11
Research Article On a Class of -Bernoulli, -Euler, and -Genocchi Polynomials N. I. Mahmudov and M. Momenzadeh Eastern Mediterranean University, Gazimagusa, Northern Cyprus, Turkey Correspondence should be addressed to M. Momenzadeh; [email protected] Received 20 January 2014; Revised 3 April 2014; Accepted 3 April 2014; Published 28 April 2014 Academic Editor: Soļ¬ya Ostrovska Copyright Ā© 2014 N. I. Mahmudov and M. Momenzadeh. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main purpose of this paper is to introduce and investigate a class of -Bernoulli, -Euler, and -Genocchi polynomials. e -analogues of well-known formulas are derived. In addition, the -analogue of the Srivastava-PintĀ“ er theorem is obtained. Some new identities, involving -polynomials, are proved. 1. Introduction roughout this paper, we always make use of the classical deļ¬nition of quantum concepts as follows. e -shiļ¬…ed factorial is deļ¬ned by (; ) 0 = 1, (; ) = āˆ’1 āˆ =0 (1 āˆ’ ) , āˆˆ N, (; ) āˆž = āˆž āˆ =0 (1 āˆ’ ) , < 1, āˆˆ C. (1) It is known that (; ) = āˆ‘ =0 [ ] (1/2)(āˆ’1) (āˆ’1) . (2) e -numbers and -factorial are deļ¬ned by [] = 1āˆ’ 1āˆ’ , ( Ģø =1, āˆˆ C); [0] ! = 1, [] ! = [] [ āˆ’ 1] !. (3) e -polynomial coeļ¬ƒcient is deļ¬ned by [ ] = (; ) (; ) āˆ’ (; ) , ( ā©½ , , āˆˆ N). (4) In the standard approach to the -calculus two exponen- tial functions are used, these -exponential functions and improved type -exponential function (see [1]) are deļ¬ned as follows: () = āˆž āˆ‘ =0 [] ! = āˆž āˆ =0 1 (1 āˆ’ (1 āˆ’ ) ) , 0< < 1, || < 1 1āˆ’ , () = 1/ () = āˆž āˆ‘ =0 (1/2)(āˆ’1) [] ! = āˆž āˆ =0 (1 + (1 āˆ’ ) ) , 0< < 1, āˆˆ C, E () = ( 2 ) ( 2 )= āˆž āˆ‘ =0 (āˆ’1, ) 2 [] ! = āˆž āˆ =0 (1 + (1 āˆ’ ) (/2)) (1 āˆ’ (1 āˆ’ ) (/2)) , 0 < < 1, ||< 2 1āˆ’ . (5) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 696454, 10 pages http://dx.doi.org/10.1155/2014/696454

Research Article -Bernoulli, -Euler, and -Genocchi Polynomialsdownloads.hindawi.com/journals/aaa/2014/696454.pdf-Bernoulli, -Euler, and -Genocchi numbers and polyno-mials in order

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Research ArticleOn a Class of š‘ž-Bernoulli, š‘ž-Euler, and š‘ž-Genocchi Polynomials

    N. I. Mahmudov and M. Momenzadeh

    Eastern Mediterranean University, Gazimagusa, Northern Cyprus, Turkey

    Correspondence should be addressed to M. Momenzadeh; [email protected]

    Received 20 January 2014; Revised 3 April 2014; Accepted 3 April 2014; Published 28 April 2014

    Academic Editor: Sofiya Ostrovska

    Copyright Ā© 2014 N. I. Mahmudov and M. Momenzadeh. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work isproperly cited.

    The main purpose of this paper is to introduce and investigate a class of š‘ž-Bernoulli, š‘ž-Euler, and š‘ž-Genocchi polynomials. Theš‘ž-analogues of well-known formulas are derived. In addition, the š‘ž-analogue of the Srivastava-PinteĢr theorem is obtained. Somenew identities, involving š‘ž-polynomials, are proved.

    1. Introduction

    Throughout this paper, we always make use of the classicaldefinition of quantum concepts as follows.

    The š‘ž-shifted factorial is defined by

    (š‘Ž; š‘ž)0= 1, (š‘Ž; š‘ž)

    š‘›=

    š‘›āˆ’1

    āˆ

    š‘—=0

    (1 āˆ’ š‘žš‘—š‘Ž) , š‘› āˆˆ N,

    (š‘Ž; š‘ž)āˆž=

    āˆž

    āˆ

    š‘—=0

    (1 āˆ’ š‘žš‘—š‘Ž) ,

    š‘ž < 1, š‘Ž āˆˆ C.

    (1)

    It is known that

    (š‘Ž; š‘ž)š‘›=

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    š‘ž(1/2)š‘˜(š‘˜āˆ’1)

    (āˆ’1)š‘˜š‘Žš‘˜. (2)

    The š‘ž-numbers and š‘ž-factorial are defined by

    [š‘Ž]š‘ž =1 āˆ’ š‘žš‘Ž

    1 āˆ’ š‘ž, (š‘ž Ģø= 1, š‘Ž āˆˆ C) ;

    [0]š‘ž! = 1, [š‘›]š‘ž! = [š‘›]š‘ž[š‘› āˆ’ 1]š‘ž!.

    (3)

    The š‘ž-polynomial coefficient is defined by

    [š‘›

    š‘˜]

    š‘ž

    =(š‘ž; š‘ž)š‘›

    (š‘ž; š‘ž)š‘›āˆ’š‘˜(š‘ž; š‘ž)š‘˜

    , (š‘˜ ā©½ š‘›, š‘˜, š‘› āˆˆ N) . (4)

    In the standard approach to the š‘ž-calculus two exponen-tial functions are used, these š‘ž-exponential functions andimproved type š‘ž-exponential function (see [1]) are defined asfollows:

    š‘’š‘ž(š‘§) =

    āˆž

    āˆ‘

    š‘›=0

    š‘§š‘›

    [š‘›]š‘ž!=

    āˆž

    āˆ

    š‘˜=0

    1

    (1 āˆ’ (1 āˆ’ š‘ž) š‘žš‘˜š‘§),

    0 <š‘ž < 1, |š‘§| <

    11 āˆ’ š‘ž

    ,

    šøš‘ž (š‘§) = š‘’1/š‘ž (š‘§) =

    āˆž

    āˆ‘

    š‘›=0

    š‘ž(1/2)š‘›(š‘›āˆ’1)

    š‘§š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ

    š‘˜=0

    (1 + (1 āˆ’ š‘ž) š‘žš‘˜š‘§) , 0 <

    š‘ž < 1, š‘§ āˆˆ C,

    Eš‘ž(š‘§) = š‘’

    š‘ž(š‘§

    2)šøš‘ž(š‘§

    2) =

    āˆž

    āˆ‘

    š‘›=0

    (āˆ’1, š‘ž)š‘›

    2š‘›

    š‘§š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ

    š‘˜=0

    (1 + (1 āˆ’ š‘ž) š‘žš‘˜(š‘§/2))

    (1 āˆ’ (1 āˆ’ š‘ž) š‘žš‘˜ (š‘§/2)), 0 < š‘ž < 1, |š‘§|<

    2

    1 āˆ’ š‘ž.

    (5)

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014, Article ID 696454, 10 pageshttp://dx.doi.org/10.1155/2014/696454

  • 2 Abstract and Applied Analysis

    The form of improved type of š‘ž-exponential function Eš‘ž(š‘§)

    motivated us to define a new š‘ž-addition and š‘ž-subtraction as

    (š‘„ āŠ•š‘žš‘¦)š‘›

    :=

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘˜(āˆ’1, š‘ž)

    š‘›āˆ’š‘˜

    2š‘›š‘„š‘˜š‘¦š‘›āˆ’š‘˜,

    š‘› = 0, 1, 2, . . . ,

    (š‘„āŠ–š‘žš‘¦)š‘›

    :=

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘˜(āˆ’1, š‘ž)

    š‘›āˆ’š‘˜

    2š‘›š‘„š‘˜(āˆ’š‘¦)š‘›āˆ’š‘˜,

    š‘› = 0, 1, 2, . . . .

    (6)

    It follows that

    Eš‘ž (š‘”š‘„)Eš‘ž (š‘”š‘¦) =

    āˆž

    āˆ‘

    š‘›=0

    (š‘„ āŠ•š‘žš‘¦)š‘› š‘”š‘›

    [š‘›]š‘ž!. (7)

    The Bernoulli numbers {šµš‘š}š‘šā‰„0

    are rational numbers in asequence defined by the binomial recursion formula:

    š‘š

    āˆ‘

    š‘˜=0

    (š‘š

    š‘˜)šµš‘˜āˆ’ šµš‘š= {

    1, š‘š = 1,

    0, š‘š > 1,(8)

    or equivalently, the generating function

    āˆž

    āˆ‘

    š‘˜=0

    šµš‘˜

    š‘”š‘˜

    š‘˜!=

    š‘”

    š‘’š‘” āˆ’ 1. (9)

    š‘ž-Analogues of the Bernoulli numbers were first studiedby Carlitz [2] in the middle of the last century when heintroduced a new sequence {š›½

    š‘š}š‘šā©¾0

    :

    š‘š

    āˆ‘

    š‘˜=0

    (š‘š

    š‘˜)š›½š‘˜š‘žš‘˜+1

    āˆ’ š›½š‘š= {

    1, š‘š = 1,

    0, š‘š > 1.(10)

    Here and in the remainder of the paper, for the parameter š‘žwe make the assumption that |š‘ž| < 1. Clearly we recover (8)if we let š‘ž ā†’ 1 in (10). The š‘ž-binomial formula is known as

    (1 āˆ’ š‘Ž)š‘›

    š‘ž= (š‘Ž; š‘ž)

    š‘›=

    š‘›āˆ’1

    āˆ

    š‘—=0

    (1 āˆ’ š‘žš‘—š‘Ž)

    =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    š‘ž(1/2)š‘˜(š‘˜āˆ’1)

    (āˆ’1)š‘˜š‘Žš‘˜.

    (11)

    The above š‘ž-standard notation can be found in [3].Carlitz has introduced the š‘ž-Bernoulli numbers and poly-

    nomials in [2]. Srivastava and PinteĢr proved some relationsand theorems between the Bernoulli polynomials and Eulerpolynomials in [4]. They also gave some generalizationsof these polynomials. In [4ā€“16], the authors investigatedsome properties of the š‘ž-Euler polynomials and š‘ž-Genocchipolynomials. They gave some recurrence relations. In [17],Cenkci et al. gave the š‘ž-extension of Genocchi numbers ina different manner. In [18], Kim gave a new concept for theš‘ž-Genocchi numbers and polynomials. In [19], Simsek et al.investigated the š‘ž-Genocchi zeta function and š‘™-function by

    using generating functions andMellin transformation.Thereare numerous recent studies on this subject by, among manyother authors, Cigler [20], Cenkci et al. [17, 21], Choi et al.[22], Cheon [23], Luo and Srivastava [8ā€“10], Srivastava et al.[4, 24], Nalci and Pashaev [25] Gaboury and Kurt, [26], Kimet al. [27], and Kurt [28].

    We first give the definitions of the š‘ž-numbers and š‘ž-polynomials. It should be mentioned that the definition of š‘ž-Bernoulli numbers in Definition 1 can be found in [25].

    Definition 1. Let š‘ž āˆˆ C, 0 < |š‘ž| < 1. The š‘ž-Bernoulli numbersbš‘›,š‘ž

    and polynomials Bš‘›,š‘ž(š‘„, š‘¦) are defined by means of the

    generating functions:

    BĢ‚ (š‘”) :=š‘”š‘’š‘ž(āˆ’š‘”/2)

    š‘’š‘ž (š‘”/2) āˆ’ š‘’š‘ž (āˆ’š‘”/2)

    =š‘”

    Eš‘ž (š‘”) āˆ’ 1

    =

    āˆž

    āˆ‘

    š‘›=0

    bš‘›,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!, |š‘”| < 2šœ‹,

    š‘”

    Eš‘ž (š‘”) āˆ’ 1

    Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦)

    =

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!, |š‘”| < 2šœ‹.

    (12)

    Definition 2. Let š‘ž āˆˆ C, 0 < |š‘ž| < 1. The š‘ž-Euler numberseš‘›,š‘ž

    and polynomials Eš‘›,š‘ž(š‘„, š‘¦) are defined by means of the

    generating functions:

    EĢ‚ (š‘”) :=2š‘’š‘ž(āˆ’š‘”/2)

    š‘’š‘ž (š‘”/2) + š‘’š‘ž (āˆ’š‘”/2)

    =2

    Eš‘ž (š‘”) + 1

    =

    āˆž

    āˆ‘

    š‘›=0

    eš‘›,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!, |š‘”| < šœ‹,

    2

    Eš‘ž(š‘”) + 1

    Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦)

    =

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!, |š‘”| < šœ‹.

    (13)

    Definition 3. Let š‘ž āˆˆ C, 0 < |š‘ž| < 1.The š‘ž-Genocchi numbersgš‘›,š‘ž

    and polynomials Gš‘›,š‘ž(š‘„, š‘¦) are defined by means of the

    generating functions:

    GĢ‚ (š‘”) :=2š‘”š‘’š‘ž(āˆ’š‘”/2)

    š‘’š‘ž(š‘”/2) + š‘’

    š‘ž(āˆ’š‘”/2)

    =2š‘”

    Eš‘ž(š‘”) + 1

    =

    āˆž

    āˆ‘

    š‘›=0

    gš‘›,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!, |š‘”| < šœ‹,

    2š‘”

    Eš‘ž(š‘”) + 1

    Eš‘ž (š‘”š‘„)Eš‘ž (š‘”š‘¦)

    =

    āˆž

    āˆ‘

    š‘›=0

    Gš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!, |š‘”| < šœ‹.

    (14)

  • Abstract and Applied Analysis 3

    Note that Cigler [20] defined š‘ž-Genocchi numbers as

    š‘”š‘’š‘ž (š‘”) + š‘’š‘ž (āˆ’š‘”)

    š‘’š‘ž(š‘”) + š‘’

    š‘ž(āˆ’š‘”)

    =

    āˆž

    āˆ‘

    š‘›=0

    š‘”2š‘›,š‘ž

    (āˆ’1)š‘›āˆ’1(āˆ’š‘ž; š‘ž)

    2š‘›āˆ’1š‘”2š‘›

    [2š‘›]š‘ž!. (15)

    Then comparing gš‘›,š‘ž

    with š‘”š‘›,š‘ž, we see that

    (āˆ’1)š‘›āˆ’122š‘›+1

    g2š‘›+2,š‘ž

    = (āˆ’š‘ž; š‘ž)2š‘›+1

    š‘”2š‘›+2,š‘ž

    . (16)

    Definition 4. Let š‘ž āˆˆ C, 0 < |š‘ž| < 1. The š‘ž-tangent numbersTš‘›,š‘ž

    are defined by means of the generating functions:

    tanhš‘žš‘” = āˆ’š‘– tan

    š‘ž (š‘–š‘”) =š‘’š‘ž (š‘”) āˆ’ š‘’š‘ž (āˆ’š‘”)

    š‘’š‘ž(š‘”) + š‘’

    š‘ž(āˆ’š‘”)

    =Eš‘ž (2š‘”) āˆ’ 1

    Eš‘ž(2š‘”) + 1

    =

    āˆž

    āˆ‘

    š‘›=1

    T2š‘›+1,š‘ž

    (āˆ’1)š‘˜š‘”2š‘›+1

    [2š‘› + 1]š‘ž!.

    (17)

    It is obvious that, by letting š‘ž tend to 1 from the left side,we lead to the classic definition of these polynomials:

    bš‘›,š‘ž:= Bš‘›,š‘ž (0) , lim

    š‘žā†’1āˆ’

    Bš‘›,š‘ž (š‘„) = šµš‘› (š‘„) ,

    limš‘žā†’1

    āˆ’

    Bš‘›,š‘ž(š‘„, š‘¦) = šµ

    š‘›(š‘„ + š‘¦) , lim

    š‘žā†’1āˆ’

    bš‘›,š‘ž= šµš‘›,

    eš‘›,š‘ž:= Eš‘›,š‘ž (0) , lim

    š‘žā†’1āˆ’

    Eš‘›,š‘ž (š‘„) = šøš‘› (š‘„) ,

    limš‘žā†’1

    āˆ’

    Eš‘›,š‘ž(š‘„, š‘¦) = šø

    š‘›(š‘„ + š‘¦) , lim

    š‘žā†’1āˆ’

    eš‘›,š‘ž= šøš‘›,

    gš‘›,š‘ž:= Gš‘›,š‘ž(0) , lim

    š‘žā†’1āˆ’

    Gš‘›,š‘ž(š‘„) = šŗ

    š‘›(š‘„) ,

    limš‘žā†’1

    āˆ’

    Gš‘›,š‘ž(š‘„, š‘¦) = šŗ

    š‘›(š‘„ + š‘¦) lim

    š‘žā†’1āˆ’

    gš‘›,š‘ž= šŗš‘›.

    (18)

    Here šµš‘›(š‘„), šø

    š‘›(š‘„), and šŗ

    š‘›(š‘„) denote the classical Bernoulli,

    Euler, and Genocchi polynomials, respectively, which aredefined by

    š‘”

    š‘’š‘” āˆ’ 1š‘’š‘”š‘„=

    āˆž

    āˆ‘

    š‘›=0

    šµš‘›(š‘„)

    š‘”š‘›

    š‘›!,

    2

    š‘’š‘” + 1š‘’š‘”š‘„=

    āˆž

    āˆ‘

    š‘›=0

    šøš‘›(š‘„)

    š‘”š‘›

    š‘›!,

    2š‘”

    š‘’š‘” + 1š‘’š‘”š‘„=

    āˆž

    āˆ‘

    š‘›=0

    šŗš‘› (š‘„)

    š‘”š‘›

    š‘›!.

    (19)

    The aim of the present paper is to obtain some resultsfor the above newly defined š‘ž-polynomials. It should bementioned that š‘ž-Bernoulli and š‘ž-Euler polynomials in ourdefinitions are polynomials of š‘„ and š‘¦ and when š‘¦ = 0,they are polynomials of š‘„. First advantage of this approach isthat for š‘ž ā†’ 1āˆ’, B

    š‘›,š‘ž(š‘„, š‘¦) (E

    š‘›,š‘ž(š‘„, š‘¦), G

    š‘›,š‘ž(š‘„, š‘¦)) becomes

    the classical BernoulliBš‘›(š‘„ + š‘¦) (EulerE

    š‘›(š‘„ + š‘¦), Genocchi

    Gš‘›,š‘ž(š‘„, š‘¦)) polynomial and wemay obtain the š‘ž-analogues of

    well-known results, for example, Srivastava and PinteĢr [11],Cheon [23], and so forth. Second advantage is that, similarto the classical case, odd numbered terms of the Bernoullinumbers b

    š‘˜,š‘žand the Genocchi numbers g

    š‘˜,š‘žare zero, and

    even numbered terms of the Euler numbers eš‘›,š‘ž

    are zero.

    2. Preliminary Results

    In this section we will provide some basic formulae for theš‘ž-Bernoulli, š‘ž-Euler, and š‘ž-Genocchi numbers and polyno-mials in order to obtain the main results of this paper in thenext section.

    Lemma 5. The š‘ž-Bernoulli numbers bš‘›,š‘ž

    satisfy the followingš‘ž-binomial recurrence:

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜bš‘˜,š‘žāˆ’ bš‘›,š‘ž= {

    1, š‘› = 1,

    0, š‘› > 1.(20)

    Proof. By a simple multiplication of (8) we see that

    BĢ‚ (š‘”)Eš‘ž(š‘”) = š‘” + BĢ‚ (š‘”) . (21)

    Soāˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜bš‘˜,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!= š‘” +

    āˆž

    āˆ‘

    š‘›=0

    bš‘›,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!. (22)

    The statement follows by comparing š‘”š‘š coefficients.

    We use this formula to calculate the first few bš‘˜,š‘ž:

    b0,š‘ž= 1,

    b1,š‘ž= āˆ’

    1

    2,

    b2,š‘ž=1

    4

    š‘ž (š‘ž + 1)

    š‘ž2 + š‘ž + 1=š‘ž[2]š‘ž

    4[3]š‘ž

    ,

    b3,š‘ž= 0.

    (23)

    The similar property can be proved for š‘ž-Euler numbers

    š‘š

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜eš‘˜,š‘ž+ eš‘š,š‘ž

    = {2, š‘š = 0,

    0, š‘š > 0.(24)

    and š‘ž-Genocchi numbers

    š‘š

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜gš‘˜,š‘ž+ gš‘š,š‘ž

    = {2, š‘š = 1,

    0, š‘š > 1.(25)

    Using the above recurrence formulae we calculate the firstfew eš‘›,š‘ž

    and gš‘›,š‘ž

    terms as well:

    e0,š‘ž= 1, g

    0,š‘ž= 0,

    e1,š‘ž= āˆ’

    1

    2, g

    1,š‘ž= 1,

    e2,š‘ž= 0, g

    2,š‘ž= āˆ’

    [2]š‘ž

    2= āˆ’

    š‘ž + 1

    2,

    e3,š‘ž=[3]š‘ž[2]š‘ž āˆ’ [4]š‘ž

    8=š‘ž (1 + š‘ž)

    8, g

    3,š‘ž= 0.

    (26)

  • 4 Abstract and Applied Analysis

    Remark 6. The first advantage of the new š‘ž-numbersbš‘˜,š‘ž, eš‘˜,š‘ž, and g

    š‘˜,š‘žis that similar to classical case odd num-

    bered terms of the Bernoulli numbers bš‘˜,š‘ž

    and the Genocchinumbers g

    š‘˜,š‘žare zero, and even numbered terms of the Euler

    numbers eš‘›,š‘ž

    are zero.

    Next lemma gives the relationship between š‘ž-Genocchinumbers and š‘ž-Tangent numbers.

    Lemma 7. For any š‘› āˆˆ N, we have

    T2š‘›+1,š‘ž

    = g2š‘›+2,š‘ž

    (āˆ’1)š‘˜āˆ’122š‘›+1

    [2š‘› + 2]š‘ž

    . (27)

    Proof. First we recall the definition of š‘ž-trigonometric func-tions:

    cosš‘žš‘” =

    š‘’š‘ž(š‘–š‘”) + š‘’

    š‘ž(āˆ’š‘–š‘”)

    2, sin

    š‘žš‘” =

    š‘’š‘ž(š‘–š‘”) āˆ’ š‘’

    š‘ž(āˆ’š‘–š‘”)

    2š‘–,

    š‘– tanš‘žš‘” =

    š‘’š‘ž(š‘–š‘”) āˆ’ š‘’

    š‘ž(āˆ’š‘–š‘”)

    š‘’š‘ž (š‘–š‘”) + š‘’š‘ž (āˆ’š‘–š‘”)

    , cotš‘žš‘” = š‘–

    š‘’š‘ž(š‘–š‘”) + š‘’

    š‘ž(āˆ’š‘–š‘”)

    š‘’š‘ž (š‘–š‘”) āˆ’ š‘’š‘ž (āˆ’š‘–š‘”)

    .

    (28)

    Now by choosing š‘§ = 2š‘–š‘” in BĢ‚(š‘§), we get

    BĢ‚ (2š‘–š‘”) =2š‘–š‘”

    Eš‘ž(2š‘–š‘”) āˆ’ 1

    =š‘”š‘’š‘ž(āˆ’š‘–š‘”)

    sinš‘žš‘”

    =

    āˆž

    āˆ‘

    š‘›=0

    bš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!. (29)

    It follows that

    BĢ‚ (2š‘–š‘”) =š‘”š‘’š‘ž(āˆ’š‘–š‘”)

    sinš‘žš‘”

    =š‘”

    sinš‘žš‘”(cosš‘žš‘” āˆ’ š‘– sin

    š‘žš‘”) = š‘” cot

    š‘žš‘” āˆ’ š‘–š‘”

    = b0,š‘ž+ 2š‘–š‘”b

    1,š‘ž+

    āˆž

    āˆ‘

    š‘›=2

    bš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!

    = 1 āˆ’ š‘–š‘” +

    āˆž

    āˆ‘

    š‘›=2

    bš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!.

    (30)

    Since the function š‘” cotš‘žš‘” is even in the above sum odd

    coefficients b2š‘˜+1,š‘ž

    , š‘˜ = 1, 2, . . ., are zero, and we get

    š‘” cotš‘žš‘” = 1 +

    āˆž

    āˆ‘

    š‘›=2

    bš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!= 1 +

    āˆž

    āˆ‘

    š‘›=1

    bš‘›,š‘ž

    (2š‘–š‘”)2š‘›

    [2š‘›]š‘ž!. (31)

    By choosing š‘§ = 2š‘–š‘” in GĢ‚(š‘§), we get

    GĢ‚ (2š‘–š‘”) =4š‘–š‘”

    Eš‘ž(2š‘–š‘”) + 1

    =2š‘–š‘”š‘’š‘ž (āˆ’š‘–š‘”)

    cosš‘žš‘”

    =

    āˆž

    āˆ‘

    š‘›=0

    gš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!,

    GĢ‚ (2š‘–š‘”) =4š‘–š‘”

    Eš‘ž (2š‘–š‘”) + 1

    =2š‘–š‘”š‘’š‘ž (āˆ’š‘–š‘”)

    cosš‘žš‘”

    =2š‘–š‘”

    cosš‘žš‘”(cosš‘žš‘” āˆ’ š‘– sin

    š‘žš‘”)

    = 2š‘–š‘” + 2š‘” tanš‘žš‘” = g0,š‘ž+ 2š‘–š‘”g

    1,š‘ž+

    āˆž

    āˆ‘

    š‘›=2

    gš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!

    = 2š‘–š‘” +

    āˆž

    āˆ‘

    š‘›=2

    gš‘›,š‘ž

    (2š‘–š‘”)š‘›

    [š‘›]š‘ž!.

    (32)

    It follows that

    2š‘” tanš‘žš‘” =

    āˆž

    āˆ‘

    š‘›=1

    g2š‘›,š‘ž

    (2š‘–š‘”)2š‘›

    [2š‘›]š‘ž!,

    tanš‘žš‘” =

    āˆž

    āˆ‘

    š‘›=1

    g2š‘›,š‘ž

    (āˆ’1)š‘›(2š‘”)2š‘›āˆ’1

    [2š‘›]š‘ž!,

    tanhš‘žš‘” = āˆ’š‘– tan

    š‘ž(š‘–š‘”) = āˆ’š‘–

    āˆž

    āˆ‘

    š‘›=1

    g2š‘›,š‘ž

    (āˆ’1)š‘›(2š‘–š‘”)2š‘›āˆ’1

    [2š‘›]š‘ž!

    = āˆ’

    āˆž

    āˆ‘

    š‘›=1

    g2š‘›,š‘ž

    (2š‘”)2š‘›āˆ’1

    [2š‘›]š‘ž!= āˆ’

    āˆž

    āˆ‘

    š‘›=1

    g2š‘›+2,š‘ž

    (2š‘”)2š‘›+1

    [2š‘› + 2]š‘ž!,

    (33)

    Thus

    tanhš‘žš‘” = āˆ’š‘–tan

    š‘ž (š‘–š‘”) =š‘’š‘ž(š‘”) āˆ’ š‘’

    š‘ž(āˆ’š‘”)

    š‘’š‘ž(š‘”) + š‘’

    š‘ž(āˆ’š‘”)

    =Eš‘ž(2š‘”) āˆ’ 1

    Eš‘ž(2š‘”) + 1

    =

    āˆž

    āˆ‘

    š‘›=1

    T2š‘›+1,š‘ž

    (āˆ’1)š‘˜š‘”2š‘›+1

    [2š‘› + 1]š‘ž!,

    T2š‘›+1,š‘ž

    = g2š‘›+2,š‘ž

    (āˆ’1)š‘˜āˆ’122š‘›+1

    [2š‘› + 2]š‘ž

    .

    (34)

    The following result is a š‘ž-analogue of the additiontheorem, for the classical Bernoulli, Euler, and Genocchipolynomials.

    Lemma 8 (addition theorems). For all š‘„, š‘¦ āˆˆ C we have

    Bš‘›,š‘ž(š‘„, š‘¦) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    bš‘˜,š‘ž(š‘„ āŠ•š‘žš‘¦)š‘›āˆ’š‘˜

    ,

    Bš‘›,š‘ž(š‘„, š‘¦) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Bš‘˜,š‘ž (š‘„) š‘¦

    š‘›āˆ’š‘˜,

  • Abstract and Applied Analysis 5

    Eš‘›,š‘ž(š‘„, š‘¦) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    eš‘˜,š‘ž(š‘„ āŠ•š‘žš‘¦)š‘›āˆ’š‘˜

    ,

    Eš‘›,š‘ž(š‘„, š‘¦) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Eš‘˜,š‘ž(š‘„) š‘¦š‘›āˆ’š‘˜,

    Gš‘›,š‘ž(š‘„, š‘¦) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    gš‘˜,š‘ž(š‘„ āŠ•š‘žš‘¦)š‘›āˆ’š‘˜

    ,

    Gš‘›,š‘ž(š‘„, š‘¦) =

    š‘›

    āˆ‘

    š‘˜=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Gš‘˜,š‘ž(š‘„) š‘¦š‘›āˆ’š‘˜.

    (35)

    Proof. We prove only the first formula. It is a consequence ofthe following identity:

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!=

    š‘”

    Eš‘ž(š‘”) āˆ’ 1

    Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦)

    =

    āˆž

    āˆ‘

    š‘›=0

    bš‘›,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    (š‘„ āŠ•š‘žš‘¦)š‘› š‘”š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    bš‘˜,š‘ž(š‘„ āŠ•š‘žš‘¦)š‘›āˆ’š‘˜ š‘”š‘›

    [š‘›]š‘ž!.

    (36)

    In particular, setting š‘¦ = 0 in (35), we get the followingformulae for š‘ž-Bernoulli, š‘ž-Euler and š‘ž-Genocchi polynomi-als, respectively:

    Bš‘›,š‘ž(š‘„) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜bš‘˜,š‘žš‘„š‘›āˆ’š‘˜,

    Eš‘›,š‘ž(š‘„) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜eš‘˜,š‘žš‘„š‘›āˆ’š‘˜,

    (37)

    Gš‘›,š‘ž (š‘„) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜gš‘˜,š‘žš‘„š‘›āˆ’š‘˜. (38)

    Setting š‘¦ = 1 in (35), we get

    Bš‘›,š‘ž(š‘„, 1) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Bš‘˜,š‘ž(š‘„) ,

    Eš‘›,š‘ž(š‘„, 1) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Eš‘˜,š‘ž(š‘„) ,

    Gš‘›,š‘ž(š‘„, 1) =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Gš‘˜,š‘ž(š‘„) .

    (39)

    Clearly (39) is š‘ž-analogues of

    šµš‘› (š‘„ + 1) =

    š‘›

    āˆ‘

    š‘˜=0

    (š‘›

    š‘˜)šµš‘˜ (š‘„) ,

    šøš‘›(š‘„ + 1) =

    š‘›

    āˆ‘

    š‘˜=0

    (š‘›

    š‘˜)šøš‘˜(š‘„) ,

    šŗš‘›(š‘„ + 1) =

    š‘›

    āˆ‘

    š‘˜=0

    (š‘›

    š‘˜)šŗš‘˜(š‘„) ,

    (40)

    respectively.

    Lemma 9. The odd coefficients of the š‘ž-Bernoulli numbers,except the first one, are zero. That means b

    š‘›,š‘ž= 0 where

    š‘› = 2š‘Ÿ + 1 (š‘Ÿ āˆˆ N).

    Proof. It follows from the fact that the function

    š‘“ (š‘”) =

    āˆž

    āˆ‘

    š‘›=0

    bš‘›,š‘ž

    š‘”š‘›

    [š‘›]š‘ž!āˆ’ b1,š‘žš‘”

    =š‘”

    Eš‘ž (š‘”) āˆ’ 1

    +š‘”

    2=š‘”

    2(Eš‘ž (š‘”) + 1

    Eš‘ž (š‘”) āˆ’ 1

    ) ,

    (41)

    By using š‘ž-derivative we obtain the next lemma.

    Lemma 10. One has

    š·š‘ž,š‘„Bš‘›,š‘ž (š‘„) = [š‘›]š‘ž

    Bš‘›āˆ’1,š‘ž (š‘„) +Bš‘›āˆ’1,š‘ž (š‘žš‘„)

    2,

    š·š‘ž,š‘„Eš‘›,š‘ž(š‘„) = [š‘›]š‘ž

    Eš‘›āˆ’1,š‘ž

    (š‘„) + Eš‘›āˆ’1,š‘ž

    (š‘žš‘„)

    2,

    š·š‘ž,š‘„Gš‘›,š‘ž (š‘„) = [š‘›]š‘ž

    Gš‘›āˆ’1,š‘ž

    (š‘„) +Gš‘›āˆ’1,š‘ž

    (š‘žš‘„)

    2.

    (42)

    Lemma 11 (difference equations). One has

    Bš‘›,š‘ž(š‘„, 1) āˆ’B

    š‘›,š‘ž(š‘„) =

    (āˆ’1; š‘ž)š‘›āˆ’1

    2š‘›āˆ’1[š‘›]š‘žš‘„š‘›āˆ’1, š‘› ā‰„ 1, (43)

    Eš‘›,š‘ž (š‘„, 1) + Eš‘›,š‘ž (š‘„) = 2

    (āˆ’1; š‘ž)š‘›

    2š‘›š‘„š‘›, š‘› ā‰„ 0, (44)

    Gš‘›,š‘ž(š‘„, 1) +G

    š‘›,š‘ž(š‘„) = 2

    (āˆ’1; š‘ž)š‘›āˆ’1

    2š‘›āˆ’1[š‘›]š‘žš‘„š‘›āˆ’1, š‘› ā‰„ 1. (45)

    Proof. Weprove the identity for the š‘ž-Bernoulli polynomials.From the identity

    š‘”Eš‘ž(š‘”)

    Eš‘ž(š‘”) āˆ’ 1

    Eš‘ž (š‘”š‘„) = š‘”Eš‘ž (š‘”š‘„) +

    š‘”

    Eš‘ž(š‘”) āˆ’ 1

    Eš‘ž (š‘”š‘„) , (46)

    it follows thatāˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Bš‘˜,š‘ž (š‘„)

    š‘”š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ‘

    š‘›=0

    (āˆ’1, š‘ž)š‘›

    2š‘›š‘„š‘› š‘”š‘›+1

    [š‘›]š‘ž!+

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„)

    š‘”š‘›

    [š‘›]š‘ž!.

    (47)

  • 6 Abstract and Applied Analysis

    From (43) and (37), (44) and (38), we obtain the followingformulae.

    Lemma 12. One has

    š‘„š‘›=

    2š‘›

    (āˆ’1; š‘ž)š‘›[š‘›]š‘ž

    š‘›

    āˆ‘

    š‘˜=0

    [š‘› + 1

    š‘˜]

    š‘ž

    (āˆ’1; š‘ž)š‘›+1āˆ’š‘˜

    2š‘›+1āˆ’š‘˜Bš‘˜,š‘ž(š‘„) ,

    š‘„š‘›=

    2š‘›āˆ’1

    (āˆ’1; š‘ž)š‘›

    (

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1; š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Eš‘˜,š‘ž (š‘„) + Eš‘›,š‘ž (š‘„)) ,

    š‘„š‘›=

    2š‘›āˆ’1

    (āˆ’1; š‘ž)š‘›[š‘› + 1]š‘ž

    Ɨ (

    š‘›+1

    āˆ‘

    š‘˜=0

    [š‘› + 1

    š‘˜]

    š‘ž

    (āˆ’1; š‘ž)š‘›+1āˆ’š‘˜

    2š‘›+1āˆ’š‘˜Gš‘˜,š‘ž(š‘„) +G

    š‘›+1,š‘ž(š‘„)) .

    (48)

    The above formulae are š‘ž-analogues of the followingfamiliar expansions:

    š‘„š‘›=

    1

    š‘› + 1

    š‘›

    āˆ‘

    š‘˜=0

    (š‘› + 1

    š‘˜)šµš‘˜(š‘„) ,

    š‘„š‘›=1

    2[

    š‘›

    āˆ‘

    š‘˜=0

    (š‘›

    š‘˜)šøš‘˜ (š‘„) + šøš‘› (š‘„)] ,

    š‘„š‘›=

    1

    2 (š‘› + 1)[

    š‘›+1

    āˆ‘

    š‘˜=0

    (š‘› + 1

    š‘˜)šøš‘˜(š‘„) + šø

    š‘›+1(š‘„)] ,

    (49)

    respectively.

    Lemma 13. The following identities hold true:

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Bš‘˜,š‘ž(š‘„, š‘¦) āˆ’B

    š‘›,š‘ž(š‘„, š‘¦)

    = [š‘›]š‘ž(š‘„ āŠ•š‘ž š‘¦)š‘›āˆ’1

    ,

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Eš‘˜,š‘ž(š‘„, š‘¦) + E

    š‘›,š‘ž(š‘„, š‘¦) = 2(š‘„ āŠ•

    š‘žš‘¦)š‘›

    ,

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Gš‘˜,š‘ž(š‘„, š‘¦) +G

    š‘›,š‘ž(š‘„, š‘¦)

    = 2[š‘›]š‘ž(š‘„ āŠ•š‘ž š‘¦)š‘›āˆ’1

    .

    (50)

    Proof. We prove the identity for the š‘ž-Bernoulli polynomi-als. From the identity

    š‘”Eš‘ž(š‘”)

    Eš‘ž(š‘”) āˆ’ 1

    Eš‘ž (š‘”š‘„)Eš‘ž (š‘”š‘¦)

    = š‘”Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦) +

    š‘”

    Eš‘ž (š‘”) āˆ’ 1

    Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦) ,

    (51)

    it follows thatāˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Bš‘˜,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘˜(āˆ’1, š‘ž)

    š‘›āˆ’š‘˜

    2š‘›š‘„š‘˜š‘¦š‘›āˆ’š‘˜ š‘”š‘›+1

    [š‘›]š‘ž!

    +

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!.

    (52)

    3. Some New Formulae

    The classical Cayley transformation š‘§ ā†’Cay(š‘§, š‘Ž) := (1 +š‘Žš‘§)/(1āˆ’š‘Žš‘§)motivated us to derive the formula forE

    š‘ž(š‘žš‘”). In

    addition, by substituting Cay(š‘§, (š‘ž āˆ’ 1)/2) in the generatingformula we have

    BĢ‚š‘ž(š‘žš‘”) BĢ‚

    š‘ž (š‘”) = (BĢ‚q (š‘žš‘”) āˆ’ š‘žBĢ‚š‘ž (š‘”) (1 + (1 āˆ’ š‘ž)š‘”

    2))

    Ɨ1

    1 āˆ’ š‘žĆ—

    2

    Eš‘ž (š‘”) + 1

    .

    (53)

    The right hand side can be presented by š‘ž-Euler numbers.Now equating coefficients of š‘”š‘› we get the following identity.In the case that š‘› = 0, we find the first improved š‘ž-Eulernumber which is exactly 1.

    Proposition 14. For all š‘› ā‰„ 1,š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    Bš‘˜,š‘žBš‘›āˆ’š‘˜,š‘ž

    š‘žš‘˜

    = āˆ’š‘ž

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    2š‘›āˆ’š‘˜Bš‘˜,š‘žEš‘›āˆ’š‘˜,š‘ž[š‘˜ āˆ’ 1]š‘ž

    āˆ’š‘ž

    2

    š‘›āˆ’1

    āˆ‘

    š‘˜=0

    [š‘› āˆ’ 1

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜āˆ’1

    2š‘›āˆ’š‘˜āˆ’1Bš‘˜,š‘žEš‘›āˆ’š‘˜āˆ’1,š‘ž[š‘›]š‘ž.

    (54)

    Let us take a š‘ž-derivative from the generating function,after simplifying the equation, by knowing the quotient rulefor quantum derivative, and also using

    Eš‘ž(š‘žš‘”) =

    1 āˆ’ (1 āˆ’ š‘ž) (š‘”/2)

    1 + (1 āˆ’ š‘ž) (š‘”/2)Eš‘ž(š‘”) ,

    š·š‘ž(Eq (š‘”)) =

    Eš‘ž(š‘žš‘”) +E

    š‘ž (š‘”)

    2,

    (55)

    one has

    BĢ‚š‘ž(š‘žš‘”) BĢ‚

    š‘ž(š‘”) =

    2 + (1 āˆ’ š‘ž) š‘”

    2Eš‘ž (š‘”) (š‘ž āˆ’ 1)

    (š‘žBĢ‚š‘ž(š‘”) āˆ’ BĢ‚

    š‘ž(š‘žš‘”)) . (56)

    It is clear that Eāˆ’1š‘ž(š‘”) = E

    š‘ž(āˆ’š‘”). Now, by equating

    coefficients of š‘”š‘› we obtain the following identity.

  • Abstract and Applied Analysis 7

    Proposition 15. For all š‘› ā‰„ 1,

    2š‘›

    āˆ‘

    š‘˜=0

    [2š‘›

    š‘˜]

    š‘ž

    Bš‘˜,š‘žB2š‘›āˆ’š‘˜,š‘ž

    š‘žš‘˜

    = āˆ’š‘ž

    2š‘›

    āˆ‘

    š‘˜=0

    [2š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)2š‘›āˆ’š‘˜

    22š‘›āˆ’š‘˜Bš‘˜,š‘ž[š‘˜ āˆ’ 1]š‘ž(āˆ’1)

    š‘˜

    +š‘ž (1 āˆ’ š‘ž)

    2

    2š‘›āˆ’1

    āˆ‘

    š‘˜=0

    [2š‘› āˆ’ 1

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)2š‘›āˆ’1āˆ’š‘˜

    22š‘›āˆ’1āˆ’š‘˜Bš‘˜,š‘ž

    Ɨ [š‘˜ āˆ’ 1]š‘ž(āˆ’1)š‘˜,

    2š‘›+1

    āˆ‘

    š‘˜=0

    [2š‘› + 1

    š‘˜]

    š‘ž

    Bš‘˜,š‘žB2š‘›āˆ’š‘˜+1,š‘ž

    š‘žš‘˜

    = š‘ž

    2š‘›+1

    āˆ‘

    š‘˜=0

    [2š‘› + 1

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)2š‘›+1āˆ’š‘˜

    22š‘›+1āˆ’š‘˜Bš‘˜,š‘ž[š‘˜ āˆ’ 1]š‘ž(āˆ’1)

    š‘˜

    āˆ’š‘ž (1 āˆ’ š‘ž)

    2

    2š‘›

    āˆ‘

    š‘˜=0

    [2š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)2š‘›āˆ’š‘˜

    22š‘›āˆ’š‘˜Bš‘˜,š‘ž[š‘˜ āˆ’ 1]š‘ž(āˆ’1)

    š‘˜.

    (57)

    We may also derive a differential equation for BĢ‚š‘ž(š‘”). If

    we differentiate both sides of the generating function withrespect to š‘”, after a little calculation we find that

    šœ•

    šœ•š‘”BĢ‚š‘ž(š‘”)

    = BĢ‚š‘ž (š‘”) (

    1

    š‘”āˆ’(1 āˆ’ š‘ž)E

    š‘ž(š‘”)

    Eš‘ž(š‘”) āˆ’ 1

    (

    āˆž

    āˆ‘

    š‘˜=0

    4š‘žš‘˜

    4 āˆ’ (1 āˆ’ š‘ž)2š‘ž2š‘˜

    )) .

    (58)

    If we differentiate BĢ‚š‘ž(š‘”) with respect to š‘ž, we obtain,

    instead,

    šœ•

    šœ•š‘žBĢ‚š‘ž(š‘”) = āˆ’BĢ‚

    2

    š‘ž(š‘”)Eš‘ž(š‘”)

    āˆž

    āˆ‘

    š‘˜=0

    4š‘” (š‘˜š‘žš‘˜āˆ’1

    āˆ’ (š‘˜ + 1) š‘žš‘˜)

    4 āˆ’ (1 āˆ’ š‘ž)2š‘ž2š‘˜

    . (59)

    Again, using the generating function and combining thiswith the derivative we get the partial differential equation.

    Proposition 16. Consider the following:

    šœ•

    šœ•š‘”BĢ‚š‘ž(š‘”) āˆ’

    šœ•

    šœ•š‘žBĢ‚š‘ž(š‘”)

    =BĢ‚š‘ž(š‘”)

    š‘”+

    BĢ‚2š‘ž(š‘”)Eš‘ž(š‘”)

    š‘”

    Ɨ

    āˆž

    āˆ‘

    š‘˜=0

    4š‘” (š‘˜š‘žš‘˜āˆ’1

    āˆ’ (š‘˜ + 1) š‘žš‘˜) āˆ’ š‘žš‘˜(1 āˆ’ š‘ž)

    4 āˆ’ (1 āˆ’ š‘ž)2š‘ž2š‘˜

    .

    (60)

    4. Explicit Relationship between theš‘ž-Bernoulli and š‘ž-Euler Polynomials

    In this section, we give some explicit relationship betweenthe š‘ž-Bernoulli and š‘ž-Euler polynomials.We also obtain newformulae and some special cases for them.These formulae areextensions of the formulae of Srivastava and PinteĢr, Cheon,and others.

    We present natural š‘ž-extensions of themain results in thepapers [9, 11]; see Theorems 17 and 19.

    Theorem 17. For š‘› āˆˆ N0, the following relationships hold true:

    Bš‘›,š‘ž(š‘„, š‘¦)

    =1

    2

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    š‘šš‘˜āˆ’š‘› [

    [

    Bš‘˜,š‘ž (š‘„) +

    š‘˜

    āˆ‘

    š‘—=0

    [š‘›

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    Bš‘—,š‘ž (š‘„)

    2š‘˜āˆ’š‘—š‘šš‘˜āˆ’š‘—]

    ]

    Ɨ Eš‘›āˆ’š‘˜,š‘ž

    (š‘šš‘¦)

    =1

    2

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    š‘šš‘˜āˆ’š‘›

    [Bš‘˜,š‘ž(š‘„) +B

    š‘˜,š‘ž(š‘„,

    1

    š‘š)]Eš‘›āˆ’š‘˜,š‘ž

    (š‘šš‘¦) .

    (61)

    Proof. Using the following identity

    š‘”

    Eš‘ž(š‘”) āˆ’ 1

    Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦)

    =š‘”

    Eš‘ž(š‘”) āˆ’ 1

    Eš‘ž (š‘”š‘„)

    ā‹…Eš‘ž (š‘”/š‘š) + 1

    2ā‹…

    2

    Eš‘ž(š‘”/š‘š) + 1

    Eš‘ž(š‘”

    š‘šš‘šš‘¦)

    (62)

    we have

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    =1

    2

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    (āˆ’1, š‘ž)š‘›

    š‘šš‘›2š‘›

    š‘”š‘›

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„)

    š‘”š‘›

    [š‘›]š‘ž!

    +1

    2

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž (š‘„)

    š‘”š‘›

    [š‘›]š‘ž!

    =: š¼1+ š¼2.

    (63)

    It is clear that

    š¼2=1

    2

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„)

    š‘”š‘›

    [š‘›]š‘ž!

    =1

    2

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘—]

    š‘ž

    š‘šš‘˜āˆ’š‘›

    Bš‘˜,š‘ž (š‘„)Eš‘›āˆ’š‘˜,š‘ž (š‘šš‘¦)

    š‘”š‘›

    [š‘›]š‘ž!.

    (64)

  • 8 Abstract and Applied Analysis

    On the other hand

    š¼1=1

    2

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    Ɨ

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘—=0

    [š‘›

    š‘—]

    š‘ž

    Bš‘—,š‘ž (š‘„)

    (āˆ’1, š‘ž)š‘›āˆ’š‘—

    š‘šš‘›āˆ’š‘—2š‘›āˆ’š‘—

    š‘”š‘›

    [š‘›]š‘ž!

    =1

    2

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    Eš‘›āˆ’š‘˜,š‘ž

    (š‘šš‘¦)

    Ɨ

    š‘˜

    āˆ‘

    š‘—=0

    [š‘›

    š‘—]

    š‘ž

    Bš‘—,š‘ž(š‘„) (āˆ’1, š‘ž)

    š‘˜āˆ’š‘—

    š‘šš‘›āˆ’š‘˜š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—

    š‘”š‘›

    [š‘›]š‘ž!.

    (65)

    Thereforeāˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    =1

    2

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    š‘šš‘˜āˆ’š‘›

    Ɨ [

    [

    Bš‘˜,š‘ž (š‘„) +

    š‘˜

    āˆ‘

    š‘—=0

    [š‘›

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    Bš‘—,š‘ž(š‘„)

    2š‘˜āˆ’š‘—š‘šš‘˜āˆ’š‘—]

    ]

    Ɨ Eš‘›āˆ’š‘˜,š‘ž

    (š‘šš‘¦)š‘”š‘›

    [š‘›]š‘ž!.

    (66)

    It remains to equate the coefficients of š‘”š‘›.

    Next we discuss some special cases of Theorem 17.

    Corollary 18. For š‘› āˆˆ N0the following relationship holds true:

    Bš‘›,š‘ž(š‘„, š‘¦)

    =

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (Bš‘˜,š‘ž (š‘„) +

    (āˆ’1; š‘ž)š‘˜āˆ’1

    2š‘˜[š‘˜]š‘žš‘„š‘˜āˆ’1)Eš‘›āˆ’š‘˜,š‘ž

    (š‘¦) .

    (67)

    The formula (67) is a š‘ž-extension of the Cheonā€™s mainresult [23].

    Theorem 19. For š‘› āˆˆ N0, the following relationships

    Eš‘›,š‘ž(š‘„, š‘¦)

    =1

    [š‘› + 1]š‘ž

    Ɨ

    š‘›+1

    āˆ‘

    š‘˜=0

    1

    š‘šš‘›+1āˆ’š‘˜[š‘› + 1

    š‘˜]

    š‘ž

    Ɨ (

    š‘˜

    āˆ‘

    š‘—=0

    [š‘˜

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—Eš‘—,š‘ž(š‘¦) āˆ’ E

    š‘˜,š‘ž(š‘¦))

    ƗBš‘›+1āˆ’š‘˜,š‘ž (š‘šš‘„)

    (68)

    hold true between the š‘ž-Bernoulli polynomials and š‘ž-Eulerpolynomials.

    Proof. The proof is based on the following identity:2

    Eš‘ž(š‘”) + 1

    Eš‘ž (š‘”š‘„)Eš‘ž (š‘”š‘¦)

    =2

    Eš‘ž (š‘”) + 1

    Eš‘ž(š‘”š‘¦)

    ā‹…Eš‘ž(š‘”/š‘š) āˆ’ 1

    š‘”ā‹…

    š‘”

    Eš‘ž(š‘”/š‘š) āˆ’ 1

    Eš‘ž(š‘”

    š‘šš‘šš‘„) .

    (69)

    Indeedāˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    (āˆ’1, š‘ž)š‘›

    š‘šš‘›2š‘›

    š‘”š‘›āˆ’1

    [š‘›]š‘ž!

    Ɨ

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘„)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    āˆ’

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘¦)

    š‘”š‘›āˆ’1

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘„)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    =: š¼1āˆ’ š¼2.

    (70)

    It follows that

    š¼2=1

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    Eš‘›,š‘ž(š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘„)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    =1

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    1

    š‘šš‘›āˆ’š‘˜Eš‘˜,š‘ž(š‘¦)B

    š‘›āˆ’š‘˜,š‘ž (š‘šš‘„)š‘”š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ‘

    š‘›=0

    1

    [š‘› + 1]š‘ž

    Ɨ

    š‘›+1

    āˆ‘

    š‘˜=0

    [š‘› + 1

    š‘˜]

    š‘ž

    1

    š‘šš‘›+1āˆ’š‘˜Eš‘˜,š‘ž(š‘¦)B

    š‘›+1āˆ’š‘˜,š‘ž (š‘šš‘„)š‘”š‘›

    [š‘›]š‘ž!,

    š¼1=1

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘„)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    Ɨ

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    š‘šš‘›āˆ’š‘˜2š‘›āˆ’š‘˜Eš‘˜,š‘ž(š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    =1

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    1

    š‘šš‘›āˆ’š‘˜Bš‘›āˆ’š‘˜,š‘ž

    (š‘šš‘„)

    Ɨ

    š‘˜

    āˆ‘

    š‘—=0

    [š‘˜

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—Eš‘—,š‘ž(š‘¦)

    š‘”š‘›āˆ’1

    [š‘›]š‘ž!.

    (71)

    Next we give an interesting relationship between the š‘ž-Genocchi polynomials and the š‘ž-Bernoulli polynomials.

  • Abstract and Applied Analysis 9

    Theorem 20. For š‘› āˆˆ N0, the following relationship

    Gš‘›,š‘ž(š‘„, š‘¦)

    =1

    [š‘› + 1]š‘ž

    Ɨ

    š‘›+1

    āˆ‘

    š‘˜=0

    1

    š‘šš‘›āˆ’š‘˜[š‘› + 1

    š‘˜]

    š‘ž

    Ɨ (

    š‘˜

    āˆ‘

    š‘—=0

    [š‘˜

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—Gš‘—,š‘ž(š‘„) āˆ’G

    š‘˜,š‘ž(š‘„))

    ƗBš‘›+1āˆ’š‘˜,š‘ž

    (š‘šš‘¦) ,

    Bš‘›,š‘ž(š‘„, š‘¦)

    =1

    2[š‘› + 1]š‘ž

    Ɨ

    š‘›+1

    āˆ‘

    š‘˜=0

    1

    š‘šš‘›āˆ’š‘˜[š‘› + 1

    š‘˜]

    š‘ž

    Ɨ (

    š‘˜

    āˆ‘

    š‘—=0

    [š‘˜

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—Bš‘—,š‘ž(š‘„) +B

    š‘˜,š‘ž(š‘„))

    ƗGš‘›+1āˆ’š‘˜,š‘ž

    (š‘šš‘¦)

    (72)

    holds true between the š‘ž-Genocchi and the š‘ž-Bernoulli polyno-mials.

    Proof. Using the following identity

    2š‘”

    Eš‘ž(š‘”) + 1

    Eš‘ž(š‘”š‘„)E

    š‘ž(š‘”š‘¦)

    =2š‘”

    Eš‘ž (š‘”) + 1

    Eš‘ž(š‘”š‘„) ā‹… (E

    š‘ž(š‘”

    š‘š) āˆ’ 1)

    š‘š

    š‘”

    ā‹…š‘”/š‘š

    Eš‘ž(š‘”/š‘š) āˆ’ 1

    ā‹…Eš‘ž(š‘”

    š‘šš‘šš‘¦)

    (73)

    we have

    āˆž

    āˆ‘

    š‘›=0

    Gš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    =š‘š

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    Gš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    Ɨ

    āˆž

    āˆ‘

    š‘›=0

    (āˆ’1, š‘ž)š‘›

    š‘šš‘›2š‘›

    š‘”š‘›

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    āˆ’š‘š

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    Gš‘›,š‘ž(š‘„, š‘¦)

    š‘”š‘›

    [š‘›]š‘ž!

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    =š‘š

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    (

    š‘›

    āˆ‘

    š‘˜=0

    [š‘›

    š‘˜]

    š‘ž

    (āˆ’1, š‘ž)š‘›āˆ’š‘˜

    š‘šš‘›āˆ’š‘˜2š‘›āˆ’š‘˜Gš‘˜,š‘ž (š‘„) āˆ’Gš‘›,š‘ž (š‘„))

    š‘”š‘›

    [š‘›]š‘ž!

    Ɨ

    āˆž

    āˆ‘

    š‘›=0

    Bš‘›,š‘ž(š‘šš‘¦)

    š‘”š‘›

    š‘šš‘›[š‘›]š‘ž!

    =š‘š

    š‘”

    āˆž

    āˆ‘

    š‘›=0

    š‘›

    āˆ‘

    š‘˜=0

    1

    š‘šš‘›āˆ’š‘˜[š‘›

    š‘˜]

    š‘ž

    Ɨ (

    š‘˜

    āˆ‘

    š‘—=0

    [š‘˜

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—Gš‘—,š‘ž(š‘„) āˆ’G

    š‘˜,š‘ž(š‘„))

    ƗBš‘›āˆ’š‘˜,š‘ž

    (š‘šš‘¦)š‘”š‘›

    [š‘›]š‘ž!

    =

    āˆž

    āˆ‘

    š‘›=0

    1

    [š‘› + 1]š‘ž

    š‘›+1

    āˆ‘

    š‘˜=0

    1

    š‘šš‘›āˆ’š‘˜[š‘› + 1

    š‘˜]

    š‘ž

    Ɨ (

    š‘˜

    āˆ‘

    š‘—=0

    [š‘˜

    š‘—]

    š‘ž

    (āˆ’1, š‘ž)š‘˜āˆ’š‘—

    š‘šš‘˜āˆ’š‘—2š‘˜āˆ’š‘—Gš‘—,š‘ž(š‘„) āˆ’G

    š‘˜,š‘ž(š‘„))

    ƗBš‘›+1āˆ’š‘˜,š‘ž

    (š‘šš‘¦)š‘”š‘›

    [š‘›]š‘ž!.

    (74)

    The second identity can be proved in a like manner.

    Conflict of Interests

    The authors declare that there is no conflict of interests withany commercial identities regarding the publication of thispaper.

    References

    [1] J. L. CiesĢlinĢski, ā€œImproved š‘ž-exponential and š‘ž-trigonometricfunctions,ā€AppliedMathematics Letters, vol. 24, no. 12, pp. 2110ā€“2114, 2011.

    [2] L. Carlitz, ā€œš‘ž-Bernoulli numbers and polynomials,ā€DukeMath-ematical Journal, vol. 15, pp. 987ā€“1000, 1948.

    [3] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71of Encyclopedia of Mathematics and Its Applications, CambridgeUniversity Press, Cambridge, Mass, USA, 1999.

    [4] H.M. Srivastava and AĢ. PinteĢr, ā€œRemarks on some relationshipsbetween the Bernoulli and Euler polynomials,ā€ Applied Mathe-matics Letters, vol. 17, no. 4, pp. 375ā€“380, 2004.

    [5] T. Kim, ā€œš‘ž-generalized Euler numbers and polynomials,ā€ Rus-sian Journal of Mathematical Physics, vol. 13, no. 3, pp. 293ā€“298,2006.

    [6] D. S. Kim, T. Kim, S. H. Lee, and J. J. Seo, ā€œA note on q-Frobenius-Euler numbers and polynomials,ā€ Advanced Studiesin Theoretical Physics, vol. 7, no. 18, pp. 881ā€“889, 2013.

    [7] B. A. Kupershmidt, ā€œReflection symmetries of š‘ž-Bernoullipolynomials,ā€ Journal of NonlinearMathematical Physics, vol. 12,supplement 1, pp. 412ā€“422, 2005.

    [8] Q.-M. Luo, ā€œSome results for the š‘ž-Bernoulli and š‘ž-Euler poly-nomials,ā€ Journal of Mathematical Analysis and Applications,vol. 363, no. 1, pp. 7ā€“18, 2010.

  • 10 Abstract and Applied Analysis

    [9] Q.-M. Luo and H. M. Srivastava, ā€œSome relationships betweenthe Apostol-Bernoulli and Apostol-Euler polynomials,ā€ Com-puters &Mathematics with Applications, vol. 51, no. 3-4, pp. 631ā€“642, 2006.

    [10] Q.-M. Luo andH.M. Srivastava, ā€œš‘ž-extensions of some relation-ships between the Bernoulli and Euler polynomials,ā€ TaiwaneseJournal of Mathematics, vol. 15, no. 1, pp. 241ā€“257, 2011.

    [11] H.M. Srivastava and AĢ. PinteĢr, ā€œRemarks on some relationshipsbetween the Bernoulli and Euler polynomials,ā€ Applied Mathe-matics Letters, vol. 17, no. 4, pp. 375ā€“380, 2004.

    [12] N. I. Mahmudov, ā€œš‘ž-analogues of the Bernoulli and Genocchipolynomials and the Srivastava-PinteĢr addition theorems,ā€Discrete Dynamics in Nature and Society, vol. 2012, Article ID169348, 8 pages, 2012.

    [13] N. I. Mahmudov, ā€œOn a class of š‘ž-Bernoulli and š‘ž-Eulerpolynomials,ā€Advances inDifference Equations, vol. 2013, article108, 2013.

    [14] N. I.Mahmudov andM. E. Keleshteri, ā€œOn a class of generalizedš‘ž-Bernoulli and š‘ž-Euler polynomials,ā€ Advances in DifferenceEquations, vol. 2013, article 115, 2013.

    [15] T. Kim, ā€œOn the š‘ž-extension of Euler and Genocchi numbers,ā€Journal of Mathematical Analysis and Applications, vol. 326, no.2, pp. 1458ā€“1465, 2007.

    [16] T. Kim, ā€œNote on š‘ž-Genocchi numbers and polynomials,ā€Advanced Studies in Contemporary Mathematics (Kyungshang),vol. 17, no. 1, pp. 9ā€“15, 2008.

    [17] M. Cenkci, M. Can, and V. Kurt, ā€œš‘ž-extensions of Genocchinumbers,ā€ Journal of the Korean Mathematical Society, vol. 43,no. 1, pp. 183ā€“198, 2006.

    [18] T. Kim, ā€œA note on the š‘ž-Genocchi numbers and polynomials,ā€Journal of Inequalities and Applications, vol. 2007, Article ID071452, 8 pages, 2007.

    [19] Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, ā€œš‘ž-Genocchinumbers and polynomials associated with š‘ž-Genocchi-type š‘™-functions,ā€ Advances in Difference Equations, vol. 2008, ArticleID 815750, 12 pages, 2008.

    [20] J. Cigler, ā€œq-Chebyshev polynomials,ā€ http://arxiv.org/abs/1205.5383.

    [21] M. Cenkci, V. Kurt, S. H. Rim, and Y. Simsek, ā€œOn (š‘–, š‘ž)Bernoulli and Euler numbers,ā€AppliedMathematics Letters, vol.21, no. 7, pp. 706ā€“711, 2008.

    [22] J. Choi, P. J. Anderson, and H. M. Srivastava, ā€œSome š‘ž-extensions of the Apostol-Bernoulli and the Apostol-Eulerpolynomials of order š‘›, and themultipleHurwitz zeta function,ā€Applied Mathematics and Computation, vol. 199, no. 2, pp. 723ā€“737, 2008.

    [23] G.-S. Cheon, ā€œA note on the Bernoulli and Euler polynomials,ā€Applied Mathematics Letters, vol. 16, no. 3, pp. 365ā€“368, 2003.

    [24] H. M. Srivastava and C. Vignat, ā€œProbabilistic proofs of somerelationships between the Bernoulli and Euler polynomials,ā€European Journal of Pure and Applied Mathematics, vol. 5, no.2, pp. 97ā€“107, 2012.

    [25] S. Nalci and O. K. Pashaev, ā€œq-Bernoulli numbers and zeros ofq-sine function,ā€ http://arxiv.org/abs/1202.2265v1.

    [26] S. Gaboury and B. Kurt, ā€œSome relations involving Hermite-based Apostol-Genocchi polynomials,ā€ Applied MathematicalSciences, vol. 6, no. 81ā€“84, pp. 4091ā€“4102, 2012.

    [27] D.Kim, B.Kurt, andV.Kurt, ā€œSome identities on the generalizedš‘ž-Bernoulli, š‘ž-Euler, and š‘ž-Genocchi polynomials,ā€ Abstractand Applied Analysis, vol. 2013, Article ID 293532, 6 pages, 2013.

    [28] V. Kurt, ā€œNew identities and relations derived from the gener-alized Bernoulli polynomials, Euler polynomials and Genocchipolynomials,ā€Advances inDifference Equations, vol. 2014, article5, 2014.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of