareincorporat-ingfreshstubbledirectlytothefield,andin-fieldburningofricestrawwhichisthemostpracticedricestrawman-agement in theMekong Delta (Nam et al., 2014). Afterquantifyingin-situgreenhousegasemission,thisstudyalsocalculatedthetotalgreenhousegasemissionbylifecycleassessment.

2. Materials and methodologies 2.1 Experiment set up and materials

Materials:RicecultivationwasconductedduringAutumn-Winterseasonsof2016(AugusttoDecember)atDinhThanhAgricultural Research Center in AnGiang province of Vi-etnam(10018’45.19”N;105018’57.87”E).TheexperimentaldesignappliedwastheCompleteRandomizedDesign(CRD)with3treatmentsnamely[T1] Incorporationofstrawandstubbles treatedwithTrichoderma; [T2] Incorporationofstubbles and removal of straw; and [T3] In-field burningstraw.Theexperimentalplotof25m2andthreereplications

weredone.ThequantityofstrawandstubbleaddedintheexperimentislistedinTable1.Table 1: Quantity of straw and stubbles added in the experi-

ment

Treatment Strawmanagement

Quantity(kgha-1)Straw Stubble

T1 Incorporated 2,697±140a 3,852±201aT2 Removed 2,563±7.1a 3,660±10.1aT3 Burning 2,850±86.6a 4,071±124a

Note:Meansfollowedbythesameletterarenotsignificantlydifferentamongsamplingdaysat0.05levelasdeterminedbyDuncanAgronomicandchemical inputs for the three treatmentsaredescribed inTable2.Riceseedsweresownbydrumseeder.Fertilizerwasappliedat10,20,and50daysaftersowing(DAS)(panicleinitiationstage).Table 2. Agronomic and chemical inputs in the experiment

Unit:kgha-1Inputs Tradename QuantityVariety LocTroi1 100Trichoderma TRICO-DHCT-LUAVON 1*N Urea(46%N);DAP

(18%N-46%P2O5)90

P2O5 DAP(18%N-46%P2O5) 45

K2O KCl(46%K2O) 45

Note:onlyTrichodermawasaddedinT12.2 Measurement and analysis

Gasmeasurement: Gasmeasurement and analysis wereadoptedfromtheguidelineofMinamikawaetal.,(2015).Gas samples were collected based on closed chambermethodat0,10,20,and30minutes,thenstoredin30mlvacuumvials.

Figure 1. Chamber to collect a gas sample

The chamber contains two main parts namely, the gaschamberwithavolumeof120Landheight70cmheight(V1),andthebasewithadiameterof50cmandheightof30cm(V2)(Figure1).SamplingsofGHGEwereconductedafter10DAS.Thegassampleswerecollectedat9ameveryweekuntil45DASandeverytendaysuntil95DAS.CH4andN2Oconcentra-tionwereanalysedusinggaschromatography(ModelSRI8610C,HayeSept-N)withFIDandECDdetectors.

Page 3: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55

51

Directfield-emissionformula:CH4andN2Orateswereesti-matedbythefollowingformula(Parkinetal.,2003):

)*08206.0(*10*24*60*TA

MVx

dtdC

F =

whereF:CH4orN2Oflux(mg.m-2.day-1);T:temperatureinthe chamber (°K); V: volume of chamber; M: molecularweight of CH4 or N2O; A: surface area of chamber (m2);

dtdC :rateofgasconcentrationinthechamber(ppm.h-1);

andV:volumeofchamber(V=V1+V2).Again,V1istheup-perpartofthechamber,V2isthelowerpartofthecham-ber(V2=A.h);whilehistheheightofwaterlevelfromthegroundsurfaceinsidethechamberandadjustedwhenthewaterlevelishigherthanthegroundsurface.Theaverageemissionrateiscalculatedby:

n

FF

n

iå=

-1

whereFi:CH4orN2Ofluxofsamplingdate(mg.m-2.day-1),andn:numberofgassampling(n=11).ThetotalquantityofCH4orN2Oemissionperseason(autumn-winterseason)

isequalto-

F multiplybythenumberofdaysperseason(100days).Indirectfield-emissionformula:GHGEconversionfactorsofallrelatedmaterialswerebasedonthedatabaseofEcoin-vent3incorporatedinSIMAPROsoftware.Dieselconsump-tion for mechanized operations and seed rate were as-sumed150litresand100kgperhabasedonthenormalpracticesobservedintheexperimentedareas.Indirectly calculated emissions of the fuel consumptionsandagronomicinputsusedtheconversionfactorsshowninTable3.Forstrawburning,weusedtheemissionfactorsofCH4andN2OreportedinRomasantaetal.(2017).Thisindicatedthatburning1tonofstraw(drymatter)causedtheemissionsof4.5and0.069gramofCH4andN2O,respectively.Table 3. GHGE conversion factors of fuel, agronomic inputs,

and products

Parameters GHGE SourceUnit Value

Seeds kgCO2-eqkg-1 1.12 a

Dieselconsumption kgCO2-eqMJ-1 0.08 aNitrogen(N) kgCO2-eqkg

-1 5.68 aP2O5 kgCO2-eqkg

-1 1.09 aK2O kgCO2-eqkg

-1 0.52 aCH4 kgCO2-eqkg

-1 30.5 bN2O kgCO2-eqkg

-1 265 b(Source:a=Ecoinvent,2016andb=IPCC,2013)

SoilandwatermeasurementsSoilsampleswerecollectedbeforeincorporatingstrawandstubbles, 30, 60 and 90 DAS for each plot. Soil samplesweretakenat0–20cmfromthesurfacetomeasureN-NH4

+/N-NO3-andorganiccontent.

Redoxwasmeasured inall nineplotswith three replica-tionsbySWC-201RPatthesamedateandtimeofgassam-plecollection(at9amonthegassamplingdate).Water management followed the alternate wetting anddrying (AWD) technology. However, it was not followedstrictlyduetotherainyseason.Thewater levelwasrec-ordedat8ameverydayattheexperimentplot.Cropmeasurement:Actualpaddyyieldwasestimatedbyharvestingyieldof5m2plotsinallninetreatmentplotsandestimateddryyield(at14%moisturecontent).2.3. Statistical analysis

MeansamongtreatmentsofCH4,N2OandCO2-eqandrelatedparametersweretestedbyanalysisofvariancewithDuncantestof95%confidence.Besides,correlationanalysisofwa-terlevelandredoxwasalsousedbyPearsontests.

3. Results and discussions 3.1 Water level and redox potential

Waterlevelsinthepaddyfieldvariedfrom–13cmto5cmduringexperimental95-day-period (Fig.1a).Waterman-agement in this experiment tried to follow the alternatewettinganddrying(AWD)technologyevenitwasinrainyseason.AccordingtoBharatietal.(2001),thewaterlevelinthepaddyfieldmayaffecttheoxidationprocessinthesoil, and thusmay affect the emissions of CH4 andN2O.However, there are no significant correlations betweenwaterlevelandredoxamongthreetreatments.In the first 45DAS, the redox potentialwas low rangingfrom -120 to -160mV in all treatments (period of 10-46daysinFig.2b).Itisindicatedthatthereductionprocessinthesoilwasthemainprocesswhichhappenedduringthisperiod.The reason for this trendwascausedby the fastdegradationofthestrawbiomassinthefirst45DAS.Thentheredoxincreasedgraduallyuntil95DASduetothelowwaterlevelandslowstrawdegradationattheendoftheseason.

Page 4: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55

52

Figure 2. Water level (a) and redox potential (b)

3.2 Emissions of CH4 and N2O

3.2.1DirectlyemissionrateofCH4The average CH4 emission rates of T1, T2 and T3 treat-mentsfluctuatedfrom139.7–222.6mg.m-2.day-1(Fig.3).TheemissionrateofCH4inT1wasnotsignificantlydiffer-ent from T2 and T3 treatments (p>0.05) inmost of thesamplingdates,except in17and24DAS.Thestrongde-compositionprocessofT1duringthisperiodmaybethereason for the high CH4 emission in comparisonwith T2andT3.AccordingtoDuetal(2014),Trichodermacande-composeupto40%ofthestrawwithin20days.AnotherreportfromHoi(2008)concludedthatthedecompositionrateofricestrawwashighestinthefirst15days,thenthedecompositionrateslowsdowncausingthestrawweighttodecreaseslowly.TherearehighvariationsinCH4emissionratesamongpre-vious researches.Forexample,NeueandSass (1998) re-ported that theaverageCH4emission rate ina rice fieldranged from 240 to 520 mg.m-2 days-1. Meanwhile, thestudy conducted by Bhattacharyya et al. (2012) showedthat CH4 emission rates ranged from 45.6 - 137 mg.m-

2.days-1. The lowest emission rate was 85 DAS at 5.87mg.m-2.days-1inwhichwaterlevelwas-1cmandredoxwas-112mVinalltreatments(Fig3).

Figure 3. Direct emission rate of CH4

Note:Means followedby the same letter arenot significantly differentamongsamplingdaysat0.05levelasdeterminedbyDuncan3.2.2.DirectlyemissionrateofN2OTheemissionofN2Ointhreetreatmentsvariedfrom0–6.57 mg.m-2.day-1 and there were no N2O emissions inmostofthesamplingdates(Fig.4).Thedatashowedthatjust after applying chemical fertilizers, theN2O emissionwasincreasedlater.Whenfertilizerswereappliedon8,20,and55DAS,theN2Oemissionson10,24,and65DASweredramaticallyincreased(Fig.4).Snyderetal.(2007)alsore-ported that N2O emissions are closely related to theamount of nitrogen applied in the field. However, therewasnosignificantdifferenceamongthethreetreatmentsin terms of N2O emission (p>0.05). It seemed that N2Oemission is more closely related to fertilizer applicationthanstrawmanagementpractices.The knowledge and research on N2O emission from thepaddyfieldwerequite limitedcomparedtoCH4(Jiangetal.,2003).However,accordingtoLouetal.,(2007),incor-poratingricestrawincreasesN2Oemission,incomparisonwith removing the straw from the field. TheemissionofN2Oisincreasedwhenthesoilisfertilizedbyorganicmat-ter,duetotheincreasednitratereductionandnitrificationof NH4

+ in partly or full aerobic condition (Khuong andHung,2014).

Figure 4. Direct emission rate of N2O

3.2.3TotaldirectlyemissionofCH4,N2OandCO2eqa.TotalCH4andN2Oofdirectemissions

Page 5: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55

53

Fig.5 illustratesthattheaveragetotalemissionofCH4 is179.1 ± 24.0 kg.ha-1.season-1 (T1, T2 and T3 are 222.6,174.9,and139.7kg.ha-1.season-1,approximately).Thesta-tisticalanalysisshowedthattherewasnosignificantdiffer-ence in CH4 emissions among the three treatments(p>0.05).This value ishigher than thevalue reportedbyLinquistetal.(2012)at100kgCH4.ha

−1.season-1.

Figure 5. Total emission of CH4

Note:Meansfollowedbythesameletterarenotsignificantlydifferentat0.05levelasdeterminedbyDuncanSimilarly,therewasnosignificantdifferenceinN2Oemis-sions among three treatments, and it highly fluctuatedfrom0.21–1.16kg.ha-1.season-1(Fig.6).TheN2Oemissionalsovariedinalltreatments(Fig.6).Studyingpaddyfields,Pittelkowetal.(2013)statedthatthetotalemissionswere0.2to0.4kgN2O.ha

-1,whichwaslowerthantheN2Oemis-

sionfoundinthisstudy.TheresultofN2Oneedstobecon-firmedbyrepeatingthisexperiment inbothdryandwetseasons.

Figure 6. Total emission of N2O

Note:Meansfollowedbythesameletterarenotsignificantlydifferentat0.05levelasdeterminedbyDuncanb.TotaldirectemissionsofCO2eqTheemissionofCO2eqwas4,330–7,097kgCO2eq.ha

-1andit was not significantly different among the three treat-ments(Table4).However,theemissionofCO2eqperkgofricestrawincorporatedtothericefieldwithTrichodermainT1 (2.63±0.24kgCO2eq.ha

-1.kg ricestraw-1)wassignifi-cantly higher than that of T3 treatment (1.52 ± 0.35 kgCO2eq.ha

-1.kg rice straw-1). The result of this study is inagreementwiththatreportedin2006IPCCguidelinesandotherstudiesforthesimilarstudiesofstrawincorporationwithTrichodermaorcompost(Truc,2011;Wassmannetal,2000).

Table 4. CO2 equivalent emission

TreatmentYields(kg.ha-1)

Ricestraw(kg.ha-1)

CO2eq(kgCO2.ha

-1.season-1)CO2eq

(kgCO2eq.kgpaddy-1.season-1)

CO2eq

(kgCO2.kgstraw-1.season-1)

T1 4,360±112a 2,697±140a 7,097±639a 1.62±0.15a 2.63±0.24aT2 4,400±97.0a 2,563±7.10a 5,390±743a 1.22±0.17a 2,10±0.29abT3 4,250±85.0a 2,850±86.6a 4,330±991a 1,02±0.23a 1.52±0.35bAverage 4,337±98.0 2,703±77.9 5,605±806 1.29±0.18 2.08±0.19Note:Mean±StandardError;Meansfollowedbythesameletterarenotsignificantlydifferentat0.05levelasdeterminedbyDuncan3.3 Yields and nutrients in the soil

RiceyieldsofT1,T2andT3treatmentswerefrom4.25to4.40 ton.ha-1 and therewasno significantdifferencebe-tweenthreetreatments(p>0,05)(Table4).Itneedsatleasttwo or even longer time to see the difference in yieldamong different rice strawmanagement (Surekha et al.2003;Sonetal,2008;KhuongandHung,2014;Duetal,2014).Besides,theyieldisbetterimprovedinSpring-Win-terSeasonratherthaninAutumnWinterseasonasinthisexperiment.Theresults inFig.7andFig.8showthator-ganiccarboncontentandnitrogenavailable (N-NH4

+andN-NO3

-)inthesoilintreatmentT1wassignificantlyhigherthaninT2andT3attheendoftheseason.Miletal.(2012)reportedthatstrawincorporationinsoilreturns40%ofN,30%ofPand80%ofK(whichisabsorbedbyrice);strawincorporationalsoincreasesorganicmatterinsoilaswell.Ontheotherhandstrawburningresultsinlosing70-80%ofCandNinstraw(Hilletal.,1999).Theimprovementof

carbonandnitrogencontentsavailableinsoilwasoneoftheevidencethatsoilandpaddyyieldcanbeimprovedinthelongterm.

Figure 7. Organic matter in the soil (%)

Note:Mean±StandardError;Meansfollowedbythesameletterarenotsignificantlydifferentat0.05levelasdeterminedbyDuncan

Page 6: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55

54

Figure 8. N-NH4

+ and N-NO3

- concentration in soil

Note:Mean±StandardError;Meansfollowedbythesameletterarenotsignificantlydifferentat0.05levelasdeterminedbyDuncan3.4 Total greenhouse gas emissions (GHGE)

Figure9showsGHGE(kgCO2eq.ha

-1)ofthecomponentsconstituting to the total emissions for three treatments(i.e.T1,T2,andT3).TotalGHGEwasintherangeof8,187-10,739kgCO2eqha

-1,equalingto1.93-2.46kgCO2-eqkg-1

paddyproduced(moisturecontentofpaddywasat14%inwet basis). The results showed that incorporation of allstraw(T1)hadthehighestGHGEat10,739kgCO2-eqha

−1

season-1.ContributiontotheoverallGHGE,thehighestwasfrom direct field-emission during rice cultivation ranging53-66% of the total GHGE.Mechanized operations con-sumingfuelalsocontributedarangeof26-34%,whiletheagronomic inputscontributeabout7%of the totalemis-sions.

Figure 9. Total greenhouse gas emissions from three treat-

ments

4. Conclusions CH4andN2Oemissionrateswerenotsignificantlydifferentamong the treatments; however, therewere high varia-tionsofN2Oemissionafterthedateswhenureawasap-plied.DirectfieldemissionsofCH4,N2OandCO2equivalent(CO2eq)arenotsignificantlydifferentamongthethreetreat-ments,buttheamountofCO2eqperkgstrawinT1ofincorpo-rating rice straw treatedTrichoderma is significantly higherthan in T3of in-fieldburning straw. LCAbasedanalysis re-sulted intotalGHGE in the rangeof1.93-2.46kgCO2-eqkg-1paddyproducedconsistingof53-66%fromdirectsoil

emissions. Incorporation of straw treated with Tricho-derma didnot indicate the improvementofpaddy yield.However,theorganicmatterandN-NH4

+andN-NO3-ofthis

treatmentwerehigherthanthosefromotherresearches.Thisresearchwasjustconductedinonecropseason,how-ever,theresultshaveinitialimplicationsfortheothercropseasons.Toverifytheseresults,werecommendtoconductfurtherexperimentswithreplicationsofcropseasonsandextendingtootherseasonsandcroppingsystems.Acknowledgement.Thisresearchwasconductedincollab-orationwiththeInternationalRiceResearchInstitute(IRRI)throughtheBMZ-IRRIproject"Scalablestrawmanagementoptionsforsustainabilityandlowenvironmentalfootprintin rice-based production systems” (contract No.81194994).WewouldliketothankDr.NguyenThanhNghi(NLU)forsupportingthisstudy.Thankstoallthestudentsin CTU, especially Thi Quoc Phong, VuQuoc Tin andHoMinhNhut,andthestaffofDTARCforsupportingthedatacollectioninthisstudy.

5. References [1] Bharati, K., S.R.Mohanty, V.R. Rao and T.K. Adhya,

2001. Influence of flooded and non-flooded condi-tions on methane efflux from two soils planted torice.ChemosphereGlobalChangeScience,3:25-32.

[2] Bhattacharyya,P.,K.S.Roy,S.Neogi,T.K.Adhya,K.S.RaoandM.C.Manna,2012.Effectsofricestrawandnitrogen fertilization on greenhouse gas emissionsand carbon storage in tropical flooded soil plantedwithrice.SoilandTillageResearch,124:119–130.

[3] Gadde,B.,S.Bonnet,C.MenkeandS.Garivait,2009.AirpollutantemissionsfromricestrawopenfieldburninginIndia,ThailandandthePhilippines.EnvironmentalPollu-tion,157:1554–1558.

[4] Gao,S.,K.TanjiandS.C.Scadaci,2003. Incorporatingstrawmayinducesulfidetoxicityinpaddyrice.CaliforniaAgricultureJournal,57:55-59.

[5] Hill, J.D,G.M. Brandon, S.M. Broader andA.U. Eke,1999.Winterfloodingandstrawmanagement:Impli-cationforriceproduction.Agronomyprogressreport1994-1996,264:5-25.

[6] Tin,H.Q.,N.H.Cuc,N.VSanh,N.V.Anh,J.Hughes,T.THoaandT.T.Ha,2012.LowCH4emissionriceproduc-tioninAnGiangprovince–Dryseason2010-2011(inVietnamese).ScientificJournalofCanThoUniversity,23a:31-41.

[7] IPCC,2006.2006IPCCguidelinesfornationalgreen-housegasinventories.Volume4and5.Preparedbythe National Greenhouse Gas Inventories Pro-gramme.Eggleaston,H.S.,Buendia,L.Miwa,K.Ngara,T.andTanabe,K(Eds).

[8] Jiang,J.Y.Y.HuangandL.G.Zong,2003.Influenceofwater controlling and strawapplicationonCH4 andN2O emissions from rice field. China Environmental

0

2,000

4,000

6,000

8,000

10,000

12,000

T1 T2 T3

kg C

O2-

eq h

a-1se

ason

-1

Straw burning

Direct field-emissionK2O

P2O5

Nitrogen

Seed

Fuel-mechanizedoperations

Page 7: RESEARCH ARTICLE Quantification of direct and indirect

J.Viet.Env.2018,10(1):49-55

55

Science,23:552–556.

[9] Linquist,B.A.,M.A.A.Adviento-Borbe,C.Pittelkow,C.van Kessel and K.J. van Groenigen, 2012. Fertilizermanagement practices and greenhouse gas emis-sionsfromricesystems:aquantitativereviewanaly-sis.FieldCropsRes,135:10–21.

[10] Lou,Y.,Ren,L.,Li,Z.,Zhang,T.,Inubushi,K.2007.Ef-fectofriceresiduesoncarbondioxideandnitrousox-ideemissionsfromapaddysoilofsubtropicalchina.WaterAirSoilPollut,178:157-168.

[11] Trinh,M.V,T.V.TheandB.T.P.Loan,2013.PotentialtomitigateGHGemissionsfromriceproductioninVi-etnam (in Vietnamese). http://www.iae.vn/. Ac-cessedon16/2/2017.

[12] Neue,H.U. andR.L. Sass, 1998. TheBudget ofMe-thanefromRiceFields.IGACtivitiesNewsLetter,12:3-11.

[13] Truc,N.T.T,2011.ComparativeassessmentofusingricestrawforrapidcompostingandstrawmushroomproductioninmitigatinggreenhousegasemissionsinMekong Delta, Vietnam and Central Luzon, Philip-pines.PhDdissertation.UniversityofthePhilippinesLosBaños.

[14] Khuong,N.Q.andN.N.Hung,2014.Effectsofthericestrawcompostincorporationonmethaneandnitrousoxideemissionsandriceyieldinthegreenhousecon-dition (inVietnamese).Scientific JournalofCanThoUniversity,32:46–52.

[15] Hoi, N.T., 2008. Influences of fresh rice straw andstubbleincorporationinfloodedsoilsonricegrowthinMekongDelta (in Vietnamese). PhD dissertation.CanThoUniversity.

[16] Du,N.X.,T.TNgaandN.T.KPhuoc,2014.Ricestrawtreatmentonthefieldusingbio-productionsinSpring-SummercropatCaiBeDistrict,TienGiangProvince(inVietnamese).ScientificJournalofCanThoUniver-sity.SpecialIssueinAgriculture:81–86.

[17] Parkin,T.,A.Mosier,J.Smith,R.Venterea,J.Johnson,D.Reicosky,G.DoyleG.McCartyandJ.Baker,2003.Cham-ber-basedTraceGasFluxMeasurementProtocol.USDA-ARSGRACEnet

[18] Pittelkow,C.M.,M.A.A.Adviento-Borbe,C. vanKes-sel, J.E.Hill andB.A. Linquist, 2014.Optimizing riceyieldswhileminimizing yield-scaled globalwarmingpotential.Glob.Chang.Biol,20:1382–1393.

[19] Romasanta,R.R.,Sander,B.O.,Gaihre,Y.K.,Alberto,M.C., Gummert, M., Quilty,J., Nguyen, V.H., Casta-lone, A.G., Balingbing, C., Sandro, J., Correa,T.,Wassmann, R., 2017. How does rice straw burningcomparewithotherstrawmanagementpracticesintermsofon-fieldCH4andN2Oemissions?Acompar-ative field experiment, Agriculture, Ecosystems andEnvironment. Agriculture, Ecosystems and Environ-ment,239:143–153.

[20] Snyder,C.S.,T.W.BruulsemaandT.L.Jensen,2007.Greenhouse gas emissions from cropping systemsandtheinfluenceoffertilizermanagement—alitera-ture review. International Plant Nutrition Institute,Norcross,Georgia,U.S.A.

[21] Surekha,K.,A.P.P.Kumari,M.N.Reddy,K.Satyana-rayanaandP.C.StaCruz,2003.Cropresiduemanage-menttosustainsoilfertilityandirrigatedriceyields.Nutrient Cycling in Agroecosystems. Volume 67,Number2:145-154.

[22] Mil,T.T,P.N.M.TrungandV.T.Guong,2012.Effectofricestrawtreatedandorganicamendmentonsoilfertility and rice yield in Chau Thanh district, HauGiangprovince(inVietnamese).ScientificJournalofCanThoUniversity,22a:253-260.

[23] Son,TranThiNgoc,L.H.Man,C.N.Diep,T.T.A.ThuandN.N.Nam,2008.Bioconversionofpaddystrawandbio-fertilizer for sustainable rice based cropping systems.Omonrice16Journal,CuuLongRiceResearchInstitute,CanTho–Vietnam.pp57-70.

[24] Tuyen,TranQuangandP.S.Tan,2001.Effectsofstrawmanagement,tillagepracticesonsoilfertilityandgrainyield of rice. Omonrice 9 Journal, Cuu Long Rice Re-searchInstitute,CanTho–Vietnam.pp74-78.

[25] VietnamSecondCommunication(VSC),2014.Thein-itialupdatedreportofVietnamtotheUnitedNationsFramework Convention on ClimateChange.Wassmann,R.Latin,R.S.andNeue,H.U(Eds),2000.Methaneemissions fromrice field inAsia. III.Mitigationoptionsandfuturesearchneeds.NutrientCyclinginAgroecosystems,58:23–36.

[26] Nam,T.S,N.T.HNhu,N.H.Chiem,N.V.C.Ngan, L.H.VietandKjeldIngvorsen,2014.Toquantifythesea-sonal rice strawand its use indifferentprovinces intheVietnameseMekongDelta(inVietnamese).Scien-tificJournalofCanThoUniversity,32:87–93.

[27] Truc, N.T.T, Z. M. Sumalde, F. G. Palis and R.Wassmann, 2013. Farmers’ Awareness and FactorsAffectingFarmers’AcceptancetoGrowStrawMush-room inMekongDelta,VietnamandCentral Luzon,Philippines.InternationalJournalofEnvironmentandRuralDevelopment.Volume4.Number2.P.179-184.

[28] Truc.N.T.T,Z.M.Sumalde,M.V.O.Espaldon,E.P.Pacardo,C.L.RaperaandF.G.Palis,2012.Farmers’Awareness and FactorsAffectingAdoptionofRapidComposting inMekong Delta, Vietnam and CentralLuzon,Philippines.JournalofEnvironmentalScienceandManagement15(2):59-73.

[29] Minamikawa,K.,T.Tokida,S.Sudo,A.PadreandK.Yagi, 2015. Guidelines for Measuring CH4 and N2OEmissionsfromRicePaddiesbyaManuallyOperatedClosedChamberMethod.NationalInstituteforAgro-EnvironmentalSciences,Tsukuba,Japan.