20
Research Article Dynamic Analysis under Uniformly Distributed Moving Masses of Rectangular Plate with General Boundary Conditions Emem Ayankop Andi 1 and Sunday Tunbosun Oni 2 1 Department of Mathematics, Nigerian Defence Academy, Kaduna State, Kaduna 800001, Nigeria 2 Department of Mathematical Sciences, Federal University of Technology, Ondo State, Akure 340001, Nigeria Correspondence should be addressed to Emem Ayankop Andi; [email protected] Received 3 December 2013; Revised 25 April 2014; Accepted 12 May 2014; Published 19 June 2014 Academic Editor: Nam-Il Kim Copyright © 2014 E. A. Andi and S. T. Oni. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e problem of the flexural vibrations of a rectangular plate having arbitrary supports at both ends is investigated. e solution technique which is suitable for all variants of classical boundary conditions involves using the generalized two-dimensional integral transform to reduce the fourth order partial differential equation governing the vibration of the plate to a second order ordinary differential equation which is then treated with the modified asymptotic method of Struble. e closed form solutions are obtained and numerical analyses in plotted curves are presented. It is also deduced that for the same natural frequency, the critical speed for the system traversed by uniformly distributed moving forces at constant speed is greater than that of the uniformly distributed moving mass problem for both clamped-clamped and simple-clamped end conditions. Hence resonance is reached earlier in the uniformly distributed moving mass system. Furthermore, for both structural parameters considered, the response amplitude of the moving distributed mass system is higher than that of the moving distributed force system. us, it is established that the moving distributed force solution is not an upper bound for an accurate solution of the moving distributed mass problem. 1. Introduction e problem of assessing the dynamic behaviour of structures carrying moving loads has been almost exclusively reserved in the literature to that of one-dimensional structural mem- bers such as the response of railroad rails to moving trains, the response of bridges and elevated roadways to moving vehicles, the response of belt drives to conveyor belts, and the response of computer tape drives to floppy disks [18]. Where two-dimensional structures such as plates have been considered, the load acting on the structure has been simplified as lumped mass, point load, or concentrated load. Among researchers in this subject are Gbadeyan and Oni [9] who developed an analytical technique which is based on the generalized two-dimensional integral transform, the expression of the Dirac delta function as a Fourier Cosine series, and the use of the modified Struble’s asymptotic method to solve the problem of rectangular plates under moving loads. is technique was later used by Oni [10] to solve the problem of the dynamic response of an elas- tic rectangular plate under the actions of several moving concentrated masses. Huang and ambiratnam [11] studied isotropic homogenous elastic rectangular plate resting on an elastic Winkler foundation under a single concentrated load using finite strip method. Shadnam et al. [12] investigated the dynamics of plates under the influence of relatively large masses, moving along an arbitrary trajectory on the plate surface. In particular, a rectangular plate simply supported on all its edges was presented by means of operational calculus. Alisjahbana [13] presented an approximate method for the determination of the natural frequencies and mode shapes of rectangular clamped orthotropic plates subjected to dynamic transverse moving loads. e dynamic solution of the plate was based on orthogonality conditions of eigenfunctions. Wu et al. [14] analyzed by finite element method the dynamic responses of a flat plate subjected to various moving loads. e Newmark direct integration method was used to find the dynamic responses of the flat plate. Wang and Lin [15] presented the method of modal analysis to study the random vibration of multispan Mindlin plates due to load moving at a constant velocity. Although the above completed works on concentrated loads are impressive, they do not represent the Hindawi Publishing Corporation Journal of Computational Engineering Volume 2014, Article ID 140407, 19 pages http://dx.doi.org/10.1155/2014/140407

Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Research ArticleDynamic Analysis under Uniformly Distributed Moving Massesof Rectangular Plate with General Boundary Conditions

Emem Ayankop Andi1 and Sunday Tunbosun Oni2

1 Department of Mathematics Nigerian Defence Academy Kaduna State Kaduna 800001 Nigeria2 Department of Mathematical Sciences Federal University of Technology Ondo State Akure 340001 Nigeria

Correspondence should be addressed to Emem Ayankop Andi ememandiyahoocom

Received 3 December 2013 Revised 25 April 2014 Accepted 12 May 2014 Published 19 June 2014

Academic Editor Nam-Il Kim

Copyright copy 2014 E A Andi and S T Oni This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

The problem of the flexural vibrations of a rectangular plate having arbitrary supports at both ends is investigated The solutiontechnique which is suitable for all variants of classical boundary conditions involves using the generalized two-dimensional integraltransform to reduce the fourth order partial differential equation governing the vibration of the plate to a second order ordinarydifferential equation which is then treated with the modified asymptotic method of StrubleThe closed form solutions are obtainedand numerical analyses in plotted curves are presented It is also deduced that for the same natural frequency the critical speedfor the system traversed by uniformly distributed moving forces at constant speed is greater than that of the uniformly distributedmoving mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlier in theuniformly distributed moving mass system Furthermore for both structural parameters considered the response amplitude of themoving distributed mass system is higher than that of the moving distributed force system Thus it is established that the movingdistributed force solution is not an upper bound for an accurate solution of the moving distributed mass problem

1 Introduction

Theproblemof assessing the dynamic behaviour of structurescarrying moving loads has been almost exclusively reservedin the literature to that of one-dimensional structural mem-bers such as the response of railroad rails to moving trainsthe response of bridges and elevated roadways to movingvehicles the response of belt drives to conveyor belts and theresponse of computer tape drives to floppy disks [1ndash8]

Where two-dimensional structures such as plates havebeen considered the load acting on the structure has beensimplified as lumped mass point load or concentrated loadAmong researchers in this subject are Gbadeyan and Oni[9] who developed an analytical technique which is basedon the generalized two-dimensional integral transform theexpression of the Dirac delta function as a Fourier Cosineseries and the use of the modified Strublersquos asymptoticmethod to solve the problem of rectangular plates undermoving loads This technique was later used by Oni [10]to solve the problem of the dynamic response of an elas-tic rectangular plate under the actions of several moving

concentrated masses Huang andThambiratnam [11] studiedisotropic homogenous elastic rectangular plate resting on anelastic Winkler foundation under a single concentrated loadusing finite strip method Shadnam et al [12] investigatedthe dynamics of plates under the influence of relatively largemasses moving along an arbitrary trajectory on the platesurface In particular a rectangular plate simply supported onall its edges was presented by means of operational calculusAlisjahbana [13] presented an approximate method for thedetermination of the natural frequencies and mode shapes ofrectangular clamped orthotropic plates subjected to dynamictransverse moving loads The dynamic solution of the platewas based on orthogonality conditions of eigenfunctionsWuet al [14] analyzed by finite element method the dynamicresponses of a flat plate subjected to various moving loadsThe Newmark direct integration method was used to findthe dynamic responses of the flat plate Wang and Lin [15]presented the method of modal analysis to study the randomvibration of multispan Mindlin plates due to load moving ata constant velocity Although the above completed works onconcentrated loads are impressive they do not represent the

Hindawi Publishing CorporationJournal of Computational EngineeringVolume 2014 Article ID 140407 19 pageshttpdxdoiorg1011552014140407

2 Journal of Computational Engineering

PF(x y t)

L

Figure 1 A uniformly distributed load 119875119865(119909 119910 119905) on a plate with

both ends clamped

PF(x y t)

L

Figure 2 A uniformly distributed load 119875119865(119909 119910 119905) on a plate with

one end clamped and the other end simply supported

physical reality of the problem formulation as concentratedmasses do not exist physically since in practice moving loadsare in the form of moving distributed masses which areactually distributed over a small segment or over the entirelength of the structural member they traverse

Works on 2-dimensional structural members traversedby distributed loads have only attracted the attention of fewresearchers (Figures 1 and 2)

These include the works of Gbadeyan and Dada [16] whoinvestigated the dynamic response of plates on Pasternakfoundation to distributed moving loads Dada [17] whostudied the vibration analysis of elastic plates under uniformpartially distributed moving loads Usman [18] discussedthe dynamic response of a Bernoulli-beam on Winklerfoundation under the action of partially distributed loadThe dynamic analysis of Rayleigh beam carrying an addedmass and traversed by uniform partially distributed movingloads was carried out by Adetunde [19] More recentlyGbadeyan and Dada [20] used a finite difference algorithmto investigate the elastodynamic response of a rectangularMindlin plate subjected to a distributed moving mass Thesimply supported edge condition was used as an illustrativeexample It was found that the maximum shearing forcesbending and twisting moments occur almost at the sametime Beskou andTheodorakopoulos [21] presented a reviewof the dynamic response of road pavements modelled asa beam plate or top layer of a layered soil medium tomoving loads on their surface The loads were concentratedor distributed of finite extent varied with time and movedwith constant or variable speed The analysis was done byanalyticalnumerical and purely numerical methods suchas finite element and boundary element methods underconditions of plane strain Representative examples werepresented in order to illustrate the problem Amiri et al[22] investigated the elastodynamic response of a rectangularMindlin plate under concentrated moving loads as well asother arbitrarily selected distribution area of loads Closed

form solution for the moving force load case was derivedusing direct separation of variables and eigenfunction expan-sion method A semianalytical solution was presented formovingmass load case In these investigations however onlynumerical or semianalytical techniques have been employedto solve the governing equation due to the rigour of the load-structure interactions and complex nature of the resultingequations Nevertheless analytical solution is desirable as itoften sheds light on some vital information in the vibratingsystem This paper therefore investigates the flexural vibra-tions of a rectangular plate with general boundary conditionsunder uniformly distributed moving masses Both gravityand inertia effects of the uniformly distributed masses aretaken into consideration and the plate is taken to reston Winkler foundation The solution technique which isanalytical and suitable for all variants of classical boundaryconditions involves using the generalized two-dimensionalintegral transform the expression of the Heaviside functionas a Fourier series and the use of the modified Strublersquosasymptotic technique to solve the problem of the flexuralvibrations of a rectangular plate having arbitrary supports atboth ends In addition conditions under which resonance isreached is obtained for both uniformly distributed movingforce and uniformly distributed moving mass problems

2 Governing Equation

Consider the dynamic transverse displacement119882(119909 119910 119905) ofa rectangular flat plate of span 119871

119910along the 119910-axis and span

119871119909along the 119909-axis carrying a uniformly distributed mass

moving with constant velocity 119888 along a straight line 119910 = 1199100

parallel to the 119909-axisIf the platemodel incorporates the rotatory inertia correc-

tion factor119882(119909 119910 119905) is governed by the fourth order partialdifferential equation given by [23]

(119863(1205972

1205971199092+

1205972

1205971199102)

2

minus 1205831198770

1205972

1205971199052)(

1205972

1205971199092+

1205972

1205971199102)

2

times119882(119909 119910 119905) + 1205831205972119882(119909 119910 119905)

1205971199052+ 119870119882(119909 119910 119905)

= 119875119865(119909 119910 119905) [1 minus

Δlowast

119892[119882 (119909 119910 119905)]]

(1)

119864 is Youngrsquosmodulus ] is Poissonrsquos ratio (] lt 1) 120583 is themassper unit length (self-weight) of the plate 119909 is the positioncoordinate in 119909-direction 119910 is the position coordinate in 119910-direction 119905 is the time ℎ is the plate thickness119870 is the elasticfoundation moduli and 119877

0is the measure of rotatory inertia

correction effect 119863 = 119864ℎ312(1 minus 120592) is the bending rigidity

of the plate and is constant throughout the plate 119875119865(119909 119910 119905) is

the continuous moving uniformly distributed force acting onthe beammodel 119892 is acceleration due to gravity andΔlowast is theconvective acceleration operator defined as

Δlowast= (

1205972

1205971199052+ 2119888

1205972

120597119905120597119909+ 1198882 1205972

1205971199092) (2)

Journal of Computational Engineering 3

The continuousmoving uniformly distributed force acting onthe plate is given by

119875119865(119909 119910 119905) = 119872119892119867 (119909 minus 119888119905)119867 (119910 minus 119910

0) (3)

where 119872 is the uniformly distributed mass 119867(sdot) is theHeaviside function The time 119905 is assumed to be limited tothat interval of time within which the mass119872 is on the platethat is

0 le 119888119905 le 119871119909 (4)

Thus in view of (2) and (3) (1) can be written as

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052+ 119870119882(119909 119910 119905)

minus 1205831198770[1205974119882(119909 119910 119905)

12059711990921205971199052+1205974119882(119909 119910 119905)

12059711991021205971199052]

+119872119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times [1205972119882(119909 119910 119905)

1205971199052+ 2119888

1205972119882(119909 119910 119905)

120597119905120597119909+ 11988821205972119882(119909 119910 119905)

1205971199092]

= 119872119892119867 (119909 minus 119888119905)119867 (119910 minus 1199100)

(5)

Equation (5) is the fourth order partial differential equationgoverning the flexural vibrations of a rectangular plate underthe action of uniformly distributed loadsThe boundary con-ditions are taken to be arbitrary while the initial conditionswithout any loss of generality are given by

119882(119909 119910 0) = 0 =120597119882(119909 119910 0)

120597119905 (6)

3 Method of Solution

The analysis of the dynamic response to a uniformly dis-tributed moving mass of isotropic rectangular plates restingon aWinkler foundation and subjected to arbitrary boundaryconditions is carried out in this sectionThe generalized two-dimensional integral transform is defined as

119882(119895 119896 119905) = int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (7)

with the inverse

119882(119909 119910 119905) =

infin

sum

119895=1

infin

sum

119896=1

120583

119881119895

120583

119881119896

119882(119895 119896 119905)119882119895 (119909)119882119896 (119910) (8)

where

119881119895= int

119871119909

0

1205831198822

119895(119909) 119889119909 119881

119896= int

119871119910

0

1205831198822

119896(119910) 119889119910 (9)

119882119895(119909) and119882

119896(119910) are respectively the beam mode functions

in the 119909 and 119910 directions defined respectively as

119882119895 (119909) = Sin

120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

119882119896(119910) = Sin

120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

(10)

where 119860119895 119861119895 119862119895 119860119896 119861119896 and 119862

119896are constants and 120582

119895

120582119896are mode frequencies which are determined using the

appropriate boundary conditionsApplying the generalized two-dimensional integral trans-

form (7) (5) takes the form

1198851198601198651(0 119871119909 119871119910 119905) + 119885

1198601198652(0 119871119909 119871119910 119905) + 119882

119905119905(119895 119896 119905)

minus 1198851198611198791198611 (119905) minus 1198851198611198791198612 (119905) + 119885119862119882(119895 119896 119905)

+ 1198791198613 (119905) + 1198791198614 (119905) + 1198791198615 (119905)

=119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896(119910) 119889119909 119889119910

(11)

where

119885119860=119863

120583 119885

119861= 1198770 119885

119862=119870

120583 (12)

1198651(0 119871119909 119871119910 119905)

= int

119871119910

0

([119882119895 (119909)

1205973119882(119909 119910 119905)

1205971199093minus1198821015840

119895(119909)

1205972119882(119909 119910 119905)

1205971199092

+11988210158401015840

119895(119909)

120597119882 (119909 119910 119905)

120597119909minus119882101584010158401015840

119895(119909)119882 (119909 119910 119905)]

119871119909

0

times119882119896(119910) 119889119910

+ 2 [119882119895 (119909)

120597119882 (119909 119910 119905)

120597119909minus1198821015840

119895(119909)119882 (119909 119910 119905)]

times 11988210158401015840

119896(119910) 119889119910)

+ int

119871119909

0

(2[119882119896(119910)

120597119882 (119909 119910 119905)

120597119910minus1198821015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

4 Journal of Computational Engineering

times11988210158401015840

119895(119909) 119889119909

+ [119882119896(119910)

1205973119882(119909 119910 119905)

1205971199103

minus1198821015840

119896(119910)

1205972119882(119909 119910 119905)

1205971199102+11988210158401015840

119896(119910)

120597119882 (119909 119910 119905)

120597119910

minus119882101584010158401015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

119882119895 (119909) 119889119909)

(13)

1198652(0 119871119909 119871119910 119905)

= int

119871119910

0

int

119871119909

0

(119882 (119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910)

+ 2119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910)) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

(14)

1198791198611 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(15)

1198791198612 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199102119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (16)

1198791198613 (119905) =

119872

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199052119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(17)

1198791198614 (119905) = 2

119872119888

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

120597119905120597119909119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(18)

1198791198615 (119905) =

1198721198882

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(19)It is recalled that the equation of the free vibration of arectangular plate is given by

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052= 0

(20)

If the free vibration solution of the problem is set as119882(119909 119910 119905) = 119882

119895 (119909)119882119896 (119910) SinΩ119895119896119905 (21)

where Ω119895119896

is the natural circular frequency of a rectangularplate then substituting (21) into (20) yields

119863[1198821015840120592

119895(119909)119882119896(119910) + 2119882

10158401015840

119895(119909)119882

10158401015840

119896(119910) +119882

119895 (119909)1198821015840120592

119896(119910)]

minus 120583Ω2

119895119896119882119895 (119909)119882119896 (119910) = 0

(22)

It is well known that for a simply supported rectangular plateΩ2

119895119896is given by

Ω2

119895119896= 119863[

11989541205874

1198714119909

+ 2119895211989621205874

11987121199091198712119910

+11989641205874

1198714119910

] (23)

Multiplying (22) by119882(119909 119910 119905) and integrating with respect to119909 and 119910 between the limits 0 119871

119909and 0 119871

119910 respectively we

get

int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910) 119889119909 119889119910

+ 2int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

=120583

119863Ω2

119895119896int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(24)

In view of (14) we have

1198652(0 119871119909 119871119910) =

120583

119863Ω2

119895119896119882(119895 119896 119905) (25)

Since119882(119901 119902 119905) is just the coefficient of the generalized two-dimensional finite integral transform

119882(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)119882119901 (119909)119882119902 (119910) (26)

it follows that

11988210158401015840(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)11988210158401015840

119901(119909)119882119902 (119910)

(27)

Therefore the integrals (15) and (16) can be rewritten as

1198791198611 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867

2(119901 119895) 119865 (119902 119896) (28)

where

1198672(119901 119895) = int

119871119909

0

11988210158401015840

119901(119909)119882119895 (119909) 119889119909

119865 (119902 119896) = int

119871119910

0

119882119902(119910)119882

119896(119910) 119889119910

(29)

1198791198612 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896) (30)

Journal of Computational Engineering 5

where

119867(119901 119895) = int

119871119909

0

119882119901 (119909)119882119895 (119909) 119889119909

1198652(119902 119896) = int

119871119910

0

11988210158401015840

119902(119910)119882

119896(119910) 119889119910

(31)

In order to evaluate the integrals (17) (18) and (19) use ismade of the Fourier series representation of the Heavisidefunction namely

119867(119909 minus 119888119905) =1

4+1

120587

infin

sum

119899=0

Sin ((2119899 + 1) 120587 (119909 minus 119888119905))2119899 + 1

(32)

Similarly

119867(119910 minus 1199100) =

1

4+1

120587

infin

sum

119898=0

Sin ((2119898 + 1) 120587 (119910 minus 1199100))

2119898 + 1 (33)

Using (30) and (31) one obtains

1198791198613 (119905)

=119872

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905) 119865 (119902 119896)119867 (119901 119895)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119901 119895) 119865 (119902 119896)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119901 119895) 119865 (119902 119896)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119902 119896)119867 (119901 119895)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119902 119896)119867 (119901 119895)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119888(119898 119902 119896)

(34)

where

119867119904(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119867119888(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119865119904(119898 119902 119896) = int

119871119910

0

Sin (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

119865119888(119898 119902 119896) = int

119871119910

0

Cos (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

(35)

6 Journal of Computational Engineering

Similarly

1198791198614 (119905)

=2119872119888

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905(119901 119902 119905)119867

1(119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119901 119895) 119865 (119902 119896)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119888(119898 119902 119896)

(36)

where

1198671(119901 119895) = int

119871119909

0

1198821015840

119901(119909)119882119895 (119909) 119889119909

119867119904

1(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

119867119888

1(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

1198791198615 (119905)

=1198721198882

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882(119901 119902 119905)1198672(119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119901 119895) 119865 (119902 119896)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 2: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

2 Journal of Computational Engineering

PF(x y t)

L

Figure 1 A uniformly distributed load 119875119865(119909 119910 119905) on a plate with

both ends clamped

PF(x y t)

L

Figure 2 A uniformly distributed load 119875119865(119909 119910 119905) on a plate with

one end clamped and the other end simply supported

physical reality of the problem formulation as concentratedmasses do not exist physically since in practice moving loadsare in the form of moving distributed masses which areactually distributed over a small segment or over the entirelength of the structural member they traverse

Works on 2-dimensional structural members traversedby distributed loads have only attracted the attention of fewresearchers (Figures 1 and 2)

These include the works of Gbadeyan and Dada [16] whoinvestigated the dynamic response of plates on Pasternakfoundation to distributed moving loads Dada [17] whostudied the vibration analysis of elastic plates under uniformpartially distributed moving loads Usman [18] discussedthe dynamic response of a Bernoulli-beam on Winklerfoundation under the action of partially distributed loadThe dynamic analysis of Rayleigh beam carrying an addedmass and traversed by uniform partially distributed movingloads was carried out by Adetunde [19] More recentlyGbadeyan and Dada [20] used a finite difference algorithmto investigate the elastodynamic response of a rectangularMindlin plate subjected to a distributed moving mass Thesimply supported edge condition was used as an illustrativeexample It was found that the maximum shearing forcesbending and twisting moments occur almost at the sametime Beskou andTheodorakopoulos [21] presented a reviewof the dynamic response of road pavements modelled asa beam plate or top layer of a layered soil medium tomoving loads on their surface The loads were concentratedor distributed of finite extent varied with time and movedwith constant or variable speed The analysis was done byanalyticalnumerical and purely numerical methods suchas finite element and boundary element methods underconditions of plane strain Representative examples werepresented in order to illustrate the problem Amiri et al[22] investigated the elastodynamic response of a rectangularMindlin plate under concentrated moving loads as well asother arbitrarily selected distribution area of loads Closed

form solution for the moving force load case was derivedusing direct separation of variables and eigenfunction expan-sion method A semianalytical solution was presented formovingmass load case In these investigations however onlynumerical or semianalytical techniques have been employedto solve the governing equation due to the rigour of the load-structure interactions and complex nature of the resultingequations Nevertheless analytical solution is desirable as itoften sheds light on some vital information in the vibratingsystem This paper therefore investigates the flexural vibra-tions of a rectangular plate with general boundary conditionsunder uniformly distributed moving masses Both gravityand inertia effects of the uniformly distributed masses aretaken into consideration and the plate is taken to reston Winkler foundation The solution technique which isanalytical and suitable for all variants of classical boundaryconditions involves using the generalized two-dimensionalintegral transform the expression of the Heaviside functionas a Fourier series and the use of the modified Strublersquosasymptotic technique to solve the problem of the flexuralvibrations of a rectangular plate having arbitrary supports atboth ends In addition conditions under which resonance isreached is obtained for both uniformly distributed movingforce and uniformly distributed moving mass problems

2 Governing Equation

Consider the dynamic transverse displacement119882(119909 119910 119905) ofa rectangular flat plate of span 119871

119910along the 119910-axis and span

119871119909along the 119909-axis carrying a uniformly distributed mass

moving with constant velocity 119888 along a straight line 119910 = 1199100

parallel to the 119909-axisIf the platemodel incorporates the rotatory inertia correc-

tion factor119882(119909 119910 119905) is governed by the fourth order partialdifferential equation given by [23]

(119863(1205972

1205971199092+

1205972

1205971199102)

2

minus 1205831198770

1205972

1205971199052)(

1205972

1205971199092+

1205972

1205971199102)

2

times119882(119909 119910 119905) + 1205831205972119882(119909 119910 119905)

1205971199052+ 119870119882(119909 119910 119905)

= 119875119865(119909 119910 119905) [1 minus

Δlowast

119892[119882 (119909 119910 119905)]]

(1)

119864 is Youngrsquosmodulus ] is Poissonrsquos ratio (] lt 1) 120583 is themassper unit length (self-weight) of the plate 119909 is the positioncoordinate in 119909-direction 119910 is the position coordinate in 119910-direction 119905 is the time ℎ is the plate thickness119870 is the elasticfoundation moduli and 119877

0is the measure of rotatory inertia

correction effect 119863 = 119864ℎ312(1 minus 120592) is the bending rigidity

of the plate and is constant throughout the plate 119875119865(119909 119910 119905) is

the continuous moving uniformly distributed force acting onthe beammodel 119892 is acceleration due to gravity andΔlowast is theconvective acceleration operator defined as

Δlowast= (

1205972

1205971199052+ 2119888

1205972

120597119905120597119909+ 1198882 1205972

1205971199092) (2)

Journal of Computational Engineering 3

The continuousmoving uniformly distributed force acting onthe plate is given by

119875119865(119909 119910 119905) = 119872119892119867 (119909 minus 119888119905)119867 (119910 minus 119910

0) (3)

where 119872 is the uniformly distributed mass 119867(sdot) is theHeaviside function The time 119905 is assumed to be limited tothat interval of time within which the mass119872 is on the platethat is

0 le 119888119905 le 119871119909 (4)

Thus in view of (2) and (3) (1) can be written as

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052+ 119870119882(119909 119910 119905)

minus 1205831198770[1205974119882(119909 119910 119905)

12059711990921205971199052+1205974119882(119909 119910 119905)

12059711991021205971199052]

+119872119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times [1205972119882(119909 119910 119905)

1205971199052+ 2119888

1205972119882(119909 119910 119905)

120597119905120597119909+ 11988821205972119882(119909 119910 119905)

1205971199092]

= 119872119892119867 (119909 minus 119888119905)119867 (119910 minus 1199100)

(5)

Equation (5) is the fourth order partial differential equationgoverning the flexural vibrations of a rectangular plate underthe action of uniformly distributed loadsThe boundary con-ditions are taken to be arbitrary while the initial conditionswithout any loss of generality are given by

119882(119909 119910 0) = 0 =120597119882(119909 119910 0)

120597119905 (6)

3 Method of Solution

The analysis of the dynamic response to a uniformly dis-tributed moving mass of isotropic rectangular plates restingon aWinkler foundation and subjected to arbitrary boundaryconditions is carried out in this sectionThe generalized two-dimensional integral transform is defined as

119882(119895 119896 119905) = int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (7)

with the inverse

119882(119909 119910 119905) =

infin

sum

119895=1

infin

sum

119896=1

120583

119881119895

120583

119881119896

119882(119895 119896 119905)119882119895 (119909)119882119896 (119910) (8)

where

119881119895= int

119871119909

0

1205831198822

119895(119909) 119889119909 119881

119896= int

119871119910

0

1205831198822

119896(119910) 119889119910 (9)

119882119895(119909) and119882

119896(119910) are respectively the beam mode functions

in the 119909 and 119910 directions defined respectively as

119882119895 (119909) = Sin

120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

119882119896(119910) = Sin

120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

(10)

where 119860119895 119861119895 119862119895 119860119896 119861119896 and 119862

119896are constants and 120582

119895

120582119896are mode frequencies which are determined using the

appropriate boundary conditionsApplying the generalized two-dimensional integral trans-

form (7) (5) takes the form

1198851198601198651(0 119871119909 119871119910 119905) + 119885

1198601198652(0 119871119909 119871119910 119905) + 119882

119905119905(119895 119896 119905)

minus 1198851198611198791198611 (119905) minus 1198851198611198791198612 (119905) + 119885119862119882(119895 119896 119905)

+ 1198791198613 (119905) + 1198791198614 (119905) + 1198791198615 (119905)

=119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896(119910) 119889119909 119889119910

(11)

where

119885119860=119863

120583 119885

119861= 1198770 119885

119862=119870

120583 (12)

1198651(0 119871119909 119871119910 119905)

= int

119871119910

0

([119882119895 (119909)

1205973119882(119909 119910 119905)

1205971199093minus1198821015840

119895(119909)

1205972119882(119909 119910 119905)

1205971199092

+11988210158401015840

119895(119909)

120597119882 (119909 119910 119905)

120597119909minus119882101584010158401015840

119895(119909)119882 (119909 119910 119905)]

119871119909

0

times119882119896(119910) 119889119910

+ 2 [119882119895 (119909)

120597119882 (119909 119910 119905)

120597119909minus1198821015840

119895(119909)119882 (119909 119910 119905)]

times 11988210158401015840

119896(119910) 119889119910)

+ int

119871119909

0

(2[119882119896(119910)

120597119882 (119909 119910 119905)

120597119910minus1198821015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

4 Journal of Computational Engineering

times11988210158401015840

119895(119909) 119889119909

+ [119882119896(119910)

1205973119882(119909 119910 119905)

1205971199103

minus1198821015840

119896(119910)

1205972119882(119909 119910 119905)

1205971199102+11988210158401015840

119896(119910)

120597119882 (119909 119910 119905)

120597119910

minus119882101584010158401015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

119882119895 (119909) 119889119909)

(13)

1198652(0 119871119909 119871119910 119905)

= int

119871119910

0

int

119871119909

0

(119882 (119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910)

+ 2119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910)) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

(14)

1198791198611 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(15)

1198791198612 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199102119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (16)

1198791198613 (119905) =

119872

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199052119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(17)

1198791198614 (119905) = 2

119872119888

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

120597119905120597119909119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(18)

1198791198615 (119905) =

1198721198882

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(19)It is recalled that the equation of the free vibration of arectangular plate is given by

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052= 0

(20)

If the free vibration solution of the problem is set as119882(119909 119910 119905) = 119882

119895 (119909)119882119896 (119910) SinΩ119895119896119905 (21)

where Ω119895119896

is the natural circular frequency of a rectangularplate then substituting (21) into (20) yields

119863[1198821015840120592

119895(119909)119882119896(119910) + 2119882

10158401015840

119895(119909)119882

10158401015840

119896(119910) +119882

119895 (119909)1198821015840120592

119896(119910)]

minus 120583Ω2

119895119896119882119895 (119909)119882119896 (119910) = 0

(22)

It is well known that for a simply supported rectangular plateΩ2

119895119896is given by

Ω2

119895119896= 119863[

11989541205874

1198714119909

+ 2119895211989621205874

11987121199091198712119910

+11989641205874

1198714119910

] (23)

Multiplying (22) by119882(119909 119910 119905) and integrating with respect to119909 and 119910 between the limits 0 119871

119909and 0 119871

119910 respectively we

get

int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910) 119889119909 119889119910

+ 2int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

=120583

119863Ω2

119895119896int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(24)

In view of (14) we have

1198652(0 119871119909 119871119910) =

120583

119863Ω2

119895119896119882(119895 119896 119905) (25)

Since119882(119901 119902 119905) is just the coefficient of the generalized two-dimensional finite integral transform

119882(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)119882119901 (119909)119882119902 (119910) (26)

it follows that

11988210158401015840(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)11988210158401015840

119901(119909)119882119902 (119910)

(27)

Therefore the integrals (15) and (16) can be rewritten as

1198791198611 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867

2(119901 119895) 119865 (119902 119896) (28)

where

1198672(119901 119895) = int

119871119909

0

11988210158401015840

119901(119909)119882119895 (119909) 119889119909

119865 (119902 119896) = int

119871119910

0

119882119902(119910)119882

119896(119910) 119889119910

(29)

1198791198612 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896) (30)

Journal of Computational Engineering 5

where

119867(119901 119895) = int

119871119909

0

119882119901 (119909)119882119895 (119909) 119889119909

1198652(119902 119896) = int

119871119910

0

11988210158401015840

119902(119910)119882

119896(119910) 119889119910

(31)

In order to evaluate the integrals (17) (18) and (19) use ismade of the Fourier series representation of the Heavisidefunction namely

119867(119909 minus 119888119905) =1

4+1

120587

infin

sum

119899=0

Sin ((2119899 + 1) 120587 (119909 minus 119888119905))2119899 + 1

(32)

Similarly

119867(119910 minus 1199100) =

1

4+1

120587

infin

sum

119898=0

Sin ((2119898 + 1) 120587 (119910 minus 1199100))

2119898 + 1 (33)

Using (30) and (31) one obtains

1198791198613 (119905)

=119872

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905) 119865 (119902 119896)119867 (119901 119895)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119901 119895) 119865 (119902 119896)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119901 119895) 119865 (119902 119896)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119902 119896)119867 (119901 119895)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119902 119896)119867 (119901 119895)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119888(119898 119902 119896)

(34)

where

119867119904(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119867119888(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119865119904(119898 119902 119896) = int

119871119910

0

Sin (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

119865119888(119898 119902 119896) = int

119871119910

0

Cos (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

(35)

6 Journal of Computational Engineering

Similarly

1198791198614 (119905)

=2119872119888

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905(119901 119902 119905)119867

1(119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119901 119895) 119865 (119902 119896)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119888(119898 119902 119896)

(36)

where

1198671(119901 119895) = int

119871119909

0

1198821015840

119901(119909)119882119895 (119909) 119889119909

119867119904

1(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

119867119888

1(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

1198791198615 (119905)

=1198721198882

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882(119901 119902 119905)1198672(119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119901 119895) 119865 (119902 119896)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 3: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 3

The continuousmoving uniformly distributed force acting onthe plate is given by

119875119865(119909 119910 119905) = 119872119892119867 (119909 minus 119888119905)119867 (119910 minus 119910

0) (3)

where 119872 is the uniformly distributed mass 119867(sdot) is theHeaviside function The time 119905 is assumed to be limited tothat interval of time within which the mass119872 is on the platethat is

0 le 119888119905 le 119871119909 (4)

Thus in view of (2) and (3) (1) can be written as

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052+ 119870119882(119909 119910 119905)

minus 1205831198770[1205974119882(119909 119910 119905)

12059711990921205971199052+1205974119882(119909 119910 119905)

12059711991021205971199052]

+119872119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times [1205972119882(119909 119910 119905)

1205971199052+ 2119888

1205972119882(119909 119910 119905)

120597119905120597119909+ 11988821205972119882(119909 119910 119905)

1205971199092]

= 119872119892119867 (119909 minus 119888119905)119867 (119910 minus 1199100)

(5)

Equation (5) is the fourth order partial differential equationgoverning the flexural vibrations of a rectangular plate underthe action of uniformly distributed loadsThe boundary con-ditions are taken to be arbitrary while the initial conditionswithout any loss of generality are given by

119882(119909 119910 0) = 0 =120597119882(119909 119910 0)

120597119905 (6)

3 Method of Solution

The analysis of the dynamic response to a uniformly dis-tributed moving mass of isotropic rectangular plates restingon aWinkler foundation and subjected to arbitrary boundaryconditions is carried out in this sectionThe generalized two-dimensional integral transform is defined as

119882(119895 119896 119905) = int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (7)

with the inverse

119882(119909 119910 119905) =

infin

sum

119895=1

infin

sum

119896=1

120583

119881119895

120583

119881119896

119882(119895 119896 119905)119882119895 (119909)119882119896 (119910) (8)

where

119881119895= int

119871119909

0

1205831198822

119895(119909) 119889119909 119881

119896= int

119871119910

0

1205831198822

119896(119910) 119889119910 (9)

119882119895(119909) and119882

119896(119910) are respectively the beam mode functions

in the 119909 and 119910 directions defined respectively as

119882119895 (119909) = Sin

120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

119882119896(119910) = Sin

120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

(10)

where 119860119895 119861119895 119862119895 119860119896 119861119896 and 119862

119896are constants and 120582

119895

120582119896are mode frequencies which are determined using the

appropriate boundary conditionsApplying the generalized two-dimensional integral trans-

form (7) (5) takes the form

1198851198601198651(0 119871119909 119871119910 119905) + 119885

1198601198652(0 119871119909 119871119910 119905) + 119882

119905119905(119895 119896 119905)

minus 1198851198611198791198611 (119905) minus 1198851198611198791198612 (119905) + 119885119862119882(119895 119896 119905)

+ 1198791198613 (119905) + 1198791198614 (119905) + 1198791198615 (119905)

=119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896(119910) 119889119909 119889119910

(11)

where

119885119860=119863

120583 119885

119861= 1198770 119885

119862=119870

120583 (12)

1198651(0 119871119909 119871119910 119905)

= int

119871119910

0

([119882119895 (119909)

1205973119882(119909 119910 119905)

1205971199093minus1198821015840

119895(119909)

1205972119882(119909 119910 119905)

1205971199092

+11988210158401015840

119895(119909)

120597119882 (119909 119910 119905)

120597119909minus119882101584010158401015840

119895(119909)119882 (119909 119910 119905)]

119871119909

0

times119882119896(119910) 119889119910

+ 2 [119882119895 (119909)

120597119882 (119909 119910 119905)

120597119909minus1198821015840

119895(119909)119882 (119909 119910 119905)]

times 11988210158401015840

119896(119910) 119889119910)

+ int

119871119909

0

(2[119882119896(119910)

120597119882 (119909 119910 119905)

120597119910minus1198821015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

4 Journal of Computational Engineering

times11988210158401015840

119895(119909) 119889119909

+ [119882119896(119910)

1205973119882(119909 119910 119905)

1205971199103

minus1198821015840

119896(119910)

1205972119882(119909 119910 119905)

1205971199102+11988210158401015840

119896(119910)

120597119882 (119909 119910 119905)

120597119910

minus119882101584010158401015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

119882119895 (119909) 119889119909)

(13)

1198652(0 119871119909 119871119910 119905)

= int

119871119910

0

int

119871119909

0

(119882 (119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910)

+ 2119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910)) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

(14)

1198791198611 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(15)

1198791198612 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199102119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (16)

1198791198613 (119905) =

119872

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199052119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(17)

1198791198614 (119905) = 2

119872119888

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

120597119905120597119909119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(18)

1198791198615 (119905) =

1198721198882

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(19)It is recalled that the equation of the free vibration of arectangular plate is given by

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052= 0

(20)

If the free vibration solution of the problem is set as119882(119909 119910 119905) = 119882

119895 (119909)119882119896 (119910) SinΩ119895119896119905 (21)

where Ω119895119896

is the natural circular frequency of a rectangularplate then substituting (21) into (20) yields

119863[1198821015840120592

119895(119909)119882119896(119910) + 2119882

10158401015840

119895(119909)119882

10158401015840

119896(119910) +119882

119895 (119909)1198821015840120592

119896(119910)]

minus 120583Ω2

119895119896119882119895 (119909)119882119896 (119910) = 0

(22)

It is well known that for a simply supported rectangular plateΩ2

119895119896is given by

Ω2

119895119896= 119863[

11989541205874

1198714119909

+ 2119895211989621205874

11987121199091198712119910

+11989641205874

1198714119910

] (23)

Multiplying (22) by119882(119909 119910 119905) and integrating with respect to119909 and 119910 between the limits 0 119871

119909and 0 119871

119910 respectively we

get

int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910) 119889119909 119889119910

+ 2int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

=120583

119863Ω2

119895119896int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(24)

In view of (14) we have

1198652(0 119871119909 119871119910) =

120583

119863Ω2

119895119896119882(119895 119896 119905) (25)

Since119882(119901 119902 119905) is just the coefficient of the generalized two-dimensional finite integral transform

119882(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)119882119901 (119909)119882119902 (119910) (26)

it follows that

11988210158401015840(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)11988210158401015840

119901(119909)119882119902 (119910)

(27)

Therefore the integrals (15) and (16) can be rewritten as

1198791198611 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867

2(119901 119895) 119865 (119902 119896) (28)

where

1198672(119901 119895) = int

119871119909

0

11988210158401015840

119901(119909)119882119895 (119909) 119889119909

119865 (119902 119896) = int

119871119910

0

119882119902(119910)119882

119896(119910) 119889119910

(29)

1198791198612 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896) (30)

Journal of Computational Engineering 5

where

119867(119901 119895) = int

119871119909

0

119882119901 (119909)119882119895 (119909) 119889119909

1198652(119902 119896) = int

119871119910

0

11988210158401015840

119902(119910)119882

119896(119910) 119889119910

(31)

In order to evaluate the integrals (17) (18) and (19) use ismade of the Fourier series representation of the Heavisidefunction namely

119867(119909 minus 119888119905) =1

4+1

120587

infin

sum

119899=0

Sin ((2119899 + 1) 120587 (119909 minus 119888119905))2119899 + 1

(32)

Similarly

119867(119910 minus 1199100) =

1

4+1

120587

infin

sum

119898=0

Sin ((2119898 + 1) 120587 (119910 minus 1199100))

2119898 + 1 (33)

Using (30) and (31) one obtains

1198791198613 (119905)

=119872

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905) 119865 (119902 119896)119867 (119901 119895)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119901 119895) 119865 (119902 119896)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119901 119895) 119865 (119902 119896)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119902 119896)119867 (119901 119895)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119902 119896)119867 (119901 119895)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119888(119898 119902 119896)

(34)

where

119867119904(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119867119888(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119865119904(119898 119902 119896) = int

119871119910

0

Sin (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

119865119888(119898 119902 119896) = int

119871119910

0

Cos (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

(35)

6 Journal of Computational Engineering

Similarly

1198791198614 (119905)

=2119872119888

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905(119901 119902 119905)119867

1(119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119901 119895) 119865 (119902 119896)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119888(119898 119902 119896)

(36)

where

1198671(119901 119895) = int

119871119909

0

1198821015840

119901(119909)119882119895 (119909) 119889119909

119867119904

1(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

119867119888

1(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

1198791198615 (119905)

=1198721198882

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882(119901 119902 119905)1198672(119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119901 119895) 119865 (119902 119896)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 4: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

4 Journal of Computational Engineering

times11988210158401015840

119895(119909) 119889119909

+ [119882119896(119910)

1205973119882(119909 119910 119905)

1205971199103

minus1198821015840

119896(119910)

1205972119882(119909 119910 119905)

1205971199102+11988210158401015840

119896(119910)

120597119882 (119909 119910 119905)

120597119910

minus119882101584010158401015840

119896(119910)119882 (119909 119910 119905)]

119871119910

0

119882119895 (119909) 119889119909)

(13)

1198652(0 119871119909 119871119910 119905)

= int

119871119910

0

int

119871119909

0

(119882 (119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910)

+ 2119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910)) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

(14)

1198791198611 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(15)

1198791198612 (119905) = int

119871119910

0

int

119871119909

0

1205974119882(119909 119910 119905)

12059711990521205971199102119882119895 (119909)119882119896 (119910) 119889119909 119889119910 (16)

1198791198613 (119905) =

119872

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199052119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(17)

1198791198614 (119905) = 2

119872119888

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

120597119905120597119909119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(18)

1198791198615 (119905) =

1198721198882

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)

times1205972119882(119909 119910 119905)

1205971199092119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(19)It is recalled that the equation of the free vibration of arectangular plate is given by

119863[1205974119882(119909 119910 119905)

1205971199094+ 2

1205974119882(119909 119910 119905)

12059711990921205971199102+1205974119882(119909 119910 119905)

1205971199104]

+ 1205831205972119882(119909 119910 119905)

1205971199052= 0

(20)

If the free vibration solution of the problem is set as119882(119909 119910 119905) = 119882

119895 (119909)119882119896 (119910) SinΩ119895119896119905 (21)

where Ω119895119896

is the natural circular frequency of a rectangularplate then substituting (21) into (20) yields

119863[1198821015840120592

119895(119909)119882119896(119910) + 2119882

10158401015840

119895(119909)119882

10158401015840

119896(119910) +119882

119895 (119909)1198821015840120592

119896(119910)]

minus 120583Ω2

119895119896119882119895 (119909)119882119896 (119910) = 0

(22)

It is well known that for a simply supported rectangular plateΩ2

119895119896is given by

Ω2

119895119896= 119863[

11989541205874

1198714119909

+ 2119895211989621205874

11987121199091198712119910

+11989641205874

1198714119910

] (23)

Multiplying (22) by119882(119909 119910 119905) and integrating with respect to119909 and 119910 between the limits 0 119871

119909and 0 119871

119910 respectively we

get

int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)1198821015840120592

119895(119909)119882119896 (119910) 119889119909 119889119910

+ 2int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)11988210158401015840

119895(119909)119882

10158401015840

119896(119910) 119889119909 119889119910

+ int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882

1015840120592

119896(119910) 119889119909 119889119910

=120583

119863Ω2

119895119896int

119871119910

0

int

119871119909

0

119882(119909 119910 119905)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

(24)

In view of (14) we have

1198652(0 119871119909 119871119910) =

120583

119863Ω2

119895119896119882(119895 119896 119905) (25)

Since119882(119901 119902 119905) is just the coefficient of the generalized two-dimensional finite integral transform

119882(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)119882119901 (119909)119882119902 (119910) (26)

it follows that

11988210158401015840(119909 119910 119905) =

infin

sum

119901=1

infin

sum

119902=1

120583

119881119901

120583

119881119902

119882(119901 119902 119905)11988210158401015840

119901(119909)119882119902 (119910)

(27)

Therefore the integrals (15) and (16) can be rewritten as

1198791198611 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867

2(119901 119895) 119865 (119902 119896) (28)

where

1198672(119901 119895) = int

119871119909

0

11988210158401015840

119901(119909)119882119895 (119909) 119889119909

119865 (119902 119896) = int

119871119910

0

119882119902(119910)119882

119896(119910) 119889119910

(29)

1198791198612 (119905) =

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896) (30)

Journal of Computational Engineering 5

where

119867(119901 119895) = int

119871119909

0

119882119901 (119909)119882119895 (119909) 119889119909

1198652(119902 119896) = int

119871119910

0

11988210158401015840

119902(119910)119882

119896(119910) 119889119910

(31)

In order to evaluate the integrals (17) (18) and (19) use ismade of the Fourier series representation of the Heavisidefunction namely

119867(119909 minus 119888119905) =1

4+1

120587

infin

sum

119899=0

Sin ((2119899 + 1) 120587 (119909 minus 119888119905))2119899 + 1

(32)

Similarly

119867(119910 minus 1199100) =

1

4+1

120587

infin

sum

119898=0

Sin ((2119898 + 1) 120587 (119910 minus 1199100))

2119898 + 1 (33)

Using (30) and (31) one obtains

1198791198613 (119905)

=119872

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905) 119865 (119902 119896)119867 (119901 119895)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119901 119895) 119865 (119902 119896)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119901 119895) 119865 (119902 119896)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119902 119896)119867 (119901 119895)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119902 119896)119867 (119901 119895)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119888(119898 119902 119896)

(34)

where

119867119904(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119867119888(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119865119904(119898 119902 119896) = int

119871119910

0

Sin (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

119865119888(119898 119902 119896) = int

119871119910

0

Cos (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

(35)

6 Journal of Computational Engineering

Similarly

1198791198614 (119905)

=2119872119888

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905(119901 119902 119905)119867

1(119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119901 119895) 119865 (119902 119896)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119888(119898 119902 119896)

(36)

where

1198671(119901 119895) = int

119871119909

0

1198821015840

119901(119909)119882119895 (119909) 119889119909

119867119904

1(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

119867119888

1(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

1198791198615 (119905)

=1198721198882

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882(119901 119902 119905)1198672(119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119901 119895) 119865 (119902 119896)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 5: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 5

where

119867(119901 119895) = int

119871119909

0

119882119901 (119909)119882119895 (119909) 119889119909

1198652(119902 119896) = int

119871119910

0

11988210158401015840

119902(119910)119882

119896(119910) 119889119910

(31)

In order to evaluate the integrals (17) (18) and (19) use ismade of the Fourier series representation of the Heavisidefunction namely

119867(119909 minus 119888119905) =1

4+1

120587

infin

sum

119899=0

Sin ((2119899 + 1) 120587 (119909 minus 119888119905))2119899 + 1

(32)

Similarly

119867(119910 minus 1199100) =

1

4+1

120587

infin

sum

119898=0

Sin ((2119898 + 1) 120587 (119910 minus 1199100))

2119898 + 1 (33)

Using (30) and (31) one obtains

1198791198613 (119905)

=119872

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905119905(119901 119902 119905) 119865 (119902 119896)119867 (119901 119895)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119901 119895) 119865 (119902 119896)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119901 119895) 119865 (119902 119896)

+119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119902 119896)119867 (119901 119895)

minus119872

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119902 119896)119867 (119901 119895)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+119872

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119888(119898 119902 119896)

(34)

where

119867119904(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119867119888(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 120587119909119882119901 (119909)119882119895 (119909) 119889119909

119865119904(119898 119902 119896) = int

119871119910

0

Sin (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

119865119888(119898 119902 119896) = int

119871119910

0

Cos (2119898 + 1) 120587119910119882119902 (119910)119882119896 (119910) 119889119910

(35)

6 Journal of Computational Engineering

Similarly

1198791198614 (119905)

=2119872119888

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905(119901 119902 119905)119867

1(119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119901 119895) 119865 (119902 119896)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119888(119898 119902 119896)

(36)

where

1198671(119901 119895) = int

119871119909

0

1198821015840

119901(119909)119882119895 (119909) 119889119909

119867119904

1(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

119867119888

1(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

1198791198615 (119905)

=1198721198882

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882(119901 119902 119905)1198672(119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119901 119895) 119865 (119902 119896)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 6: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

6 Journal of Computational Engineering

Similarly

1198791198614 (119905)

=2119872119888

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882119905(119901 119902 119905)119867

1(119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119901 119895) 119865 (119902 119896)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119901 119895) 119865 (119902 119896)

+2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minus2119872119888

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+2119872119888

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119888(119898 119902 119896)

(36)

where

1198671(119901 119895) = int

119871119909

0

1198821015840

119901(119909)119882119895 (119909) 119889119909

119867119904

1(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

119867119888

1(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 1205871199091198821015840119901(119909)119882119895 (119909) 119889119909

1198791198615 (119905)

=1198721198882

16120583

infin

sum

119901=1

infin

sum

119902=1

1205832

119881119901119881119902

119882(119901 119902 119905)1198672(119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119901 119895) 119865 (119902 119896)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119901 119895) 119865 (119902 119896)

+1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesCos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minus1198721198882

4120583120587

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

timesSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 7: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 7

minus1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+1198721198882

1205831205872

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

1205832

119881119901119881119902

119882119905(119901 119902 119905)

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)

(37)

where

119867119904

2(119899 119901 119895) = int

119871119909

0

Sin (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119867119888

2(119899 119901 119895) = int

119871119909

0

Cos (2119899 + 1) 12058711990911988210158401015840119901(119909)119882119895 (119909) 119889119909

119872119892

120583int

119871119910

0

int

119871119909

0

119867(119909 minus 119888119905)119867 (119910 minus 1199100)119882119895 (119909)119882119896 (119910) 119889119909 119889119910

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(38)

where

119861119891(120582 119895) = minusCos 120582

119895+ 119860119895Sin 120582119895+ 119861119895Cos ℎ120582

119895+ 119862119895Sin ℎ120582

119895

119861119891 (120582 119896) = minusCos 120582119896 + 119860119896 Sin 120582119896 + 119861119896 Cos ℎ120582119896 + 119862119896 Sin ℎ120582119896

(39)

Substituting the above expressions in (11) and simplifying weobtain

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905) +

119870

120583119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905) 119867

2(119901 119895) 119865 (119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

119882119905119905(119901 119902 119905)119867 (119901 119895) 119865

2(119902 119896)]

+ Γ1119871119909119871119910

1

16[

infin

sum

119901=1

infin

sum

119902=1

119865 (119902 119896)119867 (119901 119895)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times119867119888(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867 (119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867 (119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119901 119895)

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 8: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

8 Journal of Computational Engineering

times119865119888(119898 119902 119896) ]

times119882119905119905(119901 119902 119905)

+ 21198881

16[

infin

sum

119901=1

infin

sum

119902=1

1198671(119901 119895) 119865 (119902 119896)] +

1

4120587

times [

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

1(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

1(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

1(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

1(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888

1(119899 119901 119895)119865

119888(119898 119902 119896)]

times119882119905(119901 119902 119905)

+ 11988821

16[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896)]

+1

4120587[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119904

2(119899 119901 119895) 119865 (119902 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1

times 119867119888

2(119899 119901 119895) 119865 (119902 119896))

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1

times 119865119904(119898 119902 119896)119867

2(119901 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1

times 119865119888(119898 119902 119896)119867

2(119901 119895))]

+1

1205872[

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119904(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119901 119895) 119865

119888(119898 119902 119896)

minus

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119901 119895) 119865

119904(119898 119902 119896)

+

infin

sum

119901=1

infin

sum

119902=1

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 9: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 9

times119867119888

2(119899 119901 119895) 119865

119888(119898 119902 119896)]

times119882(119901 119902 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(40)

where

Γ1=

119872

120583119871119909119871119910

(41)

Equation (40) is the generalized transformed coupled non-homogeneous second order ordinary differential equationdescribing the flexural vibration of the rectangular plateunder the action of uniformly distributed loads travellingat constant velocity It is now the fundamental equation ofour dynamical problem and holds for all arbitrary boundaryconditions The initial conditions are given by

119882(119895 119896 0) = 0 119882119905(119895 119896 0) = 0 (42)

In what follows two special cases of (40) are discussed

4 Solution of the Transformed Equation

41 Isotropic Rectangular Plate Traversed by UniformlyDistributed Moving Force An approximate model whichassumes the inertia effect of the uniformly distributedmovingmass119872 as negligible is obtained when the mass ratio Γ

1is set

to zero in (40) Thus setting Γ1= 0 in (40) one obtains

119882119905119905(119895 119896 119905) + Ω

2

119895119896119882(119895 119896 119905)

minus 1198770[

infin

sum

119901=1

infin

sum

119902=1

1198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)]

times119882119905119905(119901 119902 119905) +

119870

120583119882(119895 119896 119905)

=

119872119892119871119909119871119910

120583120582119895120582119896

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

sdot [119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus119861119896Cos ℎ

1205821198961199100

119871119910

minus 119862119896Sin ℎ

1205821198961199100

119871119910

]

(43)

This represents the classical case of a uniformly distributedmoving force problem associated with our dynamical systemEvidently an analytical solution to (43) is not possible Conse-quently we resort to the modified asymptotic technique dueto Struble discussed inNayfeh [24] By this technique we seekthemodified frequency corresponding to the frequency of thefree system due to the presence of the effect of the rotatoryinertia An equivalent free system operator defined by themodified frequency then replaces (43) To this end (43) isrearranged to take the form

119882119905119905(119895 119896 119905)

+ (

Ωlowast2

119898119891

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

)

times119882(119895 119896 119905)

minus1205761

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119901 119895) 119865 (119902 119896) + 119867 (119901 119895) 119865

2(119902 119896)

sdot 119882119905119905(119901 119902 119905)

=1198751

(1 minus 1205761119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

sdot [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(44)

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 10: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

10 Journal of Computational Engineering

where

Ωlowast2

119898119891= (Ω

2

119895119896+119870

120583) 120576

1=

1198770

119871119909119871119910

1198751=

119872119892119871119909119871119910

120583120582119895120582119896

119882(120582119896 1199100)

119882 (120582119896 1199100)

= 119861119891 (120582 119896) + Cos

1205821198961199100

119871119910

minus 119860119896Sin

1205821198961199100

119871119910

minus 119861119896Cos ℎ

1205821198961199100

119871119910

minus119862119896Sin ℎ

1205821198961199100

119871119910

(45)

We now set the right hand side of (44) to zero and consider aparameter 120578 lt 1 for any arbitrary ratio 120576

1 defined as

120578 =1205761

1 + 1205761

(46)

Then

1205761= 120578 + 119900 (120578

2) (47)

And consequently we have that

1

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

= 1 + 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

+ 119900 (1205782)

(48)

where10038161003816100381610038161003816120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]10038161003816100381610038161003816lt 1 (49)

Substituting (47) and (48) into the homogeneous part of (44)one obtains

119882119905119905(119895 119896 119905)

+ (Ωlowast2

119898119891+ 120578Ωlowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])119882 (119895 119896 119905)

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]

times119882119905119905(119901 119902 119905) = 0

(50)

When 120578 is set to zero in (50) one obtains a situationcorresponding to the case in which the rotatory inertia effecton the vibrations of the plate is regarded as negligible In sucha case the solution of (50) can be obtained as

119882(119895 119896 119905) = 119862119898119891

Cos [Ωlowast119898119891119905 minus 120601119898119891] (51)

where 119862119898119891

and 120601119898119891

are constants

Since 120578 lt 1 Strublersquos technique requires that the solutionto (50) be of the form [24]

119882(119895 119896 119905) = 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

+ 1205781198821(119895 119896 119905) + 119900 (120578

2)

(52)

where 119860(119895 119896 119905) and 120601(119895 119896 119905) are slowly varying functions oftime To obtain the modified frequency (52) and its deriva-tives are substituted into (50) After some simplifications andrearrangements one obtains

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]]

times 119860 (119895 119896 119905)Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119895 119896 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119895 119896 119905)]

minus 120578

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

1198711199091198711199101198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)

sdot 2Ωlowast

119898119891120601 (119901 119902 119905) minus Ω

lowast2

119898119891119860 (119901 119902 119905)

times Cos [Ωlowast119898119891119905 minus 120601 (119895 119896 119905)]

minus 2 (119901 119902 119905)Ωlowast

119898119891Sin [Ωlowast

119898119891119905 minus 120601 (119901 119902 119905)]

(53)

neglecting terms to 119900(1205782)The variational equations are obtained by equating the

coefficients of Sin[Ωlowast119898119891119905minus120601(119895 119896 119905)] and Cos[Ωlowast

119898119891119905minus120601(119895 119896 119905)]

on both sides of (53) to zero thus one obtains

minus 2 (119895 119896 119905) Ωlowast

119898119891= 0

[2Ωlowast

119898119891120601 (119895 119896 119905) + 120578Ω

lowast2

119898119891119871119909119871119910

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)]] = 0

(54)

Evaluating (54) one obtains

119860 (119895 119896 119905) = 119860119895119896

120601 (119895 119896 119905) = minus 120578Ωlowast

119898119891

119871119909119871119910

2

times [1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)] 119905 + 120601119891

(55)

where 119860119895119896and 120601

119891are constants

Therefore when the effect of the rotatory inertia cor-rection factor is considered the first approximation to thehomogeneous system is given by

119881 (119895 119896 119905) = 119860119895119896Cos [120574

119901119898119891119905 minus 120601119891] (56)

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 11: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 11

where

120574119901119898119891

= Ωlowast

119898119891

times 1 +120578

2(119871119909119871119910[1198672(119895 119895)119865 (119896 119896) + 119867(119895 119895)1198652(119896 119896)])

(57)

represents themodified natural frequency due to the presenceof rotatory inertia correction factor It is observed that when120578 = 0 we recover the frequency of the moving force problemwhen the rotatory inertia effect of the plate is neglectedThusto solve the nonhomogeneous equation (44) the differentialoperator which acts on 119882(119895 119896 119905) and 119882(119901 119902 119905) is nowreplaced by the equivalent free systemoperator defined by themodified frequency 120574

119901119898119891 that is

119882119905119905(119895 119896 119905) + 120574

2

119901119898119891119882(119895 119896 119905)

= 119875119901119898119891

[119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(58)

where

119875119901119898119891

=1198751

(1 minus 120578119871119909119871119910[1198672(119895 119895) 119865 (119896 119896) + 119867 (119895 119895) 119865

2 (119896 119896)])

(59)

To obtain the solution to (58) it is subjected to a Laplacetransform Thus solving (58) in conjunction with the initialcondition the solution is given by

119881 (119895 119896 119905)

= 119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722119888+ 1205742

119901119898119891)

]

]

(60)

where

120572119895=

120582119895119888

119871119909

(61)

Substituting (60) into (8) we have

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

119875119901119898119891

[

[

119861119891(120582 119895) (1 minus Cos 120574

119901119898119891119905)

120574119901119898119891

+

Cos120572119895119905 minus Cos 120574

119901119898119891119905

1205742

119901119898119891minus 1205722

119895

minus

119860119895(120574119901119898119891

Sin120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205742

119901119898119891minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119901119898119891119905)

1205722

119895+ 1205742

119901119898119891

minus

119862119895(120574119901119898119891

Sin ℎ120572119895119905 minus 120572119895Sin 120574119901119898119891

119905)

120574119901119898119891

(1205722

119895+ 1205742

119901119898119891)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+ 119860119896Cos

120582119896119910

119871119910

+ 119861119896Sin ℎ

120582119896119910

119871119910

+ 119862119896Cos ℎ

120582119896119910

119871119910

)

(62)

Equation (62) represents the transverse displacementresponse to a uniformly distributed force moving at constantvelocity for arbitrary boundary conditions of a rectangularplate incorporating the effects of rotatory inertia correctionfactor and resting on elastic foundation

42 Isotropic Rectangular Plate Traversed by Uniformly Dis-tributed Moving Mass In this section we consider the casein which the mass of the structure and that of the load areof comparable magnitude Under such condition the inertiaeffect of the uniformly distributedmovingmass is not negligi-ble Thus Γ

1= 0 and the solution to the entire equation (40)

is required This gives the moving mass problem An exactanalytical solution to this dynamical problem is not possibleAgain we resort to the modified asymptotic technique due toStruble discussed in Nayfeh [24] Evidently the homogenouspart of (40) can be replaced by a free system operator definedby the modified frequency due to the presence of rotatoryinertia correction factor 119877

0 To this end (40) can now be

rearranged to take the form

119882119905119905(119895 119896 119905) +

2119888Γ11198711199091198711199101198662(119895 119896 119905)

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882119905(119895 119896 119905)

+

1198882Γ11198711199091198711199101198663(119895 119896 119905) + 120574

2

119901119898119891

1 + Γ11198711199091198711199101198661(119895 119896 119905)

119882 (119895 119896 119905)

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 12: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

12 Journal of Computational Engineering

+

Γ1119871119909119871119910

1 + Γ11198711199091198711199101198661(119895 119896 119905)

times

infin

sum

119901=1

119901 = 119895

infin

sum

119902=1

119902 = 119896

119866119886(119901 119902 119905)119882

119905119905(119901 119902 119905) + 2119888119866

119887(119901 119902 119905)

times 119882119905(119901 119902 119905) + 119888

2119866119888(119901 119902 119905)119882 (119901 119902 119905)

=

119872119892119871119909119871119910119882(120582119896 1199100)

120583120582119895120582119896[1 + Γ

11198711199091198711199101198661(119895 119896 119905)]

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(63)

where

1198661(119895 119896 119905)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895119895))]

minus1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times119867119888(119899 119901 119895) 119865

119888(119898 119902 119896) ]

1198662(119895 119896 119905)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

1(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

1(119899 119895 119895) 119865

119888(119898 119896 119896)]

1198663(119895 119896 119905)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898119896119896)1198672(119895 119895))]

+1

1205872[

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119904

2(119899 119895 119895) 119865

119904(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Cos (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 13: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 13

times 119867119904

2(119899 119895 119895) 119865

119888(119898 119896 119896)

minus

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotCos (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119904(119898 119896 119896)

+

infin

sum

119899=0

infin

sum

119898=0

Sin (2119899 + 1) 1205871198881199052119899 + 1

sdotSin (2119898 + 1) 1205871199100

2119898 + 1

times 119867119888

2(119899 119895 119895) 119865

119888(119898 119896 119896) ]

119866119886(119901 119902 119905) = 119866

1(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119887(119901 119902 119905) = 119866

2(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

119866119888(119901 119902 119905) = 119866

3(119895 119896 119905)

1003816100381610038161003816119895=119901119896=119902

(64)

Going through similar argument as in the previous sectionwe obtain the first approximation to the homogenous systemwhen the effect of the mass of the uniformly distributed loadis considered as

119882(119895 119896 119905) = Δ119895119896119890minus120573(119895119896)119905 Cos [120574

119898119898119905 minus 120601119898] (65)

where 120601119898and Δ

119895119896are constants Consider

120573 (119895 119896) 119905 = 119888Γ119886119871119909119871119910119867119888(119895 119896) Γ

119886=

Γ1

1 + Γ1

(66)

where

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]

(67)

is called the modified natural frequency representing thefrequency of the free system due to the presence of theuniformly distributed moving mass and

119867119886(119895 119896)

=1

16119865 (119896 119896)1198672 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

2(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

2(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198672 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198672(119895 119895))]

119867119887(119895 119896)

=1

16119865 (119896 119896)119867 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)119867 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)119867 (119895 119895))]

119867119888(119895 119896)

=1

16119865 (119896 119896)1198671 (119895 119895)

+1

4120587[

infin

sum

119899=0

(Cos (2119899 + 1) 120587119888119905

2119899 + 1119867119904

1(119899 119895 119895) 119865 (119896 119896)

minusSin (2119899 + 1) 120587119888119905

2119899 + 1119867119888

1(119899 119895 119895) 119865 (119896 119896))

+

infin

sum

119898=0

(Cos (2119898 + 1) 1205871199100

2119898 + 1119865119904(119898 119896 119896)1198671 (119895 119895)

minusSin (2119898 + 1) 1205871199100

2119898 + 1119865119888(119898 119896 119896)1198671 (119895 119895))]

(68)

To solve the nonhomogeneous equation (63) the differentialoperator which acts on119882(119895 119896 119905) and119882(119901 119902 119905) is replaced bythe equivalent free system operator defined by the modifiedfrequency 120574

119898119898 that is

119882119905119905(119895 119896 119905) + 120574

2

119898119898119882(119895 119896 119905)

=

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 14: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

14 Journal of Computational Engineering

times [119861119891(120582 119895) + Cos

120582119895119888119905

119871119909

minus 119860119895Sin

120582119895119888119905

119871119909

minus 119861119895Cos ℎ

120582119895119888119905

119871119909

minus 119862119895Sin ℎ

120582119895119888119905

119871119909

]

(69)

Evidently (69) is analogous to (58) Thus using similarargument as in the previous section solution to (69) can beobtained as

119882(119909 119910 119905)

=

infin

sum

119895=1

infin

sum

119896=1

1

119881119895119881119896

Γ1198861198921198712

1199091198712

119910119882(120582119896 1199100)

120582119895120582119896

times [

[

119861119891(120582 119895) (1 minus Cos 120574

119898119898119905)

120574119898119898

+

Cos120572119895119905 minus Cos 120574

119898119898119905

1205742119898119898

minus 1205722

119895

minus

119860119895(120574119898119898

Sin120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205742119898119898

minus 1205722

119895)

minus

119861119895(Cos ℎ120572

119895119905 minus Cos 120574

119898119898119905)

1205722

119895+ 1205742119898119898

minus

119862119895(120574119898119898

Sin ℎ120572119895119905 minus 120572119895Sin 120574119898119898

119905)

120574119898119898

(1205722

119895+ 1205742119898119898

)

]

]

sdot (Sin120582119895119909

119871119909

+ 119860119895Cos

120582119895119909

119871119909

+ 119861119895Sin ℎ

120582119895119909

119871119909

+ 119862119895Cos ℎ

120582119895119909

119871119909

)

sdot (Sin120582119896119910

119871119910

+119860119896Cos

120582119896119910

119871119910

+119861119896Sin ℎ

120582119896119910

119871119910

+119862119896Cos ℎ

120582119896119910

119871119910

)

(70)

Equation (70) represents the transverse displacementresponse to uniformly distributed masses moving at constantvelocity of an isotropic rectangular plate resting on elasticfoundation for various end conditions

5 Illustrative Examples

In this section practical examples of classical boundaryconditions are selected to illustrate the analyses presented inthis paper

51 Rectangular Plate Clamped at Edge 119909 = 0 119909 = 119871119909with

Simple Supports at 119910 = 0 119910 = 119871119910 In this example the

rectangular plate has simple supports at the edges 119910 = 0

119910 = 119871119910and is clamped at edges 119909 = 0 119909 = 119871

119909 The boundary

conditions at such opposite edges are

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

1205972119882(119909 0 119905)

1205971199102= 0

1205972119882(119909 119871

119910 119905)

1205971199102= 0

(71)

and hence for normal modes

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

1205972119882119896 (0)

1205971199102= 0

1205972119882119896(119871119910)

1205971199102= 0

(72)

Using the boundary conditions (71) in (10) the followingvalues of the constants are obtained for the clamped edges

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(73)

119861119895= minus1 997904rArr 119861

119901= minus1

119862119895= minus119860

119895997904rArr 119862

119901= minus119860

119901

(74)

The frequency equation for the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (75)

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 15: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 15

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (76)

119881119895=120583119871119909

2

times 1 + 1198602

119895+ 1198612

119895+ 1198622

119895+1

120582119895

times [2119862119895minus 2119860119895119861119895minus 119861119895119862119895minus1

2(1 minus 119860

2

119895) Sin 2120582

119895

+ (1198612

119895+ 1198622

119895) Sin ℎ120582

119895sdot Cos ℎ120582

119895+ 2119860119895Sin2120582

119895

+ 2 (119861119895+ 119860119895119862119895) Sin 120582

119895Cos ℎ120582

119895

+ 2 (minus119861119895+ 119860119895119862119895) Sin ℎ120582

119895Cos 120582

119895

+ 2 (119862119895+ 119860119895119861119895) Sin ℎ120582

119895Sin 120582119895

+ 2 (minus119862119895+ 119860119895119861119895)Cos 120582

119895Cos ℎ120582

119895

+119861119895119862119895Cos ℎ2120582

119895]

(77)

119881119901is obtained by replacing subscript 119895 with 119901 in (77) For the

simple edges it is readily shown that

119860119896= 0 997904rArr 119860

119902= 0 119861

119896= 0 997904rArr 119861

119902= 0

119862119896= 0 997904rArr 119862

119902= 0

(78)

The corresponding frequency equation is

120582119896= 119896120587 997904rArr 120582

119902= 119902120587 (79)

119881119896=

120583119871119910

2 119881

119902=

120583119871119910

2 (80)

Thus the general solutions of the associated uniformlydistributed moving force and uniformly distributed movingmass problems of the simple-clamped rectangular plate areobtained by substituting the above results in (73) to (80) into(62) and (70)

52 Rectangular Plate Clamped at All Edges For a rectangularplate clamped at all edges both the deflection and the slopevanish at such endsThus the following boundary conditionspertain

119882(0 119910 119905) = 0 119882 (119871119909 119910 119905) = 0

119882 (119909 0 119905) = 0 119882 (119909 119871119910 119905) = 0

120597119882 (0 119910 119905)

120597119909= 0

120597119882 (119871119909 119910 119905)

120597119909= 0

120597119882 (119909 0 119905)

120597119910= 0

120597119882(119909 119871119910 119905)

120597119910= 0

(81)

and hence for normal modes we have

119882119895 (0) = 0 119882

119895(119871119909) = 0

119882119896 (0) = 0 119882

119896(119871119910) = 0

120597119882119895 (0)

120597119909= 0

120597119882119895(119871119909)

120597119909= 0

120597119882119896 (0)

120597119910= 0

120597119882119896(119871119910)

120597119910= 0

(82)

Using the boundary conditions (81)-(82) in (10) one obtainsthe following values of the constants for the clamped edges at119909 = 0 and 119909 = 119871

119909

119860119895=

Sin ℎ120582119895minus Sin 120582

119895

Cos 120582119895minus Cos ℎ120582

119895

997904rArr 119860119901=

Sin ℎ120582119901minus Sin 120582

119901

Cos 120582119901minus Cos ℎ120582

119901

(83)

119861119895= minus1 997904rArr 119861

119901= minus1 119862

119895= minus119860

119895997904rArr 119862

119901= minus119860

119901 (84)

The frequency equation of the clamped edges is given by

Cos 120582119895Cos ℎ120582

119895minus 1 = 0 (85)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (86)

119881119895is defined by (77) and119881

119901is obtained by replacing subscript

119895 with 119901For the clamped edges at 119910 = 0 and 119910 = 119871

119910 the same

process is followed to obtain

119860119896=

Sin ℎ120582119896minus Sin 120582

119896

Cos 120582119896minus Cos ℎ120582

119896

997904rArr 119860119902=

Sin ℎ120582119902minus Sin 120582

119902

Cos 120582119902minus Cos ℎ120582

119902

119861119896= minus1 997904rArr 119861

119902= minus1 119862

119896= minus119860

119896997904rArr 119862

119902= minus119860

119902

(87)

The frequency equation of the clamped edges is given by

Cos 120582119896Cos ℎ120582

119896minus 1 = 0 (88)

such that

1205821= 473004 120582

2= 785320 120582

3= 1099561 (89)

119881119896and 119881

119902are obtained by replacing subscript 119895 with 119896 and 119902

in (77) respectivelyThus the general solutions of the associated uniformly

distributed moving force and uniformly distributed movingmass problems of the clamped-clamped rectangular plate areobtained by substituting the above results in (83) to (89) into(62) and (70)

6 Discussion of the Analytical Solutions

When an undamped system such as this is studied one isinterested in the resonance conditions of the vibrating system

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 16: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

16 Journal of Computational Engineering

because the transverse displacement of the elastic rectangularplate may increase without bound Thus for both illustrativeexamples we observe that the isotropic rectangular platetraversed by a uniformly distributed moving force reaches astate of resonance whenever

120574119901119898119891

=

120582119895119888

119871119909

(90)

while the same plate under the action of a uniformly dis-tributedmovingmass experiences resonance effect whenever

120574119898119898

=

120582119895119888

119871119909

(91)

but

120574119898119898

= 120574119901119898119891

1 minus

Γ119886119871119909119871119910

2[119867119887(119895 119896) minus

1198882119867119886(119895 119896)

1205742

119901119898119891

]=

120582119895119888

119871119909

(92)

Equations (90) and (92) show that for the same natural fre-quency the critical speed for the same system consisting of anisotropic rectangular plate resting on a constant foundationand traversed by a uniformly distributed moving force isgreater than that traversed by a uniformly distributedmovingmass Thus resonance is reached earlier in the movingdistributed mass system than in the moving distributed forcesystem

7 Numerical Results and Discussion

In order to illustrate the foregoing analysis a rectangular plateof length 119871

119909= 457m and width 119871

119910= 914m is considered

The mass per unit length of the plate is 120583 = 2758291Kgmmass ratio Γ

1= 02 and bending rigidity 119863 = 10000 The

velocity of the travelling distributed load is 119888 = 15msThe values of the foundation modulus 119870 are varied between0Nm3 and 4000000Nm3 and the values of the rotatoryinertia correction factor 119877

0are varied between 005 and 95

In Figure 3 the transverse displacement response ofthe simple-clamped rectangular plate to moving distributedforces for various values of Foundation modulli 119870 and fixedvalue of rotatory inertia correction factor 119877

0= 05 is

displayed It is seen from the figure that as the values ofthe foundation modulli increase the response amplitude ofthe simple-clamped rectangular plate under the action ofdistributed forces decreases The same results are obtainedwhen the same simple-clamped rectangular plate is traversedby moving distributed masses as depicted in Figure 5 Theresponse of the simple-clamped rectangular plate to mov-ing distributed forces for various values of rotatory inertiacorrection factor 119877

0and fixed value of foundation modulli

119870 = 4000 is shown in Figure 4 It is seen that the displacementof the plate decreases with increase in the rotatory inertiacorrection factor The same behaviour characterizes thedeflection profile of the same simple-clamped rectangularplate when it is traversed by moving distributed massesas shown in Figure 6 In Figure 7 the transverse displace-ment response of the clamped-clamped rectangular plate to

00

1 2 3 4 5

Plat

e disp

lace

men

t (m

)

K = 0

K = 4000

K = 40000

K = 400000

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

2E minus 10

4E minus 10

Travelling time t (s)

Figure 3 Displacement response to distributed forces of simple-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus12E minus 09

minus1E minus 09

minus8E minus 10

minus6E minus 10

minus4E minus 10

minus2E minus 10

0

2E minus 10

4E minus 10

6E minus 10

R0 = 05

R0 = 25

R0 = 55

Travelling time t (s)

Figure 4 Displacement response to distributed forces of simple-clamped plate for various values of rotatory inertia correction factor1198770

moving distributed forces for various values of Foundationmodulli119870 and fixed value of rotatory inertia correction factor1198770= 05 is displayed It is seen from the figure that as

the values of the foundation modulli increase the responseamplitude of the clamped-clamped rectangular plate underthe action of distributed forces decreasesThe same behaviourcharacterizes the displacement profile of the same clamped-clamped rectangular plate when it is traversed by movingdistributed masses as shown in Figure 9 The response ofthe clamped-clamped rectangular plate tomoving distributedforces for various values of rotatory inertia correction factor1198770and fixed value of foundation modulli 119870 = 4000 is

shown in Figure 8 It is seen that the displacement of theplate decreaseswith increase in the rotatory inertia correctionfactor

In Figure 10 the transverse displacement response of theclamped-clamped rectangular plate to moving distributedmasses for various values of rotatory inertia correction factor

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 17: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 17

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus15E minus 08

minus1E minus 08

minus5E minus 09

0

5E minus 09

1E minus 08

K = 0

K = 4000

K = 400000

K = 4000000

Travelling time t (s)

Figure 5 Displacement response to distributed masses of simple-clamped plate for various values of foundation moduli 119870

Plat

e disp

lace

men

t (m

)

0 2 4 6

00000001

12E minus 07

14E minus 07

0

2E minus 08

4E minus 08

6E minus 08

8E minus 08

R0 = 05

R0 = 095

R0 = 15

Travelling time t (s)

Figure 6 Displacement response to distributed masses of simple-clamped plate for various values of rotatory inertia correction factor1198770

1198770and fixed value of foundation modulli119870 = 4000 is shown

It is seen that the displacement of the plate decreases withincrease in the rotatory inertia correction factor

Figure 11 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the simple-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000

and rotatory inertia correction factor 1198770

= 05 Clearlythe response amplitude of the moving distributed mass isgreater than that of the moving distributed force problemWhile Figure 12 depicts the comparison of the transverse dis-placement response for moving distributed force andmovingdistributed mass cases of the clamped-clamped rectangularplate for fixed values of foundation modulli 119870 = 4000 androtatory inertia correction factor 119877

0= 05 it is observed

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 50

2E minus 09

4E minus 09

6E minus 09

8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

1E minus 08

K = 0

K = 4000

K = 40000

K = 400000

Travelling time t (s)

Figure 7 Displacement response to distributed forces of clamped-clamped plate for various values of foundation moduli 119870

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

minus4E minus 09

minus2E minus 09

minus3E minus 09

minus5E minus 09

minus1E minus 09

0

2E minus 09

4E minus 09

3E minus 09

1E minus 09

5E minus 09

6E minus 09

R0 = 05

R0 = 35

R0 = 55

Travelling time t (s)

Figure 8 Displacement response to distributed forces of clamped-clamped plate for various values of rotatory inertia correction factor1198770

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

K = 0

K = 40000

K = 400000

K = 4000000

Travelling time t (s)

Figure 9 Displacement response to distributed masses of clamped-clamped plate for various values of foundation moduli 119870

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 18: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

18 Journal of Computational EngineeringPl

ate d

ispla

cem

ent (

m)

0 1 2 3 4 5

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

25E minus 07

00000003

R0 = 05

R0 = 45

R0 = 95

Travelling time t (s)

Figure 10Displacement response to distributedmasses of clamped-clamped plate for various values of rotatory inertia correction factor1198770

0 1 2 3 4 5

Plat

e disp

lace

men

t (m

)

Moving forceMoving mass

minus12E minus 08

minus1E minus 08

minus8E minus 09

minus6E minus 09

minus4E minus 09

minus2E minus 09

0

2E minus 09

4E minus 09

6E minus 09

8E minus 09

Travelling time t (s)

Figure 11 Comparison of displacement response of distributedforce and distributed mass of simple-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

that the response amplitude of the moving distributed massis greater than that of the moving distributed force problem

8 Conclusion

In this paper the problem of the flexural vibrations of arectangular plate having arbitrary supports at both ends ispresented The solution technique suitable for all variants ofclassical boundary conditions involves using the generalizedtwo-dimensional integral transform to reduce the fourthorder partial differential equation governing the vibrationof the plate to a second order ordinary differential equationwhich is then treated with the modified asymptotic methodof Struble The closed form solutions obtained are analyzedand numerical analyses in plotted curves were presentedResults show that as the foundation moduli 119870 and rotatory

Plat

e disp

lace

men

t (m

)

0 1 2 3 4 5

Moving forceMoving mass

minus15E minus 07

minus1E minus 07

minus5E minus 08

0

5E minus 08

00000001

15E minus 07

00000002

Travelling time t (s)

Figure 12 Comparison of displacement response of distributedforce and distributedmass of clamped-clamped rectangular plate forfixed values of 119870 = 4000 and 119877

0= 05

inertia correction factor1198770increase the response amplitudes

of the dynamic system decrease for all illustrative examplesconsidered Analytical solutions further show that for thesame natural frequency the critical speed for the systemtraversed by uniformly distributed moving forces at constantspeed is greater than that of the uniformly distributed mov-ing mass problem for both clamped-clamped and simple-clamped end conditions Hence resonance is reached earlierin the moving distributed mass system It is clearly seen thatfor both end conditions under consideration the responseamplitude of the uniformly distributed moving mass systemis higher than that of the uniformly distributed movingforce system for fixed values of rotatory inertia correctionfactor and foundationmoduliThus higher values of rotatoryinertia correction factor and foundation moduli reduce therisk factor of resonance in a vibrating system

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] S Sadiku and H H E Leipholz ldquoOn the dynamics of elasticsystems with moving concentrated massesrdquo Ingenieur-Archivvol 57 no 3 pp 223ndash242 1987

[2] G V Rao ldquoLinear dynamics of an elastic beam under movingloadsrdquo Journal of Vibration andAcoustics vol 122 no 3 pp 281ndash289 2000

[3] Y-H Chen and C-Y Li ldquoDynamic response of elevated high-speed railwayrdquo Journal of Bridge Engineering vol 5 no 2 pp124ndash130 2000

[4] E Savin ldquoDynamic amplification factor and response spectrumfor the evaluation of vibrations of beams under successivemoving loadsrdquo Journal of Sound and Vibration vol 248 no 2pp 267ndash288 2001

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 19: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

Journal of Computational Engineering 19

[5] S T Oni and T O Awodola ldquoVibrations under a moving loadof a non-uniformRayleigh beamonvariable elastic foundationrdquoJournal of the Nigerian Association of Mathematical Physics vol7 pp 191ndash206 2003

[6] S T Oni and B Omolofe ldquoDynamic Analysis of a prestressedelastic beam with general boundary conditions under movingloads at varying velocitiesrdquo Journal of Engineering and Engineer-ing Technology FUTA vol 4 no 1 pp 55ndash72 2005

[7] B Omolofe and S O Ajibola ldquoOn the transversemotions underheavy loads of thin beams with variable prestressrdquo Journal of theNigerian Association ofMathematical Physics vol 9 pp 127ndash1422005

[8] G Muscolino and A Palmeri ldquoResponse of beams restingon viscoelastically damped foundation to moving oscillatorsrdquoInternational Journal of Solids and Structures vol 44 no 5 pp1317ndash1336 2007

[9] J A Gbadeyan and S T Oni ldquoDynamic response to movingconcentrated masses of elastic plates on a non-Winkler elasticfoundationrdquo Journal of Sound and Vibration vol 154 no 2 pp343ndash358 1992

[10] S T Oni ldquoFlexural vibrations under Moving Loads of Isotropicrectangular plates on a Non-Winkler elastic foundationrdquo Jour-nal of the Nigerian Society of Engineers vol 35 no 1 pp 18ndash272000

[11] M-H Huang and D P Thambiratnam ldquoDeflection responseof plate on winkler foundation to moving accelerated loadsrdquoEngineering Structures vol 23 no 9 pp 1134ndash1141 2001

[12] M R Shadnam M Mofid and J E Akin ldquoOn the dynamicresponse of rectangular plate with moving massrdquo Thin-WalledStructures vol 39 no 9 pp 797ndash806 2001

[13] S W Alisjahbana ldquoDynamic response of clamped orthotropicplates to dynamic moving loadsrdquo in Proceedings of the 13thWorld Conference on Earthquake Engineering Paper no 3176Vancouver BC Canada August 2004

[14] J-S Wu M-L Lee and T-S Lai ldquoThe Dynamic analysis of aflat plate under a moving load by the finite element methodrdquoInternational Journal for Numerical Methods in Engineering vol24 no 4 pp 743ndash762 1987

[15] R-T Wang and T-Y Lin ldquoRandom vibration of multi-spanmindlin plate due to moving loadrdquo Journal of the ChineseInstitute of Engineers vol 21 no 3 pp 347ndash356 1998

[16] J A Gbadeyan and M S Dada ldquoDynamic response of plateson Pasternak foundation to distributed moving loadsrdquo Journalof Nigerian Association of Mathematical Physics vol 5 pp 184ndash200 2001

[17] M S Dada Vibration analysis of elastic plates under uniformpartially distributed moving loads [PhD thesis] University ofIlorin Ilorin Nigeria 2002

[18] M A Usman ldquoDynamic response of a Bernoulli beam onWinkler foundation under the action of partially distributedloadrdquoNigerian Journal of Mathematics and Applications vol 16no 1 pp 128ndash150 2003

[19] I A Adetunde Dynamic analysis of Rayleigh beam carryingan added mass and traversed by uniform partially distributedmoving loads [PhD thesis] University of Ilorin Ilorin Nigeria2003

[20] J AGbadeyan andM SDada ldquoDynamic response of aMindlinelastic rectangular plate under a distributed moving massrdquoInternational Journal of Mechanical Sciences vol 48 no 3 pp323ndash340 2006

[21] N D Beskou and D DTheodorakopoulos ldquoDynamic effects ofmoving loads on road pavements a reviewrdquo Soil Dynamics andEarthquake Engineering vol 31 no 4 pp 547ndash567 2011

[22] J V Amiri A NikkhooM R Davoodi andM E HassanabadildquoVibration analysis of a Mindlin elastic plate under a movingmass excitation by eigenfunction expansion methodrdquo Thin-Walled Structures vol 62 pp 53ndash64 2013

[23] L Fryba Vibrations of Solids and Structures Under MovingLoads Noordhoff Groningen The Netherlands 1972

[24] A H Nayfey Perturbation Methods John Wiley amp Sons NewYork NY USA 1973

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 20: Research Article Dynamic Analysis under Uniformly ...downloads.hindawi.com/archive/2014/140407.pdf · Hence resonance is reached earlier in the ... as a Fourier series and the use

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of