47
1 Reports from The Panel Sessions 2011 NSF Engineering Education Awardees Conference March 1315, 2011 Table of Contents Overview of The Panel Sessions ................................................................................... 2 Panel Facilitator Bios ................................................................................................... 4 The Panel Session Summaries ...................................................................................... 7 Engaging Undergraduates in Research: Best Practices for Bridging Research and Practice ................................................................................................. 7 PreCollege Outreach and Curriculum Partnerships: Best Practices for Bridging Research and Practice ................................................................................. 11 Engineering Education Research Directions: Where Are We Going? ........................ 16 NSF’s New Data Management Policy: A Conversation for Engineering Education Research .................................................................................................... 22 Increasing Diversity: Best Practices for Bridging Research and Practice ................... 28 Graduate Students and Programs: Creating an Emerging Community of Practice for the Next Generation ........................................................................... 33 Educating Engineers to Be Innovators ........................................................................ 36 Interdisciplinary Collaboration: Helping Students and Faculty Work Across Boundaries ...................................................................................................... 41

Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  1  

Reports  from  The  Panel  Sessions  2011  NSF  Engineering  Education  Awardees  Conference  March  13-­‐15,  2011      

Table  of  Contents    Overview  of  The  Panel  Sessions................................................................................... 2    Panel  Facilitator  Bios ................................................................................................... 4    The  Panel  Session  Summaries ...................................................................................... 7  

Engaging  Undergraduates  in  Research:  Best  Practices  for  Bridging  Research  and  Practice   .................................................................................................7  

Pre-­‐College  Outreach  and  Curriculum  Partnerships:  Best  Practices  for  Bridging  Research  and  Practice   .................................................................................11  

Engineering  Education  Research  Directions:    Where  Are  We  Going? ........................16  

NSF’s  New  Data  Management  Policy:    A  Conversation  for  Engineering  Education  Research ....................................................................................................22  

Increasing  Diversity:    Best  Practices  for  Bridging  Research  and  Practice ...................28  

Graduate  Students  and  Programs:    Creating  an  Emerging  Community  of  Practice  for  the  Next  Generation ...........................................................................33  

Educating  Engineers  to  Be  Innovators........................................................................36  

Interdisciplinary  Collaboration:    Helping  Students  and  Faculty  Work  Across  Boundaries ......................................................................................................41  

   

Page 2: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  2  

Overview  of  The  Panel  Sessions    The  2011  NSF  Engineering  Education  Awardees  meeting  agenda  was  based  on  two  primary  goals:  1)  to  provide  a  networking  venue  in  which  principal  investigators  could  share  their  research,  and  2)  to  facilitate  discussions  focused  on  issues  in  engineering  education  that  could  be  impacted  by  research  and  by  the  practices  of  the  National  Science  Foundation.  In  order  to  achieve  the  second  goal,  Panel  Sessions  were  organized  with  the  following  charge:    In  response  to  increasing  calls  for  accountability  across  all  levels  of  government,  the  National  Science  Foundation  Engineering  Education  and  Centers  (EEC)  division  seeks  to  use  the  annual  Awardees  Meeting  to  gain  valuable  feedback  from  its  PIs  to  insuring  that  research  funding  is  effectively  targeting  critical  issues  and  achieving  transformative  impact.  Toward  this  end,  these  panels  have  been  created  as  a  forum  for  awardees  to  collaboratively  generate  insights  and  provide  feedback  to  the  EEC  division  about  these  critical  issues  in  ways  that  can  inform  investment  priorities,  evaluation  methods,  and  reporting  mechanisms.  They  represent  an  opportunity  for  the  NSF  program  officers  and  division  leaders  to  learn  from  the  PI  community  about  what  the  current  system  (including  solicitations  as  well  as  reporting  methods)  does  and  doesn’t  capture  regarding  the  impact  and  future  direction  of  NSF  investments.    This  report  presents  summaries  of  these  discussions—the  “Panel  Sessions”—in  which  PIs  and  NSF  personnel  critically  engaged  in  the  following  issues:    

1. Best  Practices  for  Engaging  Undergraduates  in  Research:  Bridging  Research  and  Practice    

2. Best  Practices  for  Pre-­‐College  Outreach  and  Curriculum  Partnerships:  Bridging  Research  and  Practice    

3. Engineering  Education  Research  Directions:  Where  are  we  going?    

4. NSF’s  New  Data  Management  Policy:  A  Conversation  for  Engineering  Education  Research  

 5. Best  Practices  for  Increasing  Diversity:  Bridging  Research  and  Practice  

 6. Graduate  Students  and  Programs:  Creating  an  Emerging  Community  of  Practice  for  the  

Next  Generation    

7. Educating  Engineers  to  Be  Innovators    

8. Interdisciplinary  Collaboration:  Helping  Students  and  Faculty  Work  Across  the  Boundaries    

 Each  panel  was  facilitated  by  two  awardees  and  one  NSF  member,  chosen  by  the  conference  directors  and  NSF  personnel  for  their  experience  and  expertise  in  the  topics.  Panels  were  

Page 3: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  3  

composed  of  diverse  participants  covering  a  range  of  research,  practice  and  administration  in  order  to  elicit  a  broad  and  inclusive  discussion.  Facilitators  were  encouraged  to  take  individualized  approaches  to  generating  discussions  based  on  a  few  core  questions  based  on  barriers,  challenges,  what  it  will  take  to  change,  and  where  NSF  should  focus  its  efforts:        

Critical  Issues  1. Promising  work,  in  both  practice  and  research  2. Areas  for  improvement  in  the  field  3. Priority  areas  for  NSF  to  invest  in  (based  on  #1  &  2)  

Methods  of  Dissemination  1. Ways  to  evaluate  NSF  grant  outcomes  2. Ways  to  report  NSF  grant  outcomes  3. Ways  to  disseminate  findings  and  spur  widespread  adoption  of  best  practices  

Furthermore,  facilitators  were  asked  to  structure  the  panels  as  discussions,  not  lectures.    The  panels  were  held  twice,  with  a  different  group  in  the  morning  and  afternoon.  Panel  sessions  ran  for  90  minutes  and  observers  were  present  to  help  record  the  discussions.  With  assistance  from  the  observers  who  took  notes  during  each  panel,  the  facilitators  reported  highlights  on  the  second  day  of  the  conference  via  a  revolving  slide  presentation  of  major  points  and  quotes  (http://www.vtecc.eng.vt.edu/2011_NSF_Awardees/  2011_Panel_Outcomes.pdf).  Then,  over  the  next  few  weeks,  they  compiled  notes  and  wrote  the  summaries  that  are  reproduced  in  this  document.  Although  NSF  personnel  participated  in  these  sessions  as  reporters,  observers,  and  co-­‐facilitators,  the  views  herein  do  not  necessarily  reflect  the  views  of  the  National  Science  Foundation.      We  would  like  to  thank  the  facilitators,  the  National  Science  Foundation,  and  the  participants  in  the  2011  panels.  Additionally,  without  the  observers,  we  would  not  have  been  able  to  reproduce  the  outcomes  of  these  panels;  thanks  to:  Cheryl  Carrico,  Erin  Crede,  Stephanie  Cutler,  Kahyun  Kim,  Jongmin  Lee,  Jenny  Lo,  Rachel  Louis,  Julie  Martin,  Taylor  Martin,  Tamara  Moore,  and  Lauren  Thomas.  This  material  is  based  upon  work  supported  by  the  National  Science  Foundation  under  Grant  No.  1048815.  Any  opinions,  findings,  and  conclusions  or  recommendations  expressed  in  this  material  are  those  of  the  author(s)  and  do  not  necessarily  reflect  the  views  of  the  National  Science  Foundation.          

Page 4: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  4  

The  Panel  Session  Facilitators  

 Martha  Absher  is  the  Assistant  Dean  for  Education  and  Outreach  Programs  and  serves  as  the  Disability  Services  Liaison  for  the  Pratt  School  of  Engineering  at  Duke  University.  Her  work  focuses  on  engineering  and  science  education  and  outreach  programs  to  undergraduate,  graduate,  and  K-­‐12  students.  Her  special  focus  areas  include:  diversity,  women's  programs,  and  programs  for  persons  with  disabilities.  She  is  PI  of  the  NSF  grant  “REU  Site  for  Increasing  Diversity  in  Engineering  at  the  Pratt  School  of  Engineering  of  Duke  University.”    Fritz  Claydon  joined  the  University  of  Houston  faculty  in  August  1999  after  spending  12  years  at  the  University  of  Memphis.  Over  the  past  five  years  Dr.  Claydon's  educational  interests  have  revolved  around  programs  to  stimulate  first-­‐year  engineering  student  learning.  For  the  past  15  years,  Dr.  Claydon's  research  interests  have  centered  around  cardiac  mapping  and  mechanisms  of  defibrillation.  He  is  PI  of  NSF  grant  “REU  Site:  Innovations  in  Nanotechnology  at  the  University  of  Houston.”  

Claire  Duggan  is  Associate  Director  of  the  NSF-­‐supported  Center  for  the  Enhancement  of  Science  and  Mathematics  Education  (CESAME)  Northeastern  University.  She  is  also  Director  for  Programs  and  Partnerships  at  the  Center  for  STEM  Education  at  NEU,  K-­‐12  Outreach  coordinator  for  The  Center  for  Subsurface  Sensing  and  Imaging  (CenSSIS),  Program  Director  for  the  Young  Scholars  Program,  and  Project  Coordinator  for  GK12  –  PLUS.  She  is  PI  on  the  NSF  Grant  “RET-­‐PLUS  (Partners  Linking  Urban  Schools).”  

LeAnn  Faidley  is  an  Assistant  Professor  in  mechanical  engineering  at  Iowa  State  University.  Her  research  focuses  on  magnetically  activated  low  modulus,  smart  materials  that  change  their  stiffness,  viscosity,  and  shape  when  put  in  a  magnetic  field.  She  is  co-­‐PI  on  the  NSF  grant  “REU  Pathways  to  Engineering:    A  digital  REU  mentoring  manual.”  

Vikram  Kapila  is  an  Associate  Professor  in  the  Department  of  Mechanical,  Aerospace,  and  Manufacturing  Engineering  at  the  Polytechnic  University  of  Brooklyn.  His  current  research  interests  include  absolute  stability  theory,  robust  control,  periodic  and  multirate  systems,  fixed-­‐architecture  absolute  stabilization,  stable  stabilization,  control  of  systems  with  saturating  actuators,  and  control  of  time  delay  systems.  He  is  PI  of  NSF  grant  “RET  Site:  Science  and  Mechatronics  Aided  Research  for  Teachers  (SMART).”  

Russell  Long  is  the  Director  of  Project  Assessment  in  the  Department  of  Engineering  Education  at  Purdue  and  Associate  Director  of  the  Multi-­‐Institution  Database  for  Investigating  Engineering  Longitudinal  Development  (MIDFIELD).  The  MIDFIELD  database  is  a  powerful  tool  in  learning  more  about  the  behaviors  of  students  who  matriculate  to  engineering  programs.  He  has  twenty  years  experience  in  institutional  research,  assessment,  strategic  planning,  and  higher  education  policy.      

Page 5: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  5  

Sinead  MacNamara  is  an  Assistant  Professor  in  the  School  of  Architecture  at  Syracuse  University.  She  teaches  structural  engineering  courses  as  well  as  electives  for  the  College  of  Engineering.  Her  research  and  dissertation  subject  concerns  thin  shell  concrete  in  nuclear  containment  structures.  She  is  PI  on  the  NSF  grant  “Inspiring  Innovation:  Merging  Pedagogical  Paradigms  from  Engineering  and  Architecture.”  

Robert  Martello  is  an  Associate  Professor  of  the  History  of  Science  and  Technology  at  Olin  College.  His  background  includes  a  PhD  from  MIT's  Program  in  the  History  and  Social  Study  of  Science  and  Technology  and  a  Master  of  Science  degree  from  MIT's  Department  of  Civil  and  Environmental  Engineering.  He  has  served  as  the  Digital  History  Annotations  and  Features  Producer  for  the  Sloan  Foundation's  electronic  textbook  Inventing  America.  He  is  currently  involved  in  the  NSF  grant  “Collaborative  Research:  Role  of  Faculty  in  Supporting  Lifelong  Learning:  An  Investigation  of  Self-­‐directed  Environments  in  Engineering  Undergraduate  Classrooms.”  

Ann  McKenna  is  an  Associate  Professor  in  the  Department  of  Engineering  in  the  College  of  Technology  and  Innovation  at  Arizona  State  University  (ASU).  Prior  to  joining  ASU  she  served  as  a  program  officer  for  the  National  Science  Foundation  in  the  Division  of  Undergraduate  Education,  and  was  on  the  faculty  in  the  Department  of  Mechanical  Engineering  and  Segal  Design  Institute  at  Northwestern  University.  Dr.  McKenna  received  her  B.S.  and  M.S.  degrees  in  Mechanical  Engineering  from  Drexel  University  and  Ph.D.  from  the  University  of  California  at  Berkeley.  She  is  PI  of  the  NSF  grant  “Collaborative  Research:  The  Role  of  Intentional  Self  Regulation  in  Achievement  in  Engineering.”  

Jill  Nelson  is  an  Assistant  Professor  in  the  Electrical  and  Computer  Engineering  Department  at  George  Mason  University.  Her  research  lies  in  statistical  signal  processing  and  signal  processing  for  communications.  Specifically,  her  interests  include  equalization  and  coding  for  dispersive  channels,  iterative  detection  and  decoding,  blind  equalization,  and  cooperative  detection  in  multi-­‐user  communications.  She  is  PI  of  the  NSF  grant  “Encouraging  Innovative  Pedagogy  through  Long-­‐Term  Faculty  Development  Teams.”  

Michael  O’Rourke  is  a  professor  of  philosophy  in  Neuroscience  and  Environmental  Science  and  a  Fellow  in  the  Microelectronic  Research  and  Communications  Institute  at  the  University  of  Idaho.  His  research  focuses  on  critical  thinking,  philosophical  semantics,  and  interdisciplinary  studies.  He  is  PI  of  the  NSF  grant  “Improving  Communication  in  Cross-­‐Disciplinary  Collaboration.“    Alice  L.  Pawley  is  an  Assistant  Professor  in  the  School  of  Engineering  Education  at  Purdue  University.  She  holds  an  affiliate  appointment  in  the  Women’s  Studies  Program.    Her  research  group,  Research  in  Feminist  Engineering  (RIFE),  is  made  up  of  diverse  researchers  and  focuses  on  exploring  feminist  research  questions  to  create  a  more  democratic  engineering  profession  by  helping  engineers  and  engineering  educators  to  use  new  analytical  tools  and  frameworks.  She  is  PI  of  the  NSF  grant  “CAREER:  Learning  from  Small  Numbers:  Using  personal  narratives  by  

Page 6: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  6  

underrepresented  undergraduate  students  to  promote  institutional  change  in  engineering  education.”    James  (Jay)  Pembridge  is  a  graduate  student  in  the  Department  of  Engineering  Education  at  Virginia  Tech.  His  research  focuses  on  exploring  the  pedagogy  of  design,  specifically  examining  how  mentoring  is  used  as  a  pedagogy  in  engineering  capstone  courses.  Jay  is  also  the  president  of  the  Virginia  Tech’s  student  chapter  of  ASEE,  a  member  of  the  graduate  consortium  steering  committee,  and  a  member  of  the  leadership  board  for  Virginia  Tech’s  Graduate  Student  Assembly.    Donna  Riley  is  an  Associate  Professor  of  engineering  at  Smith  College.  Her  work  combines  methods  in  engineering  and  the  social  sciences  to  characterize  and  communicate  chemical  risk.  In  2005  Riley  received  a  CAREER  award  from  the  National  Science  Foundation  for  implementing  pedagogies  of  liberation,  based  on  the  work  of  Paulo  Freire,  bell  hooks,  and  others,  into  engineering  education.  She  is  also  PI  of  the  NSF  grant  “E-­‐Book  Dissemination  of  Curricular  and  Pedagogical  Innovations  in  Thermodynamics.”    Jennifer  Turns  is  an  Associate  Professor  in  the  Department  of  Technical  Communication  at  the  University  of  Washington.  Her  engineering  education  work  has  focused  on  engineering  design  learning,  knowledge  integration,  and  disciplinary  understanding,  and  has  involved  the  use  of  a  wide  variety  of  research  methods  including  verbal  protocol  analysis,  concept  mapping,  and  ethnography.  She  received  an  NSF  CAREER  grant,  "Using  Portfolios  to  Promote  Knowledge  Integration  in  Engineering  Education."  She  is  also  PI  of  the  NSF  grant  “Promoting  Lifelong  Learning,  Integrated  Knowledge,  and  Professional  Identity  in  Undergraduate  Engineering  Students  Through  a  Portfolio  Development  Process.”  

Linda  Vanasupa  is  a  Professor  in  the  Materials  Engineering  Department  at  California  Polytechnic  State  University.  Her  research  focuses  on  hydrogen  fuel  cells;  design  of  learning  environments  that  foster  engineering  solutions  that  are  sustainable;  and  design  of  learning  experiences  for  greater  retention  of  underrepresented  groups  within  engineering.  She  is  PI  of  the  NSF  grant  “Establishing  a  Distributed  Community  of  Educators  to  study  a  Transformational  Education  Experiment.”    

Page 7: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  7  

The  Panel  Session  Summaries    Engaging  Undergraduates  in  Research:  Best  Practices  for  Bridging  Research  and  Practice    

Facilitators:   Esther  Bolding  (NSF)     Fritz  Claydon  (University  of  Houston)     LeAnn  Faidley  (Iowa  State  University)    Our  findings  include  four  major  points  of  discussion:  

Finding  #  1:  Undergraduate  research  mentors  must  have  the  commitment  to  continuous  interaction  with  students  under  their  direction  and  should  be  carefully  selected  by  the  program  director  to  ensure  buy-­‐in  to  overall  program  objectives.  

Unfortunately,  in  many  instances  those  involved  as  REU  Site  coordinators  learn  by  trial  and  error  which  colleagues  are  suitable  to  effectively  mentor  undergraduate  research  projects.  In  an  attempt  to  ensure  positive  undergraduate  research  outcomes  and  minimize  uncertainty  with  colleagues  we  have  the  following  suggestions.  

As  early  as  six  to  eight  weeks  prior  to  the  beginning  of  any  research  program  involving  undergraduates,  lead  faculty  (i.e.,  REU  PI’s  etc)  charged  with  program  coordination  should  meet  with  prospective  faculty  “mentors”  to  discuss  the  following:  1)  appropriate  development  of  summer  projects,  2)  selection  of  a  qualified  graduate  student  mentor  from  each  participating  laboratory,  3)  program  goals  and  details.    Additionally,  program  coordinators  should  engage  in  graduate  student  mentor  training.  Suggested  materials  include  adapting  concepts  from  the  Council  on  Undergraduate  Research  publication  entitled  “Mentoring  Undergraduates”  [1]  and  other  relevant  sources  [2-­‐4].  Students  who  have  served  as  mentors  in  previous  years  will  be  invited  to  share  their  insights  and  experiences  with  new  mentors.  A  list  of  suggested  topics  for  the  Mentoring  Training  is  shown  below:  

Topic   Format  Why  do  undergraduate  students  matter?   Small  and  large  group  discussions  Expectations:  what  do  you  want  from  your  undergraduate,  and  what  do  they  want  from  you?  

Individual  exercise,  large  group  discussion  

Working  as  a  team   Group  activity  Time  management   Mini-­‐lecture  Communication   Group  activity  Avoiding  pitfalls   Mini-­‐lecture,  think-­‐pair-­‐share  How  to  deal  with  conflict   Think-­‐pair-­‐share  How  to  deal  with  varying  levels  of  knowledge  and  abilities  

Mini-­‐lecture  

 

Page 8: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  8  

Additionally,  faculty  and  graduate  student  mentors  must  provide  individual  safety  and  laboratory  training  at  the  program’s  onset  and  will  participate  in  selected  undergraduate  professional  development  activities  during  the  research  program.    

In  addition  to  the  selection  of  mentors,  the  student  participants  in  the  program  should  also  be  carefully  selected  for  the  specific  projects  and  mentors  involved.    It  is  suggested  that  mentors  help  to  identify  the  desired  skills  and  student  qualities  that  will  contribute  to  student  success  on  their  project.    When  selecting  a  cohort  of  students  it  is  important  to  build  a  group  of  students  who  can  engage  in  peer  mentoring  and  community  building.    Students  with  a  variety  of  experience  levels  will  likely  be  most  successful  at  building  this  community.    The  REU  sites  are  also  encouraged  to  help  build  the  cohort’s  identity  through  social  activities,  grouped  living,  and/or  online  community  links.  

Finding  #  2:    An  undergraduate  research  experience  should  be  focused  and  must  1)  have  realistic  deliverables  for  the  time  period  allotted  and  2)  be  appropriate  for  the  background  of  the  student.  

An  undergraduate  research  experience  should  be  designed  to  1)  ignite  and  sustain  excitement  about  the  field  of  engineering,  2)  allow  students  to  expand  their  knowledge  about  scientific  research  and  engineering  career  opportunities,  and  3)  provide  resources  and  methods  for  subsequently  making  an  informed  decision  about  whether  a  “research  path”  is  indeed  an  appropriate  one.  When  undergraduate  participants  have  completed  their  research  experience,  they  should:  

• Understand  the  basics  of  their  faculty  mentor’s  ongoing  research  efforts,  how  their  work  contributed  to  its  success,  and  its  practical  applications  

• Be  familiar  with  the  relevant  scientific  literature  for  their  research  project  

• Have  a  basic  understanding  about  how  research  is  carried  out  and  funded    

• Have  acquired  some  relevant  methodological,  technological,  and  instrumentation  skills  

• Have  developed  skills  in  communicating  their  research  results  through  a  tangible  deliverable.  

• Feel  they  are  a  part  of  the  research  network  (faculty,  graduate  students  and  other  undergraduates)  

• Have  basic  knowledge  about  opportunities  and  requirements  for  majoring  in  engineering  

To  ensure  achievement  of  these  goals,  we  recommend  the  following  for  consideration:  

At  least  four  weeks  prior  to  the  start  of  the  research  experience,  undergraduates  should  be  provided  with  additional  information  and  reading  materials  by  their  faculty  mentor  in  order  to  become  familiar  with  their  research  project.  Once  the  formal  research  program  begins  each  student  should  be  closely  guided  by  her  or  his  faculty  and  graduate  student  mentor  in  

Page 9: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  9  

formulating  a  detailed  problem  statement.  The  mentors  and  participants  will  then  work  together  in  planning  the  course  of  the  subsequent  investigation.    The  students  should  also  work  with  a  professional  librarian  to  learn  modern  methods  of  conducting  a  literature  search.    As  the  participant  gains  command  of  the  problem,  the  advisor  will  guide  him  or  her  toward  more  substantive  inquiries  about  the  particular  problem,  leading  to  improved  design  and  revision  of  the  initial  experiment.  With  the  mentor’s  help,  the  participant  will  be  expected  to  make  decisions  as  to  the  necessary  experimental  work  and  data  collection  to  substantiate  existing  theories  or  to  permit  formulation  of  new  theories.  The  faculty  mentor,  in  these  latter  stages,  will  continue  to  provide  ideas  and  suggestions  as  needed.  The  student  is  expected  to  independently  formulate  conclusions  from  the  experimental  and  theoretical  results  and  to  prepare  the  results  for  presentation.  

Additionally,  we  believe  that  in  order  to  be  prepared  for  successful  graduate  work,  undergraduate  research  participants  should  not  only  learn  to  conduct  independent  research,  but  should  also  be  able  to  effectively  communicate  their  results.  Therefore,  participants  should  be  required  to  make  oral  presentations  and  prepare  a  final  written  report  of  their  research  work.    Brief  written  progress  reports  may  also  be  requested  by  faculty  mentors  during  the  program  if  such  reports  are  judged  to  be  important  as  a  means  of  measuring  and  enhancing  the  particular  student’s  progress.  Participants  should  be  encouraged  as  part  of  their  research  experience  to  work  toward  formal  presentations  at  professional  society  meetings  and  to  submit  their  work  to  student  paper  competitions  and  technical  journals,  as  appropriate.  

Professional  development  of  the  REU  students  will  help  them  to  learn  additional  skills  essential  to  graduate  and  research  careers.    It  is  recommended  that  a  formalized  series  of  professional  development  seminars  be  included  in  REU  site  activities.    Topics  could  include  technical  communication  skills  (oral,  posters,  papers,  etc.),  laboratory  documentation,  conducting  literature  searches,  engineering  professionalism,  resume  and  CV  construction,  graduate  school  and  fellowship  application  processes,  and  research  ethics.    Including  technical  talks  by  peers,  graduate  student  or  faculty  mentors  or  others  and  laboratory  and  industrial  visits  are  also  suggested  to  help  students  develop  an  understanding  of  the  broader  technical  field  and  the  engineering  research  profession.  

To  ensure  productive  and  positive  REU  experiences  formative  feedback  should  be  collected  from  student  and  mentor  participants  during  the  course  of  the  REU.    Students  should  be  encouraged  to  discuss  their  experiences  regularly  with  peers  as  well  as  program  directors  or  coordinating  staff  that  are  not  directly  involved  in  their  research.    Mentors  should  also  be  asked  to  assess  the  program  early  in  its  progression  so  that  any  issues  with  mentor/student  mis-­‐matched  expectations  can  be  addressed  early  in  the  program.      

Finding  #  3:    Undergraduate  research  programs  (i.e.,  REU's)  should  be  encouraged  to  disseminate  their  best  practices  and  lessons  learned  through  archival  journal  and  conference  papers.    In  parallel,  REU’s  should  also  make  use  of  real-­‐time  dissemination  tools  such  as  blogs,  social  networking  sites,  etc.  to  maximize  program  impact.  

Page 10: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  10  

Finding  #  4:    Through  careful  assessment  and  tracking,  the  value-­‐added  and  associated  deliverables  for  program  participants  should  be  captured  and  disseminated.    Annual  NSF  highlights  should  be  tied  to  program  outcomes,  and  it  is  critical  that  program  directors  report  their  highlights  in  a  timely  manner.    

The  following  represent  mechanisms  for  consideration  in  which  undergraduate  research  experiences  improve  impact  and  spur  widespread  adoption  of  best  practices:  

1. Longitudinal  study  of  program  efficacy  –  have  a  database  of  past  participants.  

2. Dissemination  of  NSF  nuggets  amongst  REU  program  sites  as  appropriate.  

3. Develop  and  encourage  synergy  between  program  websites,  appropriate  topical  blogs,  and  social  networking  though  Facebook  and  YouTube.  

4. Encourage  formal  interaction  between  aspiring,  new,  and  experienced  undergraduate  research  PI’s.  

5. Research  site  dissemination  (separate  from  research  outcomes)  on  topics  of  interest  regarding  the  operation  of  REU  sites.    

The  NSF  can  have  enormous  influence  through  conferences  and  grant  application  solicitations  to  stimulate  implementation  the  items  associated  with  Findings  3  and  4  above.    

References  

1.  Merkel,  Carolyn  A.,  and  Baker,  Shenda  M.  (2002).  How  to  Mentor  Undergraduates.  Council  on  Undergraduate  Research,  Washington,  D.C.  

2.    Boyd,  Mary  K.  and  Wesemann,  Jodi  L.  (Eds.)  (2009).  Broadening  Participation  in  Undergraduate  Research:  Fostering  Excellence  and  Enhancing  the  Impact.  Council  on  Undergraduate  Research,  Washington,  D.C.  

3.  Handelsman,  J.,  Pfund,  C.,  Lauffer,  S.  M.,  and  Pribbenow,  C.  M.  (2005).  Entering  Mentoring:  A  Seminar  to  Train  a  New  Generation  of  Scientists.  The  Wisconsin  Program  for  Scientific  Teaching.    

4.  Vye,  N.  J.,  Schwartz,  D.  L.,  Bransford,  J.  D.,  Barron,  B.  J.,  Zech,  L.  and  Cognition  and  Technology  Group  at  Vanderbilt.  (1998).  “SMART  environments  that  support  monitoring,  reflection,  and  revision,”  In  D.  Hacker,  J.  Dunlosky,  &  A.  Graesser  (Eds.),  Metacognition  in  Educational  Theory  and  Practice.  Erlbaum,  Mahwah,  NJ.    

   

   

 

 

Page 11: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  11  

Best  Practices  for  Precollege  Outreach  and  Curriculum  Development  

Facilitators:   Claire  Duggan  (Northeastern)     Vikram  Kapila  (NYU—Poly)     Mary  Poats  (NSF)  

 

Two  facilitators  provided  brief  overviews  of  their  RET  Sites  (NYU-­‐Poly  and  Northeastern)  and  suggested  strategies  for:  recognizing  research  mentors,  bringing  engineering  into  the  classroom,  developing  teachers  as  leaders,  showcasing  success  through  video  testimonials,  and  broadening  and  sustaining  RET  activities  beyond  NSF  funding.  A  third  facilitator  highlighted  the  TeachEngineering  Digital  Library  for  disseminating  engineering-­‐based  lessons  produced  by  RET  programs.  Following  the  opening  remarks  of  the  facilitators,  the  session  attendees  divided  themselves  into  five  groups  to  discuss  and  suggest  best  practices  from  their  RET  Sites.  The  results  of  these  discussions  are  summarized  below.    

Strategies  to  engage  university  faculty  in  RET  experience:  RET  programs  use  a  variety  of  approaches  to  engender  faculty  participation  in  the  training  and  mentoring  of  teachers.  A  common  approach  is  clear  and  convincing  articulation  of  benefits  to  faculty  and  their  research  students.  Faculty  members  who  have  previously  mentored  teachers  understand  knowledge,  skills,  and  experiences  that  teachers  bring  to  their  laboratory  group;  and  how  their  own  research  students  benefit  by  collaborating  and  interacting  with  professional  educators.  Moreover,  RET  mentors  often  leverage  their  collaborative  research  experience  with  teachers  to  develop  authentic  and  meaningful  societal  impact  statements  in  their  research  proposals.  For  tenure-­‐track  faculty,  the  experience  of  mentoring  RET  teachers  allows  them  to  pilot-­‐test  educational  innovations  in  preparation  for  their  CAREER  proposals.  Participation  in  RET  mentoring  programs  can  also  lead  to  additional  local  support  from  foundations  and  industry  for  workforce  development  projects.  At  many  institutions  RET  projects  are  highly  visible  and  are  vigorously  sought  after  by  their  media  and  development  departments;  providing  numerous  opportunities  to  RET  mentors  to  showcase  their  research  to  diverse  stakeholders  of  the  university,  e.g.,  administrators,  trustees,  alumni,  and  donors.  Some  RET  Sites  have  formal  mechanisms  to  recognize  research  mentors  for  their  participation  in  the  program,  for  example,  announcement  in  department  newsletter  or  alumni  publication.  Increasingly,  RET  PIs  are  leading  the  conversation  at  their  universities  to  have  faculty  mentors’  contribution  to  the  RET  program  counted  in  their  annual  merit  review.  For  example,  at  one  PI’s  institution,  an  aerospace  faculty  mentor  highlighted  the  number  of  Internet  hits  to  her  TeachEngineering  lessons  in  her  annual  merit  review  and  was  favorably  reviewed.  Some  programs  organize  formal  mentor  recruiting  events  which  showcase  prior-­‐year  faculty  mentors’  collaborative  research  with  their  RET  teachers.  Other  programs  conduct  orientation  programs  for  faculty  to  learn  about  their  role  in  the  program  and  benefits  of  participation.  Research  mentors  with  prior  RET  and  REU  experiences  typically  champion  the  program  and  encourage  participation  of  other  faculty.      

Strategies  to  prepare  teachers  to  bring  engineering  into  the  classroom:  In  some  RET  projects,  faculty  mentors  and  engineering  students  visit  their  partner  teachers’  classrooms  to  develop  an  

Page 12: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  12  

appreciation  for  their  teachers’  classroom  context  and  devise  appropriate  strategies  for  infusing  engineering  into  the  classroom.  Alternatively,  other  RET  projects  assess  their  participating  teachers’  initial  attitudes,  perception,  and  familiarity  with  engineering  and  follow  a  diverse  array  of  approaches  to  prepare  teachers  to  bring  engineering  into  the  classroom.    

First,  some  RET  Sites  have  structured  workshops,  with  specific  learning  content,  hands-­‐on  activities,  and  field  trips  to  introduce  teachers  to  foundations  of  one  or  more  engineering  disciplines.    

Second,  some  RET  Sites  have  developed  modules  that  can  be  used  by  teachers  to  bring  pre-­‐engineering  courses  into  the  classrooms.  In  both  the  workshop  and  module  approaches,  RET  Sites  rely  on  engineering  faculty  and  student  assistants  to  deliver  the  content  to  teachers.    

Third,  some  RET  Sites  use  commercially  available  videos  to  introduce  teachers  to  various  engineering  disciplines.  For  teachers,  and  even  RET  personnel,  who  are  just  starting  out,  it  may  be  beneficial  to  adapt/adopt  existing  curricula  models  from  successful  RET  Sites.    

Fourth,  at  some  RET  Sites,  teachers  research  various  engineering  disciplines  and  teach  it  to  one  another,  thereby  preparing  the  entire  cohort  of  teachers  to  bring  engineering  into  the  classroom.    

Fifth,  teachers  of  some  RET  Sites  work  on  developing  classroom  lessons  and  activities  that  are  aligned  with  curriculum  standards  and  illustrate  some  component  of  their  summer  research  experience.  This  allows  for  making  engineering  connections  in  science  and  math  courses  and  illustrates  the  real-­‐world  relevance  of  classroom  learning.    

Sixth,  teachers  of  some  RET  programs  create  short  videos  of  their  engineering  research  and  its  broader  impact.  These  videos  are  used  to  introduce  their  students  to  engineering.    

Seventh,  some  RET  Sites  encourage  their  teachers  to  bring  engineering  into  classrooms  through  lessons  on  the  process  of  engineering  design  and  engineering  research.    

Eighth,  many  RET  teachers  showcase  their  summer  research  experiences  and  their  successes  in  bringing  engineering  into  the  classroom  to  other  teachers,  thereby  encouraging  best  practices  of  RET  projects  in  the  classrooms  of  non-­‐RET  teachers.  While  some  RET  Sites  hold  formal  dissemination  workshops  to  do  so,  in  many  cases  teachers  lead  professional  development  meetings  at  their  schools  or  districts  and  in  some  cases  they  present  at  local,  regional,  and  national  science-­‐,  math-­‐,  and  technology-­‐focused  teacher  conferences.    

Finally,  in  one  illustration  of  successful  classroom  implementation,  a  PI  described,  among  others,  a  school-­‐wide  engineering  curriculum  at  an  inner-­‐city  high-­‐school  that  currently  involves  over  260  students  in  three  engineering  classes  in  grades  10-­‐12.    

RET  teachers  as  change  agents:  Some  RET  teachers  continue  their  research  collaboration  with  their  university-­‐based  research  team  well  after  the  summer  program  ends.  While  initially  these  teachers  may  have  participated  in  RET  Site  projects,  their  continued  focus  and  interest  in  engineering  research  has  led  faculty  research  mentors  to  bring  them  back  under  their  own  RET  

Page 13: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  13  

supplements.  These  sustained  interactions  often  benefit  the  development,  mentoring,  and  training  of  undergraduate  and  graduate  engineering  students,  who  gain  a  deeper  appreciation  of  pedagogical  concepts,  societal  relevance  of  their  research,  and  connections  of  their  engineering  studies  to  K-­‐12  STEM  concepts.  In  addition,  RET  participants  are  assisting  in  the  re-­‐design  of  professional  development  courses  at  partner  universities  and  serving  as  co-­‐instructors  for  engineering  and  other  STEM  course  offerings.  

Having  had  a  first-­‐hand  experience  with  modern  tools  and  technologies  used  by  engineers,  many  RET  teachers  become  a  resource  to  other  teachers  in  their  laboratory  and  facility  development  efforts.  Many  RET  teachers  have  written  mini-­‐grants  to  philanthropic  foundations,  local  corporations,  online  grant-­‐writing  sites,  and  school  district  programs  such  as  VATEA,  to  raise  funds  for  integrating  their  RET  experiences  in  their  own  classrooms.  Some  RET  teachers  have  also  written  lessons,  units,  and  entire  pre-­‐engineering  curriculum  for  local  schools.  Such  dedicated  efforts  allow  RET  teachers  to  become  ambassadors  of  engineering  education  in  their  schools,  where  they  recommend  participation  in  RET  programs  to  other  teachers,  inspire  their  students  to  pursue  careers  in  engineering,  and  prepare  them  to  study  engineering  in  college.    

RET  teachers  have  frequently  authored/co-­‐authored  articles  in  technical  publications,  teacher  literature,  and  TeachEngineering.  For  the  last  few  years,  the  National  Science  Teachers  Association  (NSTA)  Annual  Conference  has  hosted  special  sessions  where  RET  teachers  showcase  their  engineering  research  and  lesson  plans  to  a  national  audience  of  science  teachers  and  administrators.  These  experiences  allow  RET  teachers  to  become  instructional  leaders  and  disseminate  their  knowledge  of  engineering  disciplines,  research,  and  tools  to  other  teachers  in  their  schools  and  school  districts.  Some  RET  teachers  have  transitioned  from  teaching  to  administrative  roles  as  department  chair,  assistant  principal,  and  even  school  district  administration,  in  which  they  continue  to  champion  a  significant  role  for  engineering  in  K-­‐12  STEM  education.    

Interactions  with  RET  teachers  have  sensitized  university  faculty  to  the  K-­‐12  environment  and  culture,  curricula  standards,  and  teacher  professionalism.  Thus,  when  RET  research  mentors  write  engineering  research  and  education  proposals,  they  frequently  call  upon  their  mentee  teachers  to  serve  as  informed  and  authentic  partners.  In  fact,  RET  teachers  have  also  been  catalysts  in  proposing  concepts  and  designs  of  some  K-­‐12  engineering  education  proposals  by  university-­‐based  faculty.  Moreover,  in  many  instances,  RET  teachers  are  serving  as  a  bridge  to  connect  faculty  from  engineering  and  education  schools  at  universities  to  spur  new  partnerships.    

Evidence  of  transformative  impact  and  success  for  RET  programs:  RET  experiences  have  been  transformative  for  both  the  teacher  participants  and  faculty  research  mentors.  Specifically,  many  RET  teachers  report  that  participation  in  the  RET  program  has  allowed  them  to  better  understand  the  engineering  profession.  The  experience  has  allowed  teachers  to  view  themselves  as  learners  again.  They  are  now  able  to  exploit  the  real-­‐world  appeal  of  engineering  concepts,  problems,  and  illustrations  in  teaching  K-­‐12  science  and  math  concepts.  Working  in  an  intense  research  environment,  where  all  participants  are  treated  as  professionals  and  are  expected  to  make  original  intellectual  contributions,  tasting  the  joy  of  success—sometimes  

Page 14: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  14  

having  failed  on  first  attempt,  has  led  teachers  to  a  confidence  in  their  own  abilities  and  has  reinvigorated  their  teaching.  Similarly,  the  experience  of  mentoring  teachers  has  transformed  the  way  engineering  faculty  view  and  value  education  of  their  own  undergraduate  and  graduate  students.  The  engineering  faculty  now  have  a  better  appreciation  of  challenges  and  opportunities  in  K-­‐12  STEM  education  systems  and  are  engaging  with  their  surrounding  communities  in  collaborative  educational  outreach  efforts.    

RET  programs  have  been  successful  on  a  variety  of  fronts.  For  example,  RET  teachers’  students  have  decreased  failure  rate  and  higher  grades.  Moreover,  RET  teachers  themselves  and  their  students  experience  greater  excitement  and  engagement  in  teaching  and  learning.  RET  teachers  have  been  able  to  engender  greater  interest  in  engineering  among  their  students  some  of  whom  have  gone  on  to  receive  scholarships  to  study  engineering  at  the  college  level.  RET  teachers  have  been  able  to  affect  institutional  change  as  well.  Specifically,  schools  have  been  appreciative  of  teachers’  efforts  and  have  allocated  increased  resources  and  budgets  to  promote  engineering  activities  in  the  classroom.  For  faculty  research  mentors,  experience  in  RET  projects  has  led  to  their  participation  as  consultants  on  a  variety  of  education  and  evaluation  projects.  Faculty  mentors  are  also  supporting  their  departments  and  institutions  in  assessing  student  learning.  Engagement  in  RET  experiences  have  led  some  higher  education  institutions  to  allocate  budgets  to  create  K-­‐12  STEM  Education  Centers/positions.  This  has  often  been  the  result  of  university  faculty’s  advocacy  for  greater  involvement  of  university  faculty  and  researchers  in  K-­‐12  STEM  education.      

Many  RET  programs  use  pre-­‐  and  post-­‐program  surveys  to  assess  the  effect  of  their  education,  training,  and  research  model.  Some  programs  adapt  survey  instruments  from  RETNetwork.org  while  others  retain  external  evaluators  to  design  and  conduct  program  assessment.  In  one  approach,  teachers  are  surveyed  and  given  a  technical  quiz  (pre-­‐  and  post-­‐program)  to  determine  their  gain  in  familiarity  with  skills,  concepts,  and  devices  used  in  the  summer  program.  Often  project  evaluators  conduct  formal  surveys  and  observations  of  teachers  and  their  research  mentors.  Portfolios,  consisting  of  research  project  reports,  lesson  plans,  formal  presentations,  research  posters,  and  websites  are  also  often  used  to  assess  teacher  activities.  Teachers  provide  mid-­‐  and  end-­‐of-­‐program  evaluation  of  the  efficacy  of  project  activities  for  mid-­‐course  correction  and  future  enhancements.  Teachers  also  provide  feedback  on  student  evaluation  of  their  RET-­‐based  lessons  and  activities.  In  some  programs  engineering  students  and  faculty  mentors  visit  their  partner  teachers’  classrooms  to  observe  their  implementation  of  engineering-­‐based  lessons  and  activities.  Annual  workshop  activities,  participating  in  the  NSTA  meetings,  sharing  of  lesson  plans,  dissemination  through  TeachEngineering,  etc.,  provide  additional  means  to  assess  the  transformational  impact  and  success  of  RET  programs.    

Sustaining  RET  programs  post  NSF  funding:  Post  NSF  support,  RET  programs  may  be  sustained  through  following  alternative  funding  streams:  (1)  partnership  with  non-­‐profits,  local  businesses,  and  corporations;  (2)  grants  from  city,  state,  and  federal  departments  of  education;  (3)  “support  an  RET  teacher”  campaign  through  university’s  alumni  and  development  offices;  (4)  become  a  city/state  certified  entity  to  offer  professional  development  programs  to  teachers  or  conduct  a  fee-­‐based  program;  and  (5)  mini-­‐grant  proposals  to  provide  curriculum  kits  to  teachers  for  conducting  engineering  activities.  RET  Sites  may  also  consider  forming  multi-­‐

Page 15: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  15  

university  partnerships  to  target  larger  sources  of  funding  at  the  regional  and  national  level,  e.g.,  scale-­‐up  grants  to  the  U.S.  Department  of  Education’s  Investing  in  Innovation  (I3)  program,  evidence-­‐based  replicability  grants  to  NSF’s  ITEST  program,  and  education  research  studies  on  successful  models  of  RET  Sites  for  national  scale-­‐up  and  dissemination  through  NSF’s  DR  K-­‐12  program,  among  others.  However,  for  RET  programs  to  develop  successful  sustainability  efforts,  it  is  vitally  important  that  during  their  NSF  funding  these  programs  document  their  successes  along  multiple  dimensions  (teacher  engagement,  faculty  satisfaction  and  recognition,  classroom  implementation,  and  student  impact)  and  raise  the  visibility  of  their  projects  in  their  institutions,  school  districts,  and  local  communities  through  media  campaign  and  compelling  video  documentaries.    

 

Page 16: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  16  

Engineer  Education  Research:  Where  are  we  going?    

Facilitators:     Alan  Cheville  (NSF)  Robert  Martello  (Olin)  Linda  Vanasupa  (Cal  Poly)  

   

Crystallized  Outcomes    

1. Research  that  simultaneously  informs  and  transforms  engineering  education  practice;    

2. Research  that  enables  innovating  for  socially  responsible  aims;    

3. Research  that  leverages  existing  knowledge,  technologies  and  educational  communities  to  individualize  learning.    

Executive  Summary  and  Facilitators  Reflections  

The  attendees  were  mostly  faculty  grantees  of  NSF  funding  for  engineering  education  research.  As  a  result,  important  voices  were  missing  from  the  conversation  such  as  administrators  and  students,  groups  with  deep  interests  in  engineering  education  research.  A  very  interesting  result  was  that  we  collectively  recognized  that  the  current  states  of  engineering  education  and  engineering  education  research  look  a  great  deal  like  what  we  would  design  if  our  intent  was  to  utterly  destroy  each  of  them  within  ten  years.    

In  general,  the  crystallized  outcomes  reflect  a  recognition  that  for  both  engineering  education  and  engineering  education  research  to  thrive,  they  must  serve  the  whole  of  society—that  the  artificial  boundaries  that  we  create  between  disciplines,  peoples,  nation  states,  impede  our  ability  to  fully  “place  service  before  profit,  honor  and  standing  of  the  profession  before  personal  advantage  and  the  public  welfare  [i.e.,  health,  happiness  and  good  fortunes]  above  all  other  considerations.”  (Engineers’  Creed,  National  Society  of  Professional  Engineers,  1954).  The  crystallized  outcomes  also  reveal  our  belief  that  for  high  impact,  engineering  education  research  must  be  done  in  a  way  that  operationalizes  change  within  the  engineering  education  community  toward  our  aspired  state.  There  exists  a  great  deal  of  knowledge  from  the  social  sciences  on  learning  and  change  in  human  systems;  for  high  impact,  engineering  education  researchers  must  collaborate  across  traditional  boundaries  to  take  advantage  of  what  is  already  known.  These  types  of  transdisciplinary  collaborations  will  also  enable  us  to  better  serve  the  diverse  student  learning  needs  across  all  of  society  through  individualized  learning.    

Overview  of  process  and  framework  used  to  report  the  results    

We  ran  two  sessions,  in  the  morning  and  afternoon  of  March  14,  2011,  lasting  90  minutes  each.  The  first  session  featured  three  "rounds"  of  group  design  activities,  and  the  second  session  used  two  slightly  longer  rounds.  We  formed  four-­‐  to  eight-­‐member  groups  for  these  activities,  and  they  shared  the  results  of  their  work  either  by  taking  notes  and  reporting  out  to  the  whole  group,  or  by  writing  ideas  on  notecards  and  grouping  them  into  coherent  categories  on  a  stickywall™.    

Page 17: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  17  

We  began  each  session  by  setting  the  context  for  the  conversation.  We  chose  to  reference  the  National  Academies  Grand  Challenges  for  Engineering  in  the  21st  century  as  the  context  for  2  engineering,  engineering  education  and  engineering  education  research.  We  spent  about  two  minutes  describing  the  four  broad  areas  of  human  concern  in  which  the  Grand  Challenges  are  organized:  Health,  Sustainability,  Vulnerability,  and  The  Joy  of  Living.  We  stated  that  the  NAE  acknowledges  that  the  challenges  are  those  that  affect  all  of  humanity  in  our  shared  and  interconnected  fate.    

We  then  asked  the  participants  to  engage  in  a  2-­‐3  minute  silent  meditation  where  they  considered  what  the  future  would  look  like  in  10  years.  We  asked  the  morning  session  participants  to  think  about  the  future  in  broad  terms,  and  refined  the  question  for  the  afternoon  attendees  who  instead  imagined  "the  future  of  engineering  education."  After  this  meditation,  we  asked  the  audience  members  to  share  in  pairs  what  they  saw  as  the  future.  This  exercise  lasted  a  total  of  about  10  minutes.  We  then  took  them  through  some  rounds  of  design  in  which  they  responded  to  design  questions  that  elicited  the  aspirational  states  they  have  for  engineering  education  research.  We  are  using  Aristotle’s  four  types  of  causality  as  a  framework  for  describing  the  results  of  the  workshop.  They  are:    

Final  cause:  The  "end,"  the  goal  or  intent  of  the  system  or  thing;    

Formal  cause:  The  form  or  design  of  the  system  or  thing;    

Efficient  cause:  The  process  used  to  create  the  system  or  thing;    

Material  cause:  The  physical  substances  comprising  the  system  or  thing.    

It  is  important  to  note  that  the  Final  cause  is  the  high-­‐leverage  point  in  any  system.  This  is  

the  zone  of  paradigm  shifts;  all  other  decisions  about  design,  processes,  and  natural  capital  follow  from  the  intent.  The  bottom  half  of  the  above  chart  focuses  on  “objects”  while  the  top  half  emphasizes  relationships.    

Session#1:  Three  rounds  of  design  activities  focused  on  engineering  education  9:15-­‐10:45  AM,  60  attendees    

Round  #1  Prompt:  If  you  were  to  design  an  engineering  education  system  that  would  be  a  complete  disaster  in  10  years,  what  would  it  look  like?  How  would  it  function?    

Generalized  Outcomes  (sorted  into  four  causality  categories):    • Intent:  Create  an  engineering  education  system  that  serves  and  represents  the  interests  

of  a  subset  of  society,  rather  than  the  whole  (e.g.,  one  single  socioeconomic  demographic  or  one  “customer,”  such  as  “industry.”)    

Page 18: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  18  

• Form:  Abstract  engineering  education  from  the  real  world  (e.g.,  ignore  contemporary  developments,  remove  human  elements);  Segregate  and  fragment  engineering  education  at  all  levels  in  all  ways  (e.g.,  race,  gender,  socioeconomic  status,  disciplinary  focus);  Incentivize  faculty  performance  in  ways  that  fixate  their  attention  on  other  things  (e.g.,  100%  of  salary  tied  to  level  of  external  grant  funding);  Remove  accountability  to  professional  bodies.    

• Process:  Create  completely  prescriptive  curricula  without  freedom  of  choice  (one  size  fits  all);  Advertise  engineering  to  potential  students  as  a  really  difficult  subject  with  lots  of  math  and  science  and  highly  competitive;  Use  a  grading  process  of  only  two  high-­‐  stakes  assessments  (e.g.,  mid-­‐term,  final);  Classroom  experience  is  purely  a  transfer  of  information  that  occurs  through  “death  by  PowerPoint.”    

• Content:  No  examples;  More  pencil/paper  problems  that  students  must  complete;  100%  non-­‐human  interaction  in  teaching;  no  projects;  no  office  hours.    

Reflections  on  Round#1:    We  all  noticed,  to  our  great  amusement,  that  the  output  of  this  exercise  bore  a  striking  similarity  to  the  current  engineering  education  system.  In  general,  participants  seemed  to  determine  the  most  destructive  course  of  action  in  one  of  two  ways:  they  either  identified  and  magnified  familiar  educational  elements,  or  listed  an  idealized  course  of  action  (e.g.,  "increase  diversity  in  student  populations”)  and  then  reversed  it  (e.g.,  “prohibit  diversity…”).  We  believe  that  this  first  round  successfully  helped  the  workshop  audience  to  stretch  their  creative  muscles,  and  it  nicely  set  up  the  next  question.  Most  groups  formed  their  answers  to  our  question  with  a  great  deal  of  consensus:  it  was  not  difficult  for  them  to  agree  upon  the  pathway  to  destruction.    

Round  #2  Prompt:  If  you  were  to  design  an  engineering  education  system  so  that  it  was  wildly  successful,  what  would  it  look  like?    

Generalized  Outcomes  (sorted  into  four  causality  categories):    • Intent:  Focused  on  innovating  for  socially-­‐responsible  aims  (e.g.,  positive  learning  

cultures  that  welcome  and  celebrate  diversity  in  all  its  forms;  creativity  taught  and  fostered;  integration  of  sustainability,  global  issues,  systems  thinking,  community  outreach  and  community-­‐based  service  learning);    

• Form:  Engineering  learned  in  an  integrated,  holistically  engaging  environment  (e.g.,  the  learning  includes  students,  faculty,  staff,  community,  many  disciplines,  authentic  projects);  Individualize  learning  (e.g.,  autonomy  support,  self-­‐directed,  student-­‐  centered).      

• Process:  System  rules  that  that  were  congruent  with  the  espoused  value  of  teaching  (e.g.,  reward  system  for  teaching)  

• Content:  Public  image  campaign  to  increase  the  appeal  of  engineering  (e.g.,  CSI  for  engineering,  engineering  content  in  high  schools)    

Page 19: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  19  

Reflections  on  Round  #2:  As  with  round  one,  we  did  not  observe  a  great  deal  of  disagreement  between  team  members  during  this  exercise.  The  members  of  most  groups  found  ways  to  collaborate  productively  and  one  of  their  biggest  challenges  was  paring  down  their  ideas  to  a  small  number  that  could  then  be  captured  on  notecards  and  posted  on  a  stickywall™.    

These  sample  outcomes  can  be  considered  with  three  frames:    

Personal-­‐How  am  I  participating  in  ways  that  contribute  to  the  current  state?    

Systemic-­‐What  are  the  dynamics  at  play  that  contribute  to  the  current  state?    

Perceptual-­‐What  are  the  misperceptions  that  contribute  to  the  current  state?    

As  we  discussed  ways  to  change  engineering  education,  the  personal  frame  of  consideration  was  often  missing.  That  is,  if  you  were  asking  “How  can  we  fix  the  system?”  the  answer  included  ways  to  benevolently  manipulate  the  system  for  more  positive  outcomes,  such  as  changing  the  pedagogy  or  launching  a  marketing  campaign.  While  there  was  some  thought  of  individual  students,  there  was  little  reflection  on  the  role  played  by  faculty  agents  within  the  system.  Given  that  the  audience  was  primarily  made  up  of  faculty,  faculty  apparently  don’t  see  themselves  as  part  of  the  system…  or  don’t  believe  they  are  a  part  of  the  system  that  needs  to  be  changed.    

One  of  the  principles  of  change  processes  is  that  if  there  is  focus  on  the  perceptual  levels  and  systemic  levels  without  significant  attention  to  personal  levels,  the  change  initiatives  will  be  superficial  and  impermanent.  Attempts  to  address  the  perceptual  will  occur  to  others  as  “candy  coating”  through  public  relations;  attempts  to  address  the  systemic  will  occur  as  manipulation  to  those  who  are  the  object  of  the  fix  (e.g.,  K-­‐12  teachers  who  are  told  to  put  greater  emphasis  on  math  and  science).  The  source  of  both  systemic  and  perceptual  dynamic  system  behavior  reside  at  the  personal  level,  so  changing  systemic  and  perceptual  leaves  the  source  of  these  dynamics  in  place  to  recreate  the  problematized  phenomena  once  the  force  applied  to  the  systemic  and  perceptual  levels  is  removed.  So,  the  absence  of  the  personal  level  of  reflection  in  the  dialogue  predicts  a  conserving  of  the  past  behavior  of  the  system.  It  also  illustrates  our  tendency  to  believe  the  problematized  phenomena  of  engineering  education,  such  as  chronically  low  ethnic  and  gender  diversity,  are  outside  of  us,  rather  than  something  in  which  we  are  actively  and  causally  participating.    

Round  #3:  Prompt:  Now  that  we  have  this  picture,  what  do  we  need  to  know  in  order  to  bring  about  our  aspired  state  for  engineering  education?    

Generalized  Outcomes:    

• Questions  around  creativity:  Can  it  be  taught?  Can  it  be  measured?  How  do  you  ignite  it?    

• Questions  around  change:  What  is  the  process  of  creating  change  in  engineering  education?  What  are  the  perceived  and  real  obstacles  to  change?  How  do  we  change  to  a  culture  of  integrating  engineering  education  research  into  practice?    

Page 20: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  20  

• Questions  around  tools:  How  do  we  use  technology  to  support  our  educational  goals?  How  do  we  define  or  measure  student  success?    

Reflections  on  Round  #3:  Everyone  was  quite  tired  at  this  point  and  we  were  also  short  on  time.  We  expected  the  morning  session  results  to  be  the  platform  for  the  afternoon  session  results,  so  we  collected  as  much  information  as  possible  from  the  attendees  and  did  our  best  to  interpret  it  before  the  session  ended.    

Session  #2:  2  rounds  of  design  activities  focused  on  engineering  education  research  2:45-­‐4:15  PM,  40  attendees    

Round  #1  Prompt:  If  you  were  to  design  an  engineering  education  research  system  that  would  be  a  complete  disaster  in  10  years,  what  would  it  look  like?  How  would  it  function?    

Generalized  Outcomes  (sorted  into  four  causality  categories):    

• Intent:  Focus  on  differentiating  and  legitimizing  engineering  education  research  as  a  unique  discipline  (e.g.,  fund  only  studies  of  abstract  concepts;  privilege  theory  over  practice;  privilege  technical,  quantitative  over  non-­‐technical,  qualitative;  have  only  one  journal  for  scholarly  work  that  accepts  nothing  or  accepts  only  the  work  of  a  few  elite  “experts”;  insist  that  engineering  education  is  something  fundamentally  different  than  education,  requiring  it  to  be  studied  by  only  engineers).    

• Form:  Have  the  form  of  engineering  education  research  replicate  the  expert  model  of  other  disciplines.  (e.g.,  Establish  an  implicit  hierarchy,  where  an  elite  set  of  researchers  and  programs  perspectives  are  more  valued  than  emergent  perspectives  and  important  voices  (e.g.,  student  voices)  are  missing  from  the  dialogue;  Adopt  a  competition  model  for  the  research  community  rather  than  a  collaborative  model;  Create  a  competitive  system  of  funding  research  in  which  the  parameters  of  that  system  are  defined  and  judged  by  authorized  “experts”—principle:  to  those  who  have,  more  shall  be  given).    

• Process:  Forgo  all  standard  research  processes  (e.g.,  Ignore  IRB  issues;  Misuse  statistics;  Base  decisions  only  on  gut  feeling;  Disseminate  results  only  by  tweeting;  Forgo  data  collection—go  with  prefabricated  results;  Publish  only  results  that  reinforce  the  researcher’s  prior  beliefs;  Do  not  publish  “failures”  or  “negative”  results;  Don’t  examine  others’  work;  Don’t  collaborate).    

• Material:  Only  use  surveys  or  anecdotal  data;  Eliminate  all  funding.    

Reflections  on  Round  #1:    As  before,  the  audience  immediately  realized  (and  laughed  about)  the  similarity  between  this  activity  and  the  current  engineering  education  system.  However,  this  time  the  deliberation  was  not  one  of  complete  consensus:  some  team  members  disagreed  about  whether  certain  aspects  of  engineering  education  research  were  positive  or  negative,  such  as  the  inclusion  of  IRBs.  If  anything  we  felt  that  the  afternoon's  first  round  was  even  more  productive  than  the  morning  one,  as  it  started  some  helpful  discussions  about  the  goals  and  methods  of  engineering  education  research  while  also  inspiring  attendees  to  indulge  their  creativity.    

Page 21: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  21  

Round  #2  Prompt:    If  you  were  to  design  an  engineering  education  research  system  that  would  be  wildly  successful  in  10  years,  what  would  it  look  like?  How  would  it  function?    

Generalized  Outcomes  (sorted  into  four  causality  categories):    • Intent:  Focused  on  addressing  emergent  challenges  with  meaningful,  global  societal  

connections    

• Form:  Collaborative  across  disciplinary  boundaries  with  transparent  and  open  access  to  data  and  tools.  (e.g.,  fundamentally  transdisciplinary,  open  access  assessment  tools;  open  access  to  research  data).    

• Process:  Research  would  be  integrated  with  practice  in  a  way  that  transforms  and  improves  engineering  education  praxis  and  is  thereby  systemically  valued  (e.g.,  conducted  in  ways  appropriate  to  change  personal,  systemic  and  perceptual  levels  of  system  behavior;  institutional  reward  systems  for  EER  and  teaching;  faculty  would  have  a  better  understanding  of  student  learning;  learning  environments  that  enabled  deeper  learning  by  students  of  all  learning  styles;  teachers  would  also  be  researchers  of  their  own  praxis).    

• Material:  Theoretical  foundations  (e.g.,  grounded  in  theory,  appropriate  social  science  research  and  change  methodologies  &  effective  models).    

Reflections  on  Round  #2:    Again,  the  round  two  deliberations  invoked  some  disagreements  as  team  members  approached  larger  questions  from  different  perspectives.  Also,  as  in  the  morning  session,  participants  tended  to  emphasize  systemic  considerations  more  than  other  types,  with  personal  questions  seldom,  if  ever,  appearing.  The  increased  emphasis  upon  educational  research  in  round  two  produced  a  corresponding  focus  upon  the  appropriate  methods  of  educational  studies  (for  example,  the  need  to  consider  interdisciplinary  approaches  and  provide  open  access  to  research  data)  along  with  some  talk  about  the  goals  of  these  studies.    

Page 22: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  22  

NSF’s  New  Data  Management  Policy:  A  Conversation  for  Engineering  Education  Research  

Facilitators:     Russell  Long  (Purdue  University)  Russ  Pimmel  (NSF)  Donna  Riley  (Smith  College)  

 

Overview  of  NSF’s  new  Data  Management  Policy  

NB:  The  NSF-­‐wide  policy  can  be  found  at  http://www.nsf.gov/bfa/dias/policy/dmp.jsp,  with  guidance  from  the  Engineering  Directorate  at  http://nsf.gov/eng/general/ENG_DMP_Policy.pdf  and  general  Frequently  Asked  Questions  at  http://www.nsf.gov/bfa/dias/policy/dmpfaqs.jsp.    

Producing  a  Data  Management  and  Sharing  Plan  creates  a  place  to  articulate  and  formalize  decisions  we  already  make  about  data  on  our  research  projects.  Thinking  through  this  aspect  of  the  work  at  the  time  of  the  proposal  may  improve  the  quality  of  the  research  plan  and  streamline  data  management  later  on  in  the  project.      

One  of  the  most  important  points  is  clarification  of  the  term  “primary  data”  used  in  the  NSF  document.  The  Engineering  Directorate’s  guidelines  spell  out  that  “primary  data”  does  not  refer  to  preliminary  or  raw  data,  but  rather  to  analyzed  data.      These  might  be  in  the  form  of  graphs  or  tables  –  however  the  data  are  best  presented.    

The  overview  prompted  several  questions  among  the  group:  

1. What  does  the  primary  data  “necessary  to  validate  research  findings”  mean  in  qualitative  work?  

This  question  did  not  have  an  easy  answer.  Qualitative  researchers  approach  data  analysis  as  interpretive,  and  while  sharing  quotes  that  illustrate  or  form  the  basis  for  research  findings,  it  is  difficult  to  think  of  them  as  “validating”  those  findings.  This  phrasing  requires  some  re-­‐interpretation  for  the  qualitative  research  community.  

2. When  you  sign  a  copyright  form  for  journal  publication,  you  are  prevented  from  putting  data  on  a  publicly  available  website.  How  can  we  address  this  conflict?  

The  group  offered  several  different  answers  to  this  question.  One  person  felt  that  in  practice,  this  doesn’t  matter.  Another  person  suggested  negotiating  copyright  with  publishers  in  accordance  with  the  Data  Management  Plan.  Another  person  suggested  that  data  sharing  need  not  necessarily  take  place  via  a  publicly  available  website,  and  that  other  methods  might  allow  one  to  be  in  compliance  with  both  the  Data  Management  Plan  and  a  publisher’s  copyright  agreement.  Donna  Riley  noted  that  the  NIH  Public  Access  requirements  (http://publicaccess.nih.gov/)  make  all  publications  based  on  NIH  research  publicly  available,  superseding  copyright  agreements  and  fundamentally  changing  the  way  NIH-­‐funded  scholars  communicate.  However,  Russ  Pimmel  offered  that  the  NSF  is  not  as  large  an  agency  and  was  not  likely  to  have  similar  leverage.    

Page 23: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  23  

3. Is  the  period  of  data  retention  three  years?  What  if  your  grant  expires?  

Data  Management  continues  after  the  grant  expires.  Russell  Long  shared  his  practice  of  not  destroying  data  until  10  years  after  the  last  publication  (which  can  also  occur  after  the  grant  expires).    

4. What  if  your  Data  Management  Plan  changes?  

Small  changes  can  be  made  without  consulting  the  program  officer,  but  for  significant  changes,  one  should  approach  the  program  officer  to  discuss.    

5. Will  proposals  with  lower  levels  of  data  sharing  be  reviewed  more  negatively  than  those  that  can  be  completely  open?  

This  question  created  a  great  deal  of  discussion  because  of  the  potential  “chilling  effect”  on  work  that  cannot  openly  share  data,  for  whatever  reason.  Russ  Pimmel  asked  the  group  to  trust  the  wisdom  of  our  peers  in  this  matter,  and  that  this  is  an  evolutionary  process  where  the  community  will  learn  alongside  those  submitting  proposals.    

Implications  for  Human  Subjects  and  other  Legal  Compliance  Issues  

Both  conversations  spent  significant  time  discussing  the  implications  for  human  subjects  research.  The  main  take-­‐away  was  that  human  subjects  protections  should  come  first,  and  the  Data  Management  Plan  tailored  to  fit  what  Human  Subjects  Protections  would  require,  rather  than  the  other  way  around.  The  same  rule  applies  to  other  legal  agreements,  whether  they  are  intellectual  property  agreements,  protecting  student  privacy  through  FERPA,  memoranda  of  understanding,  or  other  contracts.    Ultimately  NSF  defers  to  institutions  on  how  they  govern  IRB,  chemical  safety,  animal  protocols,  and  the  like.  NSF  will  not  police  data  management,  but  is  looking  for  investigators  to  create  a  thoughtful  plan  for  their  specific  research  and  institutional  setting.    

Some  qualitative  researchers  were  particularly  concerned  about  sharing  data.  First,  in  some  cases,  particularly  when  students  discuss  identity  or  when  the  focus  is  on  underrepresented  groups,  it  is  difficult  to  determine  what  content  may  identify  the  individual.  When  identity  is  the  focus  of  study,  primary  data  may  focus  on  what  it  means  to  be  a  woman,  a  student  of  color,  a  person  of  a  particular  ethnicity,  an  lgbtq  student,  or  a  student  with  a  disability  in  engineering.  In  those  cases,  sharing  data  may  identify  the  student.    Even  if  identifying  information  can  be  removed,  this  extra  step  could  have  significant  cost  implications  for  researchers  who  need  to  pay  staff  to  accomplish  this  with  interview  data.    There  would  have  to  be  tradeoffs  in  reduction  of  sample  sizes  or  other  cuts  in  a  project  budget.      

One  attendee  asked  whether  it  is  necessary  to  alter  an  IRB  consent  form  that  informs  participants  that  results  might  be  published.  While  the  simple  answer  was  that  yes,  forms  need  to  change,  it  raised  the  further  question  of  what  would  constitute  meaningful  informed  consent  when  we  cannot  necessarily  predict  how  data  will  be  used  once  it  is  shared.    Another  concern  raised  by  attendees  related  to  others’  interpreting  data  shared  out  of  context  and  not  fully  

Page 24: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  24  

understanding  the  full  story  in  a  given  study.    Some  kinds  of  data  should  not  be  used  by  others  in  secondary  analyses.  

Data  Sharing  and  Data  Archiving  

At  the  same  time,  people  who  work  with  other  kinds  of  data  saw  great  value  in  sharing  data.  The  possibility  for  sharing  interview  protocols,  and  standardizing  data  collection  across  studies  could  provide  powerful  resources  for  future  analysis.  Sharing  data  can  provide  real  data  sets  that  can  be  used  for  training  and  practice  with  graduate  students,  or  for  junior  faculty  development.    Other  people  coming  to  a  data  set  with  new  eyes,  perhaps  in  a  new  context,  may  make  new  discoveries  or  have  new  insights  that  bring  the  state  of  knowledge  in  the  community  forward.    

Russell  Long  spoke  about  the  value  and  importance  of  data  archiving.  He  detailed  the  loss  for  the  engineering  education  community  when  data  are  not  archived  and  lost  through  moves,  file  corruption,  and  other  processes.  He  also  provided  information  on  services  that  can  be  hired  to  archive  data.  One  of  these  is  the  ICPSR  (Inter-­‐University  Consortium  for  Political  and  Social  Research)  based  at  the  University  of  Michigan  (  http://www.icpsr.umich.edu/).    This  network  of  about  700  institutions  supports  best  practices  in  data  access,  archiving,  and  analysis,  and  maintains  a  large  archive  for  storing  and  (where  appropriate)  sharing  data.  Online  security  is  an  issue  with  data  storage,  and  relying  on  professional  services  may  be  more  secure  than  creating  something  from  scratch.  

Russell  Long  provided  a  sample  data  management  plan  from  his  work.  [see  Appendix  1].  In  this  sample  plan,  raw  data  are  not  shared  due  to  legal  requirements  around  protecting  student  privacy.  The  plan  includes  sections  on  data  collection,  data  protection,  data  availability,  and  data  destruction.      

Summary  of  Emergent  Discussion  

The  group  provided  the  following  summary  of  our  conversations:    

1.  How  do  we  ensure  that  data  management  plans  conform  to  legal  and  ethical  

requirements  (e.g.,  IRB,  FERPA,  proprietary  agreements,  patents,  MOUs,  etc.)?  

•  Protecting  individuals  is  paramount.  

•  There  are  legitimate  reasons  for  not  sharing  data.  

2.  We  need  ongoing  discussion  among  researchers,  reviewers,  and  NSF  to  set  appropriate  norms  that  balance  dialogue  among  researchers,  protection  of  human  subjects,  and  the  integrity  of  research  methods.  

3.  NSF  needs  to  make  clear  the  distinction  between  “primary  data,”  “preliminary  data,”  and  “analyzed  data.”  

4.  Will  NSF  discriminate  against  research  proposals  that  deal  with  more  sensitive  data?  

Page 25: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  25  

•  Will  proposals  that  say  “cannot  present  data  because  of  confidentiality”  be  considered  weaker  than  those  that  say  “all  will  be  made  available”?  

5.  What  does  “the  recorded  factual  material  …  necessary  to  validate  research  findings”  mean?  

•  The  line  is  fuzzier  for  qualitative  work.  

 

Appendix  1:  Example  Data  Management  Plan  

Understanding  Diverse  Pathways:  Disciplinary  Trajectories  of  Engineering  Students  Data  Management  Plan  

Data  Collection  No  new  quantitative  or  qualitative  data  will  be  collected  for  this  project,  outside  of  the  regular  updating  of  the  Multiple-­‐Institution  Database  for  Investigating  Engineering  Longitudinal  Development  (MIDFIELD).    This  project  will  analyze  existing  MIDFIELD  data.    The  MIDFIELD  team  maintains  the  database  on  a  secure  computer  in  secured  facilities.      The  computer  is  not  networked  or  connected  to  the  Internet.    Member  institutions  transmit  data  to  the  MIDFIELD  data  steward  via  password-­‐protected,  encrypted  DVDs  sent  via  registered,  next-­‐day  FedEx.    These  DVDs  are  stored  in  a  locked  filing  cabinet  in  a  secure  office.      Only  the  MIDFIELD  data  steward  has  access  to  these  discs.      Student  identifiers  are  created  especially  for  MIDFIELD  –  they  are  not  Social  Security  Numbers  or  student  IDs.    MIDFIELD  data  has  been  cleaned  and  verified.    MIDFIELD  is  backed  up  weekly.  

MIDFIELD  has  binding  agreements  with  each  partner  institution  forged  through  Memorandums  of  Understanding  (MOU).      These  MOU  protect  the  confidentiality  of  both  students  and  institutions.    Reports  aggregated  by  student  and  institution  will  be  made  available.  If  institutional  identification  is  needed  (e.g.,  to  study  policy  differences),  they  will  be  conducted  by  the  MIDFIELD  team.  

The  MIDFIELD  team  obtains  confidentiality  agreements  from  all  those  who  have  access  to  the  data,  including  those  who  only  see  aggregated  data.    No  individually  identifiable  data  are  released.    Data  from  partner  universities  are  placed  in  a  common  format,  so  MIDFIELD  can  be  used  for  cross-­‐institutional  studies.    The  common  format  further  protects  the  identity  of  students.  

Memorandums  of  Understanding  and  Researcher  Confidentiality  Agreements  are  stored  in  a  locked  filing  cabinet  in  a  secure  office.  

The  student  focus  group  electronic  data  is  stored  on  a  password  protected  computer.    Focus  group  notes  are  both  in  electronic  and  paper  formats.    Paper  formats  are  locked  in  a  filing  cabinet  in  a  secure  room.  

New  Data  Generated    To  help  the  Project  Team  understand  the  trajectories  taken  by  women  and  underrepresented  

Page 26: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  26  

minorities  through  the  curriculum  of  specific  engineering  majors  the  MIDFIELD  data  steward  will  produce  password  protected  Microsoft  Excel  spreadsheets,  aggregated  by  the  variables  to  be  studied.    These  spreadsheets  will  not  contain  individually  identifiable  student  records.    The  spreadsheets  will  be  transmitted  via  secure  FTP  (FileLocker)  and  stored  on  password  protected  computers.  

Quantitative  Data  Analysis  and  Reporting  MIDFIELD  will  be  analyzed  using  SAS.®    SAS  output  will  be  converted  to  password  protected    Excel  spreadsheets.    All  SAS  programs  will  be  archived  and  available  for  examination  to  ensure  that  proper  assumptions  were  made  when  querying  MIDFIELD.    Findings  will  not  be  linked  to  specific  institutions,  populations,  and  policies.  Conclusions  will  show  student  trends  and  explore  institutional  variability,  but  stop  short  of  exploring  the  causes  of  institutional  variability,  except  in  limited  cases  when  we  are  able  to  speculate  without  compromising  these  three  important  principles:  

1. Institutional  data  are  provided  to  the  MIDFIELD  project  on  the  condition  that  researchers  using  the  data  protect  the  identity  of  the  partner  institutions  and  each  institution’s  students.    

2. Increasingly  specific  institutional  descriptions  discourage  readers  from  considering  this  work  to  be  generalizable,  in  spite  of  other  significant  evidence  that  there  is  much  that  is  common  among  engineering  programs  and  their  interaction  with  students.      

3. While  this  study  includes  data  for  very  large  numbers  of  students,  only  eleven  institutions  are  represented,  so  institutional  variation  is  treated  using  a  case  study  approach.  Conscientious  institution-­‐level  analysis  would  require  a  large  number  of  diverse  institutions.  MIDFIELD  does  not  meet  this  standard  yet.  

Qualitative  Data  Analysis  and  Reporting  Focus  groups  of  women  engineering  students  were  conducted  in  the  spring  of  2009  as  part  of  another  project.    This  project  will  analyze  the  responses  of  Chemical  Engineering  students  using  standard  analysis  and  coding,  looking  for  themes.    Only  students'  first  names  are  used  during  analysis  and  any  other  data  that  includes  their  last  names  (e.g.  receipts  for  their  honoraria)  have  already  been  destroyed.    Institutional  variation  will  treated  using  a  case  study  approach.    No  names  will  be  used  in  reporting.      

Destruction  of  Electronic  Data  All  Excel  files  will  be  deleted  ten  years  after  the  project’s  final  publication.    All  SAS  programs  will  be  archived  and  available  for  examination  for  up  to  five  years  after  the  project’s  final  publication.  All  electronic  focus  group  notes  will  be  destroyed  ten  years  after  the  project’s  final  publication.    

Page 27: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  27  

Destruction  of  Paper  Data  All  paper  and  electronic  focus  group  notes  will  be  shredded  and  safely  disposed  of  ten  years  after  the  project’s  final  publication.  

Making  MIDFIELD  Raw  Data  Available  to  Other  Researchers  Because  MIDFIELD  data  is  bound  by  MOU  that  contracts  specific  usage,  MIDFIELD  raw  data  cannot  be  deposited  into  a  public  database.    Putting  MIDFIELD  together  was,  and  continues  to  be,  an  exercise  in  trust.    MIDFIELD  is  able  to  collect  and  analyze  student  transcript  record  data  through  an  exception  in  the  Family  Educational  Rights  and  Privacy  Act  (20  U.S.C.  §1232g,  (B)(1)(f))  that  allows  institutions  to  provide  student  data  to  “organizations  conducting  studies  for,  or  on  behalf  of,  educational  agencies  or  institutions  for  the  purpose  of  …  improving  instruction,  if  such  studies  are  conducted  in  such  a  manner  as  will  not  permit  the  personal  identification  of  students  and  their  parents  by  persons  other  than  representatives  of  such  organizations  and  such  information  will  be  destroyed  when  no  longer  needed  for  the  purpose  for  which  it  is  conducted.”      

In  an  ideal  world  MIDFIELD  would  be  public  and  made  available  to  all  researchers.    Currently,  MIDFIELD  needs  to  remain  available  only  to  a  core  set  of  researchers  as  long  as  member  institutions  and  FERPA  require  it  to  be.  

Page 28: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  28  

Increasing  Diversity:  Best  Practices  for  Bridging  Research  and  Practice  

Facilitators:     Martha  Absher  (Duke  University)  Theresa  Maldonado  (NSF)  

    Alice  L.  Pawley  (Purdue  University)    Promising  Work  

With  NSF’s  funding  support,  new  insights  on  issues  of  diversity  are  arising  from  both  programming  and  research.  Among  these  insights  are  those  centering  on  first  generation  college  students,  who  are  increasingly  going  into  STEM  areas.  Summer  bridge  programs  center  on  this  group  in  some  universities  to  ease  the  transition  into  college  and  bolster  success.  Other  important  underrepresented  groups  are  low-­‐income  students,  students  with  disabilities,  non-­‐traditional  students,  and  transfer  students,  especially  from  community  colleges,  and  students  from  dual-­‐degree  programs  (such  as  2/3  programs  for  example,  from  Morehouse  or  Spelman  and  Georgia  Tech).  With  these  distinct  groups,  the  idea  of  community  building  is  seen  as  important,  via  programs  like  one  university’s  program  for  graduate  women  in  engineering,  or  another  university’s  multicultural  computing  lunch  to  include  students  from  multiple  colleges  and  universities  to  share  ideas.  This  community  building  strengthens  the  integration  of  the  group  and  its  integration  into  the  larger  engineering  community.  Community  living  for  women,  minorities,  engineering  students,  or  other  groups  is  also  another  approach  that  some  have  found  to  be  very  successful.  Another  important  issue  to  many  was  reaching  down  into  the  high  school  and  K12  communities  to  increase  interest  in  engineering  early,  particularly  in  lower-­‐income  schools.    

Suggested  strategies  to  increase  diversity  included:  community  building,  outreach  with  the  K12  population,  summer  research  opportunities,  and  reaching  teachers.  The  value  of  the  RET  program  was  stressed,  as  teachers  are  needed  to  serve  as  catalysts  in  some  communities—this  was  felt  to  be  a  good  investment  for  NSF.    

Others  discussed  the  need  for  different  kinds  of  research  to  be  supported,  including  research  grounded  in  social  science  theoretical  frameworks,  and  embracing  intersectional  (looking  at  gender  and  race  and  other  characteristics  together  rather  separately  through  main  effects)  and  qualitative  methods  to  understand  the  experiences  of  small  numbers  of  underrepresented  students.  

Areas  for  improvement,  and  what  NSF  priority  areas  should  be  

The  group  raised  the  question  of  practical  justification  for  the  value  of  diversity  by  asking:  “Why  do  we  do  this  –  besides  social  justice?  How  will  diversity  make  us  do  better  engineering  practice  outside  of  the  social  network  concept  and  economics?    Some  participants  felt  that  we  need  to  collect  technical  examples  that  were  invented  without  diverse  user  groups  in  mind  (such  as  3-­‐point  seatbelts  that  are  not  safe  for  pregnant  women  to  use,  or  airbags  that  were  not  designed  for  smaller  people,  including  many  women  and  children)  to  demonstrate  the  importance  of  diversity  in  engineering  design.  It  was  felt  that  we  need  a  collection  of  examples  to  show  how  engineering  products  will  be  better  with  a  diverse  group  of  people  designing  them.  Industry  

Page 29: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  29  

knows  they  need  diverse  input  and  are  ahead  of  some  universities  in  this  area.    Examples  will  help  guide  faculty  members  towards  using  such  examples  in  their  classes,  and  may  also  help  strengthen  faculty  buy-­‐in  to  support  diversity.  

A  priority  area  is  NSF’s  investment  in  research  and  value  added  of  a  multicultural  and  diverse  work  force.  But  what  is  a  driver  for  universities?  Industry  exerts  pressure  on  faculty  for  research  outcomes.      

Some  participants  talked  about  our  collective  need  to  invest  in  how  to  attract  students  to  engineering  that  we  historically  have  not  been  able  to  attract  (like  people  from  tribal  colleges  and  people  with  disabilities,  particularly  learning  disabilities).  First  generation  students  need  a  different  kind  of  support  than  students  whose  parents  have  attended  college.  Faculty  members  need  training  and  development  to  work  with  diverse  populations.    

Retention  is  another  issue  that  needs  to  be  addressed,  with  a  focus  needed  on  pivotal  times  of  schooling—one  participant  claimed  that  4th  grade  is  pivotal  in  losing  or  gaining  students  to  STEM  areas.    

The  question  of  financial  aid  for  non-­‐US  citizens  was  raised,  as  this  is  a  major  issue  for  some  colleges,  community  colleges,  and  universities.  How  will  NSF  programs  address  this,  as  many  of  these  immigrants  may  choose  to  stay  in  the  US,  thereby  contributing  to  US  STEM  fields?    

NSF  Priority  Areas  should  include  the  following  areas:    

1. K12  teaching  and  learning-­‐  with  efforts  to  achieve  systemic  and  sustainable  change  in  K12  classroom.  NSF  needs  to  support  sustainable  teacher  development  in  and  beyond  the  classroom,  not  just  innovative  new  programs.    

2. Assistance  in  developing  K12  curricula  by  people  who  know  science  and  engineering,  as  many  K12  teachers  are  not  specialists  in  these  areas.  These  new  curricula  should  be  obviously  aligned  with  new  state  standards.  

3. Retention:  developing  new  ways  for  NSF  to  share  retention  best  practices.  

4. Develop  longer-­‐term  support  mechanisms  from  NSF  to  help  develop  meaningful,  comprehensive,  and  complex  outcomes.    

5. Consider  mechanisms  to  support  students  at  community  colleges.  

6. Support  work  that  teaches  students  how  to  overcome  stereotype  threat  and  the  imposter  syndrome.  

7. Develop  AP  tracks  (particularly  of  English  and  Math)  that  can  help  students  for  whom  English  is  a  second  language.  

8. Explicitly  invite  proposals  that  investigate  the  educational  experiences  of  other  minority  groups  including  parents,  part-­‐time  students,  LGBT  students,  immigrant  students,  and  older  students.  

Page 30: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  30  

A  key  take-­‐away  from  this  discussion:  NSF  needs  to  decide  which  narrative  it  wants  to  communicate  and  then  “walk  the  talk.”    If  NSF  rewards  competitive  behavior,  it  will  get  competitive  behavior  such  as  a  “not  invented  here”  behavior.    If  NSF  wants  to  encourage  best  practices  (hence  cooperation),  it  needs  to  reward  and  incentivize  cooperation  and  use  of  best  practices.  

Will  NSF  communicate  the  narrative  of  “zero  sum  game”  and  only  “innovation”  will  be  rewarded?  Or  will  NSF  reward  competition  and  collaboration?  

Impact  and  Potential  

Meaningfully  and  fairly  evaluate  NSF  grant  outcomes    

Meaningful  evaluation  needs  to  be  long  term—it  is  hard  to  evaluate  real  impact  in  the  short  term.  In  addition,  evaluation  and  impact  are  hindered  by  issues  such  as  the  educational  restrictions  in  each  state  on  research  on  the  K12  population,  which  are  cumbersome.  IRB  issues  are  another  problem  area,  and  some  national  NSF  support  and  guidance  on  how  to  deal  with  them  would  be  of  great  benefit.    

Another  problem  is  the  problem  of  self-­‐declaration-­‐  if  a  student  for  instance,  does  not  choose  to  declare  their  minority  or  disability  status,  what  can  be  done  in  reporting  and  evaluating  data  on  such  students?  How  can  they  be  counted  in  statistical  reporting?      How  do  we  ensure  that  we  don’t  violate  FERPA  restrictions  in  trying  to  fill  the  holes?  

NSF  must  expect  PIs  to  align  their  reporting  with  what  was  proposed  as  broader  impact,  and  provide  specific  guidelines  based  on  project  type  and  tracking  potential.    Develop  guidelines  that  support  the  collection  and  analysis  of  qualitative  data  as  well  as  quantitative,  and  that  expects  the  articulation  of  an  explicit  theoretical  and  methodological  foundation.  

Effectively  support  NSF  grant  outcomes  

Participants  argued  that  evaluation  sometimes  costs  too  much  of  grant,  or  otherwise  don’t  have  enough  funding  to  do  it  properly.    This  may  be  the  first  thing  that  PIs  cut  when  NSF  asks  for  budget  reductions.  

It  would  also  help  for  NSF  to  provide  support  on  developing  a  less  restrictive  model  of  K12  access  to  education  and  evaluation  data  than  the  current  one.  A  national  model  might  provide  support  for  state-­‐by-­‐state  changes.    

NSF  could  provide  a  database  structure  that  will  help  grant  writers  and  grantees  with  IRB  approval  and  issues  of  approaching  personal  data.  In  addition,  some  participants  were  eager  to  be  trained  in  how  to  write  effective  highlights  and  annual  reports,  and  would  be  supportive  of  NSF’s  efforts  in  sharing  exemplary  ones.    

In  addition,  a  “quad”  chart  (of  goals,  strategies  and  outcomes)  can  be  a  very  efficient  summary  of  findings,  and  could  be  an  effective  communication  tool.    NSF  could  ask  grantees  to  create  these  for  dissemination  at  PI  conferences  and  elsewhere.  

Page 31: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  31  

NSF  panels  should  be  encouraged  to  call  out  grant  proposals  that  connect  with  MSIs  in  order  to  fulfill  some  kind  of  broader  impact  expectation,  but  which  do  not  provide  any  funds  for  MSIs  to  do  the  work.  

Collaborating  institutions  listed  in  award  notices,  and  four/five  co-­‐PI  limits,  large  teams  cannot  provide/earn  institutional  credit  due  to  the  limitations  for  number  of  PIs.  Where  your  name  is  listed  on  the  “list”  results  in  reduced  credit,  influencing  tenure  consequences  and  decreased  political  capital.    Consider  ways  to  expand  PI  limits.  

Disseminate  findings,  ensure  impact,  and  spur  widespread  adoption  of  best  practices  

Findings  are  only  valuable  when  they  are  disseminated,  but  there  are  more  effective  ways  to  do  this  than  simply  through  conferences.    NSF  should  help  fund  the  development  of  new  modes  of  dissemination.    For  example,  participants  pointed  out  that  parents  are  often  voters;  perhaps  grants  could  collectively  sponsor  a  “community  showcase”  of  grant  outcomes  with  local  schools,  to  communicate  more  effectively  with  parents.  This  would  require  NSF  to  provide  funding  for  local  community  dissemination.    The  payoff  could  be  significant:  parents  can  impact  national  policy  at  the  grassroots  level  if  they  know  what  grants  and  programs  are  doing  and  how  well  it  is  working.    

How,  when,  and  where  NSF  summarizes  and  presents  data  back  to  grantees  and  researchers  crucial.  Can  NSF  group  data  under  new  categories  of  diverse  population  groups?    For  example,  “What  has  been  done  in  BRIDGE  programs  for  ‘this  certain  population?’”      It  is  not  at  all  clear  where  grantees  and  PIs  can  find  the  NSF  highlights—NSF  needs  to  make  this  easy  and  clear.  We  very  much  need  one  portal  for  all  data  and  best  practices  that  is  easily  accessible  to  all  grantees  where  we  can  share  and  learn.  We  want  those  “dumbed  down”  congressional  highlights  also  that  were  spoken  of—we  need  it  in  that  “plain  talk”  vernacular  to  present  to  many  audiences  of  our  own  who  are  not  specialists  and  researchers.    

The  suggestion  of  an  Engineering  Education  portal  or  HUB  to  gather  best  practices,  assessment,  and  evaluation  tools  came  up  repeatedly.  Some  argued  that  there  is  such  a  portal  (CLEERhub.org)  and  others  were  completely  unfamiliar  with  it.  Therefore,  there  is  NOT  a  clear,  easily  accessible  portal  or  HUB  that  is  broadly  publicized  to  grantees.  This  needs  to  be  done  and  publicized.  Social  networking  tools  can  be  utilized,  and  Google  linked  with  industrial  program  outcomes  such  as  a  cloud  structure.    

If  institutions  changed  faculty  evaluation  criteria  so  that  education,  outreach,  and  diversity  were  crucial  to  faculty  advancement  and  promotion,  this  would  definitely  spur  widespread  adoption  of  best  practices.  But  how  to  change  the  values  of  institutions?  If  employment  industry  could  develop  an  awareness  of  this  new  kind  of  student  and  of  the  value  of  diversity,  this  could  ensure  impact.  How  might  we  develop  this  awareness?    

It  would  be  wonderful  if  NSF  could  provide  grantees  with  the  names  of  REUs  for  recruitment  to  graduate  school—it  could  strengthen  the  REU  program,  give  an  incentive  for  students  to  participate,  and  give  universities  the  names  of  students  experienced  in  research  to  contact  for  recruitment  purposes.    

Page 32: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  32  

NSF  could  encourage  PIs  and  researchers  to  develop  new  mechanisms  for  communicating  findings  to  general  audiences,  such  as  asking  to  fund  science  communications  specialists,  or  funding  the  development  and  maintenance  of  new  media  such  as  blogs,  vlogs,  fee-­‐supported  social  networking  platforms,  and  so  on.  

Page 33: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  33  

Graduate  Students  and  Programs:    Creating  an  Emerging  Community  of  Practice  for  the  Next  Generation  

Facilitators:     Don  Millard  (NSF)  James  Pembridge  (Virginia  Tech)  Jennifer  Turns  (U  of  Washington)    

These  sessions  addressed  the  issues  involved  with  developing  communities  of  practice  for  students  interested  in  engineering  education.  The  conversation  identified  promising  work  in  both  research  and  practice,  opportunities  for  improvement,  and  areas  where  NSF  can  invest  time  and  effort  to  aid  this  process.  

The  discussion  was  led  by  an  associate  professor  in  Human  Centered  Design  &  Engineering  at  the  University  of  Washington,  a  PhD  candidate  from  the  Department  of  Engineering  Education  at  Virginia  Tech,  and  an  NSF  representative.  The  participants  involved  in  the  discussion  were  primarily  graduate  students  actively  engaged  in  engineering  education  research  while  enrolled  in  engineering  education  PhD  programs  or  discipline-­‐specific  engineering  programs.  Additional  participants  included  faculty  and  undergraduate  engineering  students  that  were  involved  with  REUs.  

The  discussion  over  the  two  sessions  addressed  the  needs  of  graduate  and  undergraduate  students  interested  in  engineering  education.  Given  the  diversity  of  participants  in  the  sessions,  the  discussion  covered  several  topics  including  pathways  into  engineering  education,  innovation  in  teaching,  preparing  to  be  educators,  and  issues  related  to  personal  learning  experiences.    

Pathways  into  engineering  education  

A  prominent  topic  in  the  conversation  was  the  ways  that  participants  are  involved  in  engineering  education,  and  how  they  came  to  have  their  particular  involvement.    Several  paths  into  engineering  education  were  noted.  These  pathways  included  pursuing  degrees  in  engineering  education  directly  as  well  as  pursuing  a  degree  in  a  traditional  engineering  field  (i.e.  mechanical,  chemical,  industrial,  etc.)  with  engineering  education  research  as  a  primary  component  of  the  dissertation.    

Participation  in  REU  experiences  was  noted  as  another  pathway  into  engineering  education.  Participants  reported  that  these  opportunities  allowed  them  to  explore  emerging  engineering  content  and  research,  which  then  increased  their  appreciation  for  their  field  and  helped  them  gain  practical  application-­‐based  knowledge  of  the  classroom  learning.  While  the  undergraduate  students  in  the  session  did  not  express  interest  in  teaching  in  academia,  they  expressed  interest  in  graduate  studies  and  industry  work.    

Participants  identified  increasing  awareness  of  pathways  into  engineering  education  as  the  most  apparent  opportunity  for  improvement.  Few  of  the  graduate  student  participants  were  initially  aware  of  engineering  education  degree  granting  programs  and  even  fewer  were  initially  aware  that  they  could  conduct  engineering  education  research  as  part  of  a  more  technical  

Page 34: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  34  

engineering  degree.  The  undergraduate  REU  participants  reported  similar  problems,  in  that  they  were  not  aware  of  REU’s  until  a  faculty  member  approached  them  to  be  involved  in  their  research.  This  lack  of  awareness  of  engineering  education  opportunities  can  be  addressed  by  additional  marketing  of  the  opportunities  and  by  getting  the  information  directly  to  the  students.  

How  innovation  is  supported  and  shared:  Improving  the  teaching  of  engineering  

Participants  in  these  sessions  noted  the  limits  of  lecture-­‐based  pedagogy  and  expressed  interest  in  innovative  pedagogical  approaches.  These  issues  of  pedagogy  led  to  the  questions  such  as  the  following:  What  practices  work  well?  How  can  engineering  education  researchers  communicate  with  practitioners?  What  are  some  new  innovative  approaches  to  education?  

Participants  in  the  sessions  expressed  interest  in  studio  approaches  to  education  and  other  approaches  related  to  non-­‐traditional  engineering  education  environments.  From  the  perspective  of  the  participants,  activities  such  as  reading  groups,  low  stakes  activities,  and  opportunities  for  discussion  and  reflection  help  engineering  students  develop  as  engineers  and  capable  learners.  When  using  these  approaches,  participants  noted  a  variety  of  challenges  and  opportunities,  such  as  being  able  to  teach  to  a  broad  set  of  learning  styles  to  meet  the  needs  of  all  students  and  taking  time  to  consult  with  industry  so  that  changing  employer  short  term  needs,  as  well  as  long  term  needs,  can  be  taken  into  account.    

Participants  noted  that  preparing  students  to  teach  using  such  innovative  approaches  would  likely  include  offering  graduate  students  more  teaching  experiences  during  their  education.  Participants  wondered  what  types  of  opportunities  could  be  made  available  to  support  graduate  students  working  with  more  experienced  educators  to  explore  innovations  in  teaching.      Participants  also  noted  that  conference  and  journal  papers,  while  a  common  means  of  sharing  knowledge,  might  not  be  the  best  way  to  open  the  line  of  communication  between  the  practitioner  and  researcher.  

Preparing  to  be  educators:    Skills  needed  to  be  future  engineering  educators  

Participants  discussed  their  ideas  about  being  effectively  prepared  to  be  an  engineering  educator  and  how  their  current  experiences  are  preparing  them,  particularly  in  the  area  of  skills.  The  discussion  of  skills  needed  to  be  future  engineering  educators  dealt  with  those  that  would  aid  in  successful  completion  of  graduate  degrees  and  those  that  would  be  used  to  effectively  teach  engineering  course  work.  For  example,  participants  indicated  that  communication  and  professional  skills  were  important  to  success,  as  were  having  the  opportunity  to  develop  those  skills.  

The  graduate  students  in  the  groups  indicated  that  much  of  their  time  and  efforts  throughout  their  graduate  studies  were  spent  in  a  lab  or  working  with  a  specific  research  team  while  being  led  by  one  faculty  advisor.  Within  these  environments,  students  work  within  a  specific  content  area  throughout  the  duration  of  their  academic  experiences.  This  approach  to  education  can  force  students  into  a  given  area  early  on,  not  allowing  them  to  explore  other  research  areas  and  reducing  exposure  to  a  variety  of  pedagogical  approaches.  Instead  of  this  approach,  suggestions  

Page 35: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  35  

were  offered  that  ranged  from  peer  mentoring  to  working  with  several  groups  over  the  length  of  a  graduate  career.    

Having  and  reflecting  on  personal  learning  experiences  

From  the  time  students  enter  into  elementary  education  to  the  time  they  graduate  from  graduate  school,  students  experience  a  variety  of  teachers,  pedagogies,  and  learning  environments.  These  experiences  provide  valuable  learning  experiences  for  future  engineering  educators—a  future  educator  can  reflect  on  such  learning  experiences  in  order  to  define  his/her  own  teaching  approach.    

Several  participants  in  the  discussion  described  experiences  as  IGERT  fellows,  and  they  expressed  lessons  they  learned  should  they  ever  apply  for  an  IGERT  as  a  faculty  member.    These  opportunities  for  learning  included  assessing  the  effectiveness  of  the  IGERT  experience  and  developing  coursework  to  meet  the  needs  of  their  students.  One  suggestion  for  NSF’s  contribution  to  the  IGERT  experience  was  to  offer  professional  development  to  prepare  future  faculty  and  students  that  will  be  involved  in  the  program.    

Participants  noted  that  the  relationship  between  the  advisor  and  the  student  is  central  to  graduate  education.    Participants  reflected  on  the  challenges  that  they  have  been  experiencing,  challenges  that  suggest  opportunities  for  supporting  future  graduate  students.    Such  challenges  include:  choosing  an  advisor,  developing  self-­‐awareness,  assessing  readiness  for  graduation,  and  finding  fields  and  research  of  particular  personal  interest.  

Conclusion:  Summary  and  Funding  opportunities  

The  pathways  that  students  take  to  enter  into  engineering  education  are  diverse,  but  no  matter  how  they  enter  into  the  field,  they  bring  with  them  a  variety  of  personal  experiences  that  inform  how  they  will  teach  when  they  become  faculty.  Their  learning  experiences  provide  them  not  only  with  a  set  of  skills  to  teach  engineering  but  also  introduce  them  to  the  community  of  engineering  educators.    Specific  areas  where  NSF  can  support  the  development  of  students  and  establish  a  community  of  practice  that  will  aid  the  innovation  of  pedagogy  include  increasing  awareness  of  the  pathways  available  for  entering  into  engineering  education,  exploring  how  innovation  is  supported  and  shared  by  the  new  generation  of  engineering  educators,  helping  students  prepare  to  be  future  educators,  and  encouraging  reflection  on  personal  learning  experiences.    

Page 36: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  36  

Educating  Engineers  to  be  Innovators  

Facilitators:     Sue  Kemnitzer  (NSF)  Ann  F.  McKenna  (Arizona  State)  Jill  K.  Nelson  (George  Mason)  

Introduction  

The  intent  of  the  panel  was  to  engage  participants  in  a  conversation  about  what  it  means  to  educate  engineers  to  be  innovators.  We  structured  the  panel  to  enable  participants  to  define  what  is  meant  to  be  an  innovator,  and  what  it  means  to  educate  this  type  of  person  from  a  knowledge,  pedagogical  and  assessment  perspective.  The  agenda  dedicated  time  to  discussing  the  following  questions:  

• What  is  an  innovator?  

• What  knowledge  is  required  for  innovation?  

• How  might  you  structure  a  course/curriculum  to  develop  that  knowledge?  

• What  type  of  pedagogy  is  necessary  to  educate  innovators?    

• How  do  you  assess  innovation?  And,  how  do  you  know  if  your  program  is  effective  in  educating  innovators?  

• What  resources  are  necessary  to  educate  innovators  and  how  might  this  translate  into  priority  areas  for  NSF?  

Several  themes  emerged  from  our  discussions  and  our  report  is  organized  around  these  major  themes:  1)  the  knowledge  base  and  attributes  of  an  innovator,  2)  the  need  for  assessment  tools  and  practices,  3)  the  incompatibility  of  the  engineering  education  system  with  educating  innovators,  and  4)  NSF  priority  areas.  

Theme  1:  The  knowledge  base  and  attributes  of  an  innovator  

Our  first  discussion  related  to  identifying  what  it  means  to  be  an  innovator.  We  discussed  what  knowledge  might  be  required  to  engage  in  the  process  of  innovation,  as  well  as  other  skills  and  attributes  that  are  associated  with  an  innovator.  We  chose  to  focus  on  this  question  first  because  the  responses  to  this  question  set  some  common  ground  for  how  we  might  develop  experiences  that  aim  to  educate  engineers  as  innovators.  That  is,  we  wanted  to  clarify  the  educational  target,  and  have  some  general  consensus  for  what  the  goals  might  be  for  educating  innovators.  

During  both  panels  the  attributes  that  were  most  commonly  stated  to  describe  innovators  were  “problem  finders,”  “risk  takers,”  “ambiguity  lovers,”  and  “passionate  collaborators.”  In  addition,  several  noted  that  innovators  possess  the  characteristic  of  not  only  a  willingness  to  fail,  but  also  the  ability  to  learn  from  failure.  These  are  just  a  few  of  the  terms  mentioned;  however,  the  panel  discussions  elicited  a  diverse  range  of  knowledge,  skills,  attitudes,  and  dispositions  

Page 37: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  37  

associated  with  being  an  innovator.  For  summary  purposes  we  categorize  the  attributes  that  were  offered  during  the  panel  as  affective  and  cognitive,  see  Table  1.    

Affective/Attitudinal  Attributes   Cognitive/Knowledge  Attributes  

• Risk-­‐taker  

• Collaborative  

• Comfortable  with  ambiguity  

• Takes  initiative  

• Passionate  for  serving  human  needs  

• Confident  

• Always  searching  for  a  better  thing  or  way    

• Willing  to  fail  

• Persistent  

Ability  to:  

• Synthesize  across  multiple  perspectives  

• Identify,  define  and  solve  problems  

• Deconstruct  and  redefine  problems  

• Perform  market  analysis  

• Be  creative  

• Think  critically  

• Develop  deep  disciplinary  knowledge  

• Be  a  systems  thinker  

• Work  across  disciplinary  boundaries  

Table  1.  Attributes  of  an  innovator.  

The  panel  discussions  indicate  that  the  attributes  of  an  innovator  are  wide-­‐ranging.  Therefore,  any  system,  curriculum,  or  experience  that  aims  to  educate  engineers  to  be  innovators  needs  to  take  into  account  the  complex  nature  of  the  task.  Table  1  can  serve  as  a  starting  point  for  defining  learning  goals  and  outcomes  that  would  be  appropriate  for  such  a  system.  

Theme  2:  The  need  for  assessment  tools  and  practices  

Using  Table  1  as  a  basis  for  articulating  potential  outcomes  for  educating  an  innovator,  it  is  clear  that  the  goals  are  cognitive  as  well  as  affective.  The  participants  clearly  stated  the  need  for  appropriate  assessment  tools  that  would  measure  this  range  of  innovation  competencies.  Moreover,  the  panel  discussions  noted  several  issues  associated  with  developing  and  implementing  effective  assessments.  In  particular,  assessment  tools  need  to  be  clear  about  what  they  measure,  and  what  counts  as  evidence.  For  example,  some  assessments  might  measure  “learning”  or  be  more  cognitive-­‐focused,  and  some  might  measure  self-­‐efficacy  and  measure  attitudinal  aspects.  

The  panel  also  stated  that  faculty  need  information  about  how  they  might  implement  various  assessment  tools,  and  that  additional  resources  might  be  needed  to  implement  them  effectively.  Some  pointed  out  that  faculty  should  also  be  evaluated  using  these  same  tools.  That  is,  since  faculty  are  responsible  for  teaching  students  how  to  be  innovators,  it  is  imperative  to  gauge  the  knowledge  of  the  faculty  in  order  to  identify  potential  needs  for  faculty  training/development.  

Page 38: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  38  

The  participants  reflected  on  the  current/typical  approach  to  student  assessment  and  noted  that  it  is  primarily  exam-­‐based.  Exam-­‐based  assessment  is  not  conducive  to  measuring  innovation  competencies,  so  participants  suggested  switching  to  a  more  design-­‐focused,  project-­‐based  mechanism  for  assessing  innovation  competencies.  Since  assessment  is  a  major  component  of  what  is  involved  in  educating  engineers  as  innovators,  it  was  deemed  a  priority  area  for  NSF.    

Theme  3:  Incompatibility  of  the  engineering  education  system  with  developing  innovators  

Much  of  the  discussion  of  how  to  educate  engineers  to  be  innovators  centered  around  the  incompatibility  of  the  current  educational  structure,  particularly  in  engineering  programs,  with  developing  innovators.    The  panel  noted  that  innovators  are  people  who  find  problems  or  opportunities.    However,  because  traditional  education  focuses  on  providing  students  with  well-­‐defined  problems  to  solve,  students  are  not  given  the  opportunity  to  develop  their  problem-­‐finding  skills.  

Participants  generally  agreed  that  deep  knowledge  in  one’s  technical  field  is  necessary  for  innovation  but  noted  that  many  successful  innovators  of  the  past  did  not  gain  deep  knowledge  through  traditional  education.    They  hypothesized  that  engineering  students’  innovative  abilities  may  suffer  because  they  are  too  attached  to  textbooks.    Put  another  way,  we  teach  engineering  students  that  problems  have  yes/no  or  black/white  answers,  but  real-­‐world  problems  (and  opportunities)  are  variable  and  ambiguous.    In  this  way,  the  curriculum  structure  opposes  innovation,  making  it  difficult  if  not  impossible  to  encourage  students  to  develop  as  innovators.  

Significant  discussion  was  devoted  to  the  distance  between  current  implementations  of  teaching  innovation  and  the  systemic  change  that  the  panel  believes  must  occur  to  effectively  educate  innovators.    Participants  noted  that  in  the  current  structure,  encouraging  students  to  identify  needs/opportunities,  work  in  interdisciplinary  teams,  and  solve  open-­‐ended  problems  often  doesn’t  occur  until  the  capstone  design  project  in  the  senior  year.    They  pointed  out  that  the  movement  to  educating  innovators  cannot  be  viewed  as  an  “add  on”  to  the  current  curriculum  but  instead  must  be  a  cultural  change  that  is  diffused  throughout  the  program  and  the  institution.    It  was  suggested  that  rather  than  spending  two  years  in  math  and  science  courses,  students  should  begin  with  hands-­‐on  courses  and  relevant  math  should  then  be  introduced  in  connection  with  the  hands-­‐on  experiences.    

The  panel  believed  that  innovators  are  interdisciplinary,  systems  thinkers  with  an  inner  drive  (passion)  for  problem  finding.    The  segmentation  of  material  into  stand-­‐alone  courses  and  the  use  of  small  “single  solution”  problems  do  not  encourage  these  thinking  styles.    The  panel  advocated  for  a  focus  on  active,  interdisciplinary  forms  of  education  including  business  games  in  classes,  associations  with  industry,  and  significant  learning  beyond  the  classroom.    This  is  in  contrast  to  the  prevailing  existing  structure  of  narrow  course  topics,  lecture-­‐based  learning,  and  assessment  via  traditional  (individual)  exams.    

The  panel  also  identified  the  importance  of  the  business  and  marketing  elements  of  innovation,  noting  that  successful  marketing  (and  often  profit)  are  required  to  move  from  invention  to  

Page 39: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  39  

innovation.    They  pointed  out  that  business  and  marketing  components  are  not  present  in  traditional  engineering  programs  and  that  engineering  faculty  are  generally  not  qualified  to  teach  in  these  areas.    Evaluating  faculty  preparedness  at  a  broader  level,  participants  noted  that  traditional  faculty  roles  don’t  encourage  innovation  (thinking  outside  the  box)  and  instead  encourage  adhering  to  established  practices  to  secure  tenure.    Faculty  with  traditional  research  programs  may  not  have  any  experience  in  innovation,  particularly  the  marketing  elements,  and  hence  may  be  ill  suited  to  teach  it  to  engineering  students.  

On  the  topic  of  assessment,  participants  noted  that  in  the  traditional  educational  structure,  there  is  no  reward  for  innovation.    Students  are  rewarded  (in  terms  of  grade)  for  finding  the  single  correct  answer  to  a  problem.    To  educate  innovators,  the  assessment  system  must  be  changed  to  reward  thinking  outside  the  box.    In  particular,  it  must  be  structured  such  that  students  are  allowed  to  fail  and  are  rewarded  for  reflecting  on  and  learning  from  failures  and  for  iterating  on  their  solutions.    Participants  observed  that  students  don’t  often  have  time  to  reflect  on  their  work,  nor  are  they  encouraged  to  do  so  and  that  this  practice  discourages  innovation.    One  recommendation  that  surfaced  was  that  students’  work  be  presented  and  evaluated  in  a  portfolio  structure  that  allows  faculty  to  see  the  iterations.  The  goal  would  be  to  grade  the  process,  not  the  outcome.    Participants  stressed  that  assessment  needs  to  move  away  from  traditional  exams  and  toward  design  and  process-­‐focused  evaluation.  

Theme  4:  NSF  Priority  Areas  

The  panel  identified  several  priority  areas  for  NSF  funding  to  encourage  education  of  innovators  in  engineering  programs.    Among  these  were  the  development  of  assessment  instruments,  incubator  and  scale-­‐up  projects,  the  development  of  next-­‐generation  instructional  materials,  and  faculty  training  programs.  

Several  participants  mentioned  the  importance  of  developing  instruments  to  measure  creativity  and  innovation  in  engineering  disciplines.    They  noted  that  faculty  do  not  have  a  good  definition  of  what  innovation  means  in  an  industry  setting  or  what  it  means  to  be  innovative  in  different  disciplines.    Development  of  instruments  to  assess  effective  communication  within  a  group  setting  was  also  identified  as  a  need.  

Participants  pointed  to  the  importance  of  funding  incubators  in  which  faculty  could  develop  new  materials  and  teaching  strategies  and  evaluate  their  effectiveness.    It  was  suggested  that  such  incubators  be  structured  as  multi-­‐university  initiatives.    The  panel  also  recommended  that  funding  be  available  for  replication  of  results  of  small  research  projects,  as  well  as  scale-­‐up  of  successful  projects  to  larger  populations  and  institutions.      

To  ensure  that  successful  approaches  are  known  and  adopted,  the  panel  advocated  for  funding  to  support  broad  dissemination  of  best  practices  and  evaluation  of  these  practices  in  new  settings  (similar  to  scale-­‐up).    As  another  approach  to  disseminating  best  practices,  participants  recommended  that  NSF  provide  funding  for  successful  innovation  instructors  to  travel  and  share  their  approaches  with  other  engineering  faculty.  

Page 40: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  40  

Citing  the  importance  of  interdisciplinary  collaboration  for  innovation,  participants  suggested  that  grants  should  be  available  to  help  faculty  develop  strategies  for  teaching  students  to  collaborate  in  interdisciplinary  teams.    Several  participants  also  noted  the  importance  of  collaborative  spaces  for  teaching  and  encouraging  innovation.    They  recommended  that  NSF  make  funding  available  for  new  classroom  infrastructure  that  focused  on  studios  and  design  environments  rather  than  on  lecture  halls.  

Finally,  the  panel  noted  that  a  critical  element  of  restructuring  engineering  education  to  teach  and  value  innovation  is  the  development  of  next-­‐generation  instructional  materials  that  move  beyond  the  textbook  structure.    They  recommended  that  NSF  fund  the  development  of  such  materials.  

Page 41: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  41  

Interdisciplinary  Collaboration:  Helping  Students  and  Faculty  Work  Across  the  Boundaries  

Facilitators:     Maura  Borrego  (NSF)  Sinead  MacNamara  (Syracuse  U)  Michael  O’Rourke  (U  of  Idaho)    

I.   Facilitator  Presentations  

Maura  Borrego,  NSF  representative.  Dr.  Borrego  focused  on  interdisciplinary  graduate  education,  supplying  a  definition  of  interdisciplinary  collaboration  rooted  in  Repko  (2008).  Her  remarks  emphasized  the  need  to  reflect  on  teamwork  and  critical  awareness  in  interdisciplinary,  collaborative  research,  themes  developed  in  detail  in  NAS  (2005).  As  educators,  we  must  acquire  and  impart  a  broad  perspective  to  our  students,  one  that  enables  them  to  be  effective  communicators  across  interdisciplinary  boundaries.  

Michael  O’Rourke,  University  of  Idaho.  Dr.  O’Rourke  picked  up  the  theme  of  interdisciplinary  communication  and  focused  on  work  designed  to  enhance  it  in  the  context  of  collaborative  research  teams.  He  argued  that  communication  is  the  key  to  successful  interdisciplinary  research,  and  failure  to  communicate  well  is  the  root  of  many  challenges  that  confront  scholars  crossing  disciplines.  He  devoted  much  of  his  time  to  describing  the  Toolbox  Project,  an  NSF-­‐sponsored  effort  to  enhance  communication  in  cross-­‐disciplinary  research  located  at  the  University  of  Idaho  and  Boise  State  University  (Eigenbrode  et  al.  2007).  This  effort  involves  the  deployment  of  a  philosophically  inspired  survey  instrument—the  “Toolbox”—in  a  workshop  that  aims  to  improve  communication  by  fostering  mutual  understanding  of  research  assumptions.  The  dialogue  is  intended  to  move  collaborative  groups  from  unreasonable  epistemic  positions  to  reasonable  ones,  where  those  might  be  either  agreement  or  disagreement.  (See  http://www.cals.uidaho.edu/toolbox  .)  

Sinead  Mac  Namara,  Syracuse  University.  Dr.  Mac  Namara  described  an  interdisciplinary  design  program  at  Syracuse  University  that  combines  architecture  and  civil  engineering.  After  supplying  a  few  historical  examples  of  architects  and  engineers  who  bridged  this  interdisciplinary  gap,  she  focused  on  the  program,  which  emphasizes  creativity  and  innovation  in  design.  She  argued  that  leveling  the  playing  field  by  choosing  topics  relatively  unknown  to  both  groups,  establishing  a  common  vocabulary,  and  articulating  interdisciplinary  design  values  were  critical  to  its  success.  One  important  realization  guiding  her  work  in  this  program  concerned  the  fact  that  students  in  undergraduate  programs  are  not  as  bound  by  disciplinary  boundaries  as  their  instructors  are,  any  many  have  extra-­‐disciplinary  educational,  personal  or  career  interests.    By  coaching  design  sessions,  students  are  made  to  feel  like  “experts”  and  are  put  in  a  position  to  talk  across  disciplinary  boundaries.  The  resulting  designs  have  been  a  testament  to  the  power  of  a  program  like  this  to  forge  interdisciplinary  connections  for  our  students.  

II.   Morning  Discussions  

A. Critical  Issues  

Page 42: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  42  

1.   Promising  work,  in  both  practice  and  research  

2.   Areas  for  improvement  in  the  field  

3.   Priority  areas  for  NSF  to  invest  in  (based  on  #1  &  2)    

Communication  issues  are  core  issues  for  those  engaging  in  interdisciplinary  efforts.  These  include  critical  but  difficult  issues  such  as  variation  in  vocabulary  and  communication  style  across  the  disciplines.  One  way  to  make  communication  gains  is  by  increasing  team  cohesion,  which  is  made  possible  by  establishing  neutral  territory  for  teambuilding.  Of  course,  neutral  territory  is  possible  even  though  some  disciplines  may  have  more  importance  in  certain  projects.  Among  those  strategies  available  for  teambuilding  include:  

• Regularly  scheduled  meetings  

• Development  of  projects  that  have  a  common  goal  for  all  of  the  constituent  disciplines  

• Establishing  a  problem  so  that  everybody  has  an  ownership  of  a  piece  

• Defining  a  common  language  

• Fairness  in  evaluation  process    

There  will  likely  be  different  expectations  for  different  teams;  thus,  evaluation  methods  need  to  be  flexible  enough  to  address  the  diverse  team  profiles.    

Other  points  made  in  this  session  concerned  the  difficulty  of  sponsoring  and  delivering  meaningful  faculty  development  opportunities,  as  well  as  student  team  competitions  and  challenges.  It  is  important  for  NSF  to  invest  in  both  faculty  development  and  student  competitions,  as  these  will  be  more  popular  and  meaningful  if  associated  with  NSF  sponsorship.    

B.   Impact  and  Potential  

1. How  to  meaningfully  and  fairly  evaluate  NSF  grant  outcomes  

2. Ways  to  effectively  report  NSF  grant  outcomes  

3. Ways  to  disseminate  findings,  ensure  impact,  and  spur  widespread  adoption  of  best  practices  

Dialogue  in  this  session  did  not  provide  balanced  coverage  of  each  of  the  three  items  under  (B);  instead,  most  of  the  discussion  concerned  issues  related  to  (3),  and  in  particular,  institutional  and  curricular  constraints  on  dissemination,  impact,  and  broadening  participation.  We  organize  the  highlights  according  to  these  themes.  

Institutional  Constraints.  The  participants  in  this  discussion  had  no  issues  with  NSF’s  sponsorship  of  interdisciplinary  collaboration,  but  felt  that  institutional  support  was  more  problematic,  especially  for  those  in  the  humanities  (e.g.,  philosophers)  and  the  social  sciences  

Page 43: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  43  

(e.g.,  political  scientists).  Institutions  are  concerned  with  4-­‐6  year  graduation  rates,  and  interdisciplinary  programs  can  be  seen  as  a  threat  to  those  statistics  due  to  the  complex  nature  of  the  educational  experience  for  the  students.    In  addition,  it  can  be  difficult  to  communicate  the  value  of  interdisciplinary  work  within  the  institution—it  is  important  to  “sell  the  science”,  but  that  can  be  challenging  if  there  is  institutional  resistance.  This  resistance  can  reflect  different  value  structures  within  the  institution,  both  concerning  the  type  of  work  being  conducted  (e.g.,  disciplinary  vs.  interdisciplinary)  and  concerning  the  nature  of  the  ideas  involved.    

One  particularly  problematic  context  within  institutions  is  the  department.  Departmental  support  for  interdisciplinary  projects  can  be  a  big  concern.  Where  interdisciplinary  work  is  done  across  departments  within  the  same  school  or  college  there  may  be  fewer  problems,  but  where  different  schools  and  colleges  and  their  respective  administrative  and  evaluative  processes  enter  the  fray  the  barriers  to  interdisciplinary  work  can  become  insurmountable.  Each  department  has  its  own  “philosophy”,  and  many  of  these  champion  disciplinary  focus  over  interdisciplinary  collaboration,  problematizing  the  latter  for  those  who  might  be  interested  in  it.  This  is  perhaps  nowhere  more  vexing  than  in  the  tenure  process,  where  the  by-­‐laws  may  not  accommodate  interdisciplinary  work,  or  perhaps  a  departmental  representative  may  not  value  this  sort  of  work.  Given  the  growing  interest  and  skill  in  interdisciplinary  activity  among  junior  faculty,  this  is  an  especially  worrying  institutional  reality.  There  are  ways  of  building  interdisciplinarity  into  even  the  most  staunchly  disciplinary  departments,  though,  such  as  cross-­‐listing  courses  that  have  interdisciplinary  content  in  different  departments.  With  the  institutional  focus  on  getting  undergraduate  students  through  in  four  years,  faculty  are  being  asked  to  do  more  and  more  while  institutions  are  reducing  the  number  of  credit  hours  in  programs.  These  rigid  constraints  particularly  impact  graduate  students  who  are  trying  to  do  interdisciplinary  research  by  raising  administrative  issues  such  as  those  associated  with  committee  selection.  Faculty  who  are  inclined  in  the  direction  of  interdisciplinary  research  often  deal  with  these  constraints  by  “riding  under  the  radar”,  conducting  the  research  without  having  it  impact  their  disciplinary  commitments.  

Curricular  Constraints.  There  is  ABET  pressure  to  have  curricular  balance  and  many  schools  may  claim  this  balance  when  in  fact  they  do  not.    In  engineering  programs  generally,  there  is  a  rigid  set  of  curricular  structures  built  around  a  model,  where  past  practices,  student  retention  and  “throughput”  are  primary  evaluative  metrics.  Accreditation  however  can  play  a  large  role  in  terms  of  getting  buy-­‐in  from  departments  and  faculty  for  interdisciplinary  collaboration.  Where  interested  faculty  can  show  the  advantages  of  a  proposed  interdisciplinary  endeavor  in  terms  of  accreditation  standards,  they  are  likely  to  meet  with  more  institutional  support.  Department  practices  regarding  grading,  prize  giving,  pre-­‐  and  co-­‐  requisites,  course  numbering  and  teaching  loads  are  all  issues  that  department  heads  have  given  for  not  supporting  interdisciplinary  courses.  Clearly  articulated  support  from  leadership  at  the  school  and  university  level  could  combat  these  issues.    Two  further  suggestions  were  made  for  loosening  curricular  constraints:  (a)  adding  a  minor  (or  a  certificate  program),  which  may  nudge  students  to  take  a  few  extra  courses  in  interdisciplinary  area,  and  (b)  creating  an  interdisciplinary  4th-­‐year  capstone  course.    

Page 44: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  44  

Broadening  Participation.  NSF  can  be  of  real  assistance  to  those  interested  in  interdisciplinary  collaboration  by  working  to  broaden  participation  within  the  academic  community.  For  engineers,  broadening  participation  depends  on  the  ability  and  interest  of  engineers  to  interact  in  an  interdisciplinary  and  interprofessional  manner.  Interaction  of  this  type  extends  scholarly  networks  and  draws  people  into  sponsored  research  and  education  from  areas  not  typically  represented.  One  specific  thing  that  NSF  could  do  is  recognize  relevant  interdisciplinary  activity  in  new  locations,  such  as  in  veterans  education.  

III.   Afternoon  Discussions  

A. Critical  Issues    

The  “critical  issues”  discussion  in  the  afternoon  addressed  undergraduate  issues  in  the  main,  staying  relatively  close  to  the  NSF  talking  points.  We  use  those  points  to  organize  this  summary.    

1. Promising  work,  in  both  practice  and  research  

One  promising  way  of  introducing  undergraduates  to  interdisciplinary  collaboration  is  through  modular  interdisciplinary  classes,  with  modules  designed  to  introduce  disciplinary  content  and  integrative  methodology.  A  second  suggestion  focused  on  “serious  games”,  i.e.,  game-­‐based  approaches  to  teaching  serious  course  content.  This  could  include  “Sim”-­‐type  environments  in  which  students  are  presented  with  engineering  problems  to  solve  in  simulation.  Another  suggestion  involved  redesigning  courses  so  that  they  included  service-­‐learning  components  (e.g.,  nutrition-­‐related  outreach,  playground  safety).  This  is  especially  relevant  to  those  interested  in  interdisciplinary  work,  since  one  important  driver  of  interdisciplinary  collaboration  is  the  need  to  solve  “big”  societal  problems.  Service  learning  would  put  students  in  contact  with  these  problems  as  they  exist  in  their  own  communities,  enabling  them  to  acquire  the  requisite  communication  skills  necessary  to  be  effective  interdisciplinary  and  interprofessional  collaborators.  Finally,  several  voices  championed  team-­‐taught,  interdisciplinary  capstone  design  courses  that  could  include  an  interdisciplinary  project  requirement.  These  courses  can  also  push  students  in  the  direction  of  entrepreneurship  by  putting  them  in  collaborative  relationships  with  clients.  

2. Areas  for  improvement  in  the  field  

Conversation  about  this  point  began  with  the  question,  “Can  we  open  people’s  minds  to  interdisciplinary  collaboration?”  That  is,  what  can  be  done  to  excite  people  about  it?  It  was  noted  that  we  are  all  human  beings  and  so  are  all  engaged  in  essentially  interdisciplinary  lives—a  fact  that  should  not  be  lost  to  us  when  we  step  into  the  classroom.  Practical  improvements  in  this  spirit  will  require  buy-­‐in  from  faculty  and  administrators.  Institutional  and  infrastructural  barriers  can  prove  to  be  critical  impediments  to  progress.  Important  metrics  to  use  in  assessing  the  level  of  buy-­‐in  are  interest  among  faculty  members  in  teaching  courses  with  interdisciplinary  content  and  resource  allocation  by  administrators  within  the  institution.    

Page 45: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  45  

Another  improvement  that  can  aid  the  cause  here  is  articulating  and  developing  clear  interdisciplinary  activity  areas.  Associated  with  this  is  the  need  to  design  a  framework  for  assessment  to  make  the  interdisciplinary  goals  clear,  perhaps  with  a  map  of  how  the  different  disciplines  fit  together.  We  are  asking  our  students  to  leave  their  disciplinary  comfort  zones,  and  we  should  work  to  make  the  new  interdisciplinary  locale  seem  less  foreign  and  mysterious.      

3. Priority  areas  for  NSF  to  invest  in  (based  on  #1  &  2)  

Integration  of  interdisciplinary  content  into  the  curriculum  is  a  sure  way  of  exposing  undergraduate  students  to  this  type  of  work,  and  that  exposure  will  generate  interest.  The  NSF  is  in  a  position  to  spur  interest  in  this  type  of  pedagogy  by  problematizing  teaching  as  an  interdisciplinary  activity,  i.e.,  as  something  that  can  serve  as  a  vehicle  of  interdisciplinary  collaboration.  To  this  end,  money  could  be  made  available  to  support  creative  pedagogical  models  involving  community-­‐based  service  learning  and  volunteer  work  that  focuses  on  the  social  aspects  of  engineering.  Service  learning  in  particular  can  be  used  to  get  buy-­‐in  from  multiple  levels  in  a  way  that  imbeds  interdisciplinary  principles.  These  should  be  courses  that  put  students  in  close  contact  with  stakeholders,  perhaps  through  substantive  projects  designed  and  led  by  the  students.  More  seed  money  in  general  for  interdisciplinary  pedagogy  and  public  models  of  engineering  education  was  deemed  a  critically  important  step.    

B.  Impact  and  potential    

Although  some  attention  was  paid  to  interdisciplinary  grant  activity,  this  conversation  focused  primarily  on  interdisciplinary  collaboration  in  general.  Nevertheless,  the  conversation  adhered  closely  enough  to  the  talking  points  that  we  use  them  to  organize  the  summary.  

1. How  to  meaningfully  and  fairly  evaluate  NSF  grant  outcomes  

A  variety  of  evaluative,  interdisciplinary  metrics  were  discussed  in  this  session.  These  include:  

• The  number  of  multidisciplinary  courses  developed,  where  this  can  be  assessed  in  terms  of  where  the  courses  are  cross-­‐listed  and  how  many  students  from  multiple  units  are  enrolled  

• Development  of  measurable  student  skills  (e.g.,  teamwork,  communication)  and  meta-­‐awareness  (e.g.,  awareness  of  the  existence  of  interdisciplinary  problems)  

• The  impact  the  grant  has  on  fostering  future,  funded  faculty  collaborations  

• Joint  publications  and  presentations,  although  it  is  important  to  note  that  highly  cited  journals  tend  to  be  discipline  based,  with  certain  exceptions  (e.g.,  nanotechnology,  energy)  

Page 46: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  46  

It  is  important  that  the  NSF  build  long-­‐term  impact  evaluation  into  grants,  when  appropriate,  and  that  they  commit  to  implementing  changes  in  interdisciplinary  programs  and  evaluation  metrics  based  on  what  they  learn  the  evaluation  of  interdisciplinary  activities.  

2. Ways  to  effectively  report  NSF  grant  outcomes  

When  the  grant  concerns  teaching,  it  is  important  that  student-­‐related  outcomes  be  communicated  to  NSF.  These  include  the  impact  on  students  from  collaboration  with  other  disciplines  (e.g.,  changes  in  attitude,  skills,  and  competencies),  and  specifically  the  impact  this  collaboration  has  on  their  communication  skills  (e.g.,  vocabulary,  awareness).  Another  suggestion  that  could  enhance  reporting  effectiveness  concerned  the  establishment  of  criteria  for  a  “NSF  approved  course”,  perhaps  with  encouragement  to  institutions  to  develop  “labels”  for  courses  based  on  NSF  funding.    The  latter  could  be  part  of  an  agency  effort  to  ensure  institutional  accountability  in  return  for  curriculum-­‐related  funding.  

3.   Ways  to  disseminate  findings,  ensure  impact,  and  spur  widespread  adoption  of  best  practices  

One  important  point  mentioned  in  connection  with  this  item  concerns  report  format.  In  particular,  it  was  suggested  that  the  NSF  change  report  formats  to  allow  for  data  mining  at  the  NSF  program  level.  

IV.    Key  Terms  

Phrase   Occurrences  Epistemology   X  Learning  mechanisms    Learning  systems    Diversity  and  inclusiveness    Assessment   X    Research  to  practice   X  Innovation  cycle  in  education   X  Rigorous  research   X  Grand  challenges   X    Pedagogy   X  

 

V.   References  

Eigenbrode,  S.  D.,  O’Rourke,  M.,  Althoff,  D.,  Goldberg,  C.,  Merrill,  K.,  Morse,  W.,  Nielsen-­‐Pincus,  M.,  Stephens,  J.,  Winowiecki,  L.,  Wulfhorst,  J.  D.,  Bosque-­‐Pérez,  N.  (2007)  Employing  philosophical  dialogue  in  collaborative  science.  BioScience  57:  55-­‐64.  

Page 47: Reports(from(ThePanel(Sessions( … · ! 3! composed&of&diverse&participants&covering&arange&of&research,&practice&and&administration&in& order&to&elicit&abroad&and&inclusive&discussion.&Facilitators&were

  47  

National  Academy  of  Sciences,  Committee  on  Facilitating  Interdisciplinary  Research  and  Committee  on  Science  Engineering  and  Public  Policy  (NAS).  (2005)  Facilitating  Interdisciplinary  Research.  Washington,  DC:  National  Academies  Press.  

Repko,  A.  F.  (2008)  Interdisciplinary  Research:  Process  and  Theory.  Thousand  Oaks,  Calif.:  Sage  Publications.