Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glover’s reef research station

Embed Size (px)

Citation preview

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    1/58

    March 2011

    This publication was produced for review by the United States Agency for InternationalDevelopment. It was prepared by Dr. Elizabeth Babcock and Dr. Robin Coleman; WildlifeConservation Society

    GLOVERS REEFANNUAL REPORTREPORT ON SPINY LOBSTER ABUNDANCE AND FISHINGMORTALITY AND PRELIMINARY ANALYSIS OF EXISTINGFISHERIES DATA AT GLOVERS REEF RESEARCH STATION

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    2/58

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    3/58

    The authors views expressed in this publication do not necessarily reflect the views of the UnitedStates Agency for International Development or the United States Government.

    GLOVERS REEF

    ANNUAL REPORTREPORT ON SPINY LOBSTER ABUNDANCE AND FISHINGMORTALITY AND PRELIMINARY ANALYSIS OF EXISTINGFISHERIES DATA AT GLOVERS REEF RESEARCH STATION

    Contract No.: EPP-I-00-04-0020-00 Task Order No. 5Subcontract No.: EPP-I-05-04-0020-00-WCSPeriod of Performance: November 24, 2010 to September 15, 2014

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    4/58

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    5/58

    The authors views expressed in this publication do not necessarily reflect the views of the UnitedStates Agency for International Development or the United States Government.

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    6/58

    vi GLOVERS REEF ANNUAL REPORT

    CONTENTS

    List of Acronyms and Abbreviations ............................................................................... iiiv

    Preface................................................................................................................................ ix

    Introduction .........................................................................................................................1

    Part I: Spiny Lobster Abundance and Fishing Mortality at Glovers Reef Marine Reserve

    Abstract ................................................................................................................................3

    Method ........................................................................................................................................... 3Length based metrics of fishing pressure ........................................................................ 3Abundance trends from the WCS catch per unit effort data set .......................................... 5Abundance trends from the LAMP fishery-independent data set ....................................... 7Abundance trends from the LAMP fishery-independent data set ....................................... 8

    Bayesian DeLury state-space model fitted to catch.9

    Bayesian DeLury regression model based on effort..10

    Results ...............................................................................................................................11

    Length - based metrics of fishing pressure ............................................................11

    Abundance trends from the WCS catch per unit effort data set ............................12

    Abundance trends from the LAMP fishery-independent data set ..........................13

    Estimates of total abundance and fishing mortality from depletion analysis ........13Bayesian DeLury state-space model fitted to catch ....................................14

    Bayesian DeLury regression model based on effort ...................................15

    Discussion ..........................................................................................................................15

    References ..........................................................................................................................18

    Table and Figures ...............................................................................................................20

    PART II: Preliminary Analysis of Existing Fisheries Data at Glovers Reef Marine

    Reserve

    Abstract ..............................................................................................................................33

    Methods..............................................................................................................................33WCS Catch and Effort Data ...................................................................................33

    LAMP data .............................................................................................................35

    Catch and Effort from Fisheries .............................................................................36

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    7/58

    GLOVERS REEF ANNUAL REPORT vii

    Results ................................................................................................................................36

    WCS Catch and Effort Data ...................................................................................36LAMP Data ............................................................................................................37

    Fisheries Data.........................................................................................................38

    Discussion ..........................................................................................................................38

    References ..........................................................................................................................39

    Tables and Figures .............................................................................................................41

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    8/58

    viii GLOVERS REEF ANNUAL REPORT

    LIST OF ACRONYMS AND ABBREVIATIONS

    AIC Akaike information criterion

    BIC Bayesian information criterion

    CITES Convention on International Trade in Endangered Species of Wild Fauna

    and FloraCL Carapace Length

    CPUE Catch Per Unit Effort

    CZ Conservation ZoneDIC Deviance Information Criterion

    F0.1 Fishing mortality rate that corresponds to a slope of the yield per recruit

    function 10% of its level for an unexploited stockFAO Food and Agriculture Organization of the United Nations

    Fmax Fishing mortality rate that maximizes yield per recruit

    GLM Generalized Linear ModelGLMM Generalized Linear Mixed Model

    GUZ General Use ZoneLAMP Long-term Atoll Monitoring Program

    Lopt Length that Optimizes Yield per RecruitMCMC Markov Chain Monte Carlo

    MSY Maximum Sustainable Yield

    SL Shell LengthTL Total LengthWCS Wildlife Conservation Society

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    9/58

    GLOVERS REEF ANNUAL REPORT ix

    PREFACE

    The Management of Aquatic Resources and Economic Alternatives program, financed by

    the United States Agency for International Development (USAID) and implemented by

    Chemonics International, with the Wildlife Conservation Society as a subcontractor,

    builds on previous projects in Central America to support and promote marine andcoastal conservation through rights-based access and market-driven mechanisms in

    concert with local partners from both the private and public sectors. The USAID program

    will achieve these goals with a focus on four key trans-boundary watershed areas andseven key focal species. The four trans-boundary regions are the Gulf of Honduras, the

    Moskitia Coast, Cahuita-Gandoca-Bocas del Toro, and the Gulf of Fonseca. The focal

    species for the USAID program are divided into species with commercial importance:mangrove cockles, queen conch, grouper, snapper, and spiny lobsters; as well as two

    groups of endangered species: sharks and sea turtles.

    The USAID program will employ multiple strategies to positively affect its target species

    within its regional points of focus including the promotion of rights-based legislation andprograms, establishment of managed protected areas and no-take reserves, promoting

    specific protections and management regimes for threatened species and by providingeconomic alternatives to local communities where resource extraction threatens marine

    and coastal natural resources.

    This Glovers Reef Annual Report provides long term analysis of spiny lobster and

    queen conch fishery independent surveys and catch per unit effort surveys to provide

    stock and catch information necessary to implement and manage an ecosystem approachto rights based fisheries at Glovers Reef.

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    10/58

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    11/58

    GLOVERS REEF ANNUAL REPORT 1

    INTRODUCTION

    Caribbean spiny lobster (Panulirus argus) is the most economically important species in

    the fisheries of Belize. According to an age-based stock assessment of spiny lobster in

    Belize (Gongora 2010), the spawning stock biomass declined by 8.7% between 1999 and

    2009 and fishing mortality increased 46% to 1.3, because of increasing fishing effort.Although the biomass appears to be fairly stable in recent years, the fishing mortality rate

    is higher than the optimal level. According to yield per recruit analysis, the fishing

    mortality rate that would maximize yield (Fmax) is 0.85, while the more precautionaryF0.1reference point is 0.49 (Gongora 2010). A reduction in fishing mortality nationwide

    would be required to achieve either of these targets.

    Lobsters are also the most important fishery at Glovers Reef Marine Reserve. Conch are

    also an important fishery at the marine reserve (Acosta 2006). At Glovers Reef, WCS,

    with the support of USAID Program, has been interviewing fishermen to collect data onlobster and conch length, weight, catches and fishing effort from 2004 through the

    present (Grant 2004). The WCS LAMP data set, from a fishery independent underwatercensus focusing on conch, lobster and select finfish, was also available from 2004

    through the present, including length and abundance of lobsters and conch at fixed sitesin both the Conservation Zone and the General Use Zone. The National and Northern

    fisheries Cooperatives also report catches of spiny lobsters and conch to the Fisheries

    Department by month for the Glovers Reef region (Region 3); these data were availablefrom 2002 through the present.

    Queen conch (Strombus gigas) is the second only to lobster as an economically importantspecies in the fisheries of Belize. Queen conch are depleted throughout the Caribbean

    and are listed on Appendix II of CITES (FAO 2007). In Belize, conch production has

    increased over the last decade but is still below the national total allowable catch quota,and recent assessments have shown in increase in the population (Belize national reportin FAO 2007, Carcamo 2008).

    The objectives of this paper are to evaluate the available data on size and abundance ofspiny lobsters at Glovers Reef and to determine the level of fishing mortality, population

    size and trends in population size. It is not known what fraction of the lobsters recruiting

    at Glovers Reef are offspring of the local spawning stock and what fraction come fromelsewhere in the Meso-American Barrier Reef system. Therefore, we did not apply stock

    assessment methods that assume a relationship between spawning stock and recruitment,

    as such models would require the assumption that Glovers Reef is a self-sustaining

    population. Instead, we used length-based indicators and depletion methods to estimatethe abundance and fishing mortality of post-recruitment lobsters at Glovers Reef. Given

    this information, an appropriate sustainable catch level at Glovers Reef could be

    determined by applying the national target fishing mortality rate (Gongora 2010) to thelobsters at Glovers Reef. Another objective is to evaluate the available data on size and

    abundance of conch at Glovers Reef and to determine whether these data will be useful

    in estimating the level of fishing mortality, population size and trends in population size.

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    12/58

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    13/58

    GLOVERS REEF ANNUAL REPORT 3

    PART I: SPINY LOBSTER ABUNDANCE AND FISHINGMORTALITY AT GLOVERS REEF MARINE RESERVE

    ABSTRACT

    Data available on spiny lobsters at Glovers Reef Marine Reserve include the reportedcatch and fishing effort from the fishing Cooperatives, data on sizes, catches and fishingeffort collected from fishermen at Glovers Reef, and a fishery independent visual survey

    (LAMP). Most of the harvested lobsters at Glovers Reef were above the size at

    maturity, but many were below the optimal size for harvest. The fishing mortality rateestimated from the length frequencies was less than the current national fishing mortality

    rate. The abundance data from the LAMP survey shows a generally increasing abundance

    trend across the time series, which combined with the fact that the LAMP survey foundthat lobsters tend to be bigger and more abundant inside the Conservation Zone,

    demonstrates that the Conservation Zone provides significant protection for lobsters.

    The catch per vessel day (from the Cooperative data) and the catch per fisherman hour

    showed a decline in relative abundance during the fishing season in most years. TheWCS CPUE trend appeared to decline across years, while there was no clear trend in the

    Cooperative CPUE. Catches at Glovers Reef (those reported as region 3 by the National

    and Northern Cooperatives) were lower in recent years than in 2002-2004; however, it isunknown what fraction of catch from Glovers is inaccurately reported as catch from

    other regions. Delury population depletion models fitted to the CPUE data, combined

    with either catch or effort data from the Cooperatives gave extremely variable resultsdepending on the model formulation and whether catch or effort data were used. More

    reliable catch and effort data would be needed to use these methods to estimate stock

    status and reference points. Recommendations are made for the improvement of data

    collection under new licensing scheme.

    METHOD

    Length based metrics of fishing pressure

    Froese (2004) proposed three simple indictors to determine whether a population was

    being harvested in a sustainable fashion, based on the length distribution of fish in the

    catch. To avoid recruitment overfishing, he suggested that the fraction of fish in thecatch that are above the length of maturity (Lm) should be high, preferably 100%, so that

    each individual has a chance to spawn at least once before being harvested. To prevent

    growth overfishing, all or most of the fish caught should be within plus or minus 10% ofthe optimal length of harvest (Lopt) based on yield per recruit analysis. The optimallength is the length at which the number of fish in a year class multiplied by their average

    weight is maximized; allowing the fish to grow to this size before harvesting them

    maximizes the weight of fish that can be caught. The third indicator proposed by Froese(2004), is the number of mega spawners which he defined as fish that are more than

    10% aboveLopt. A fishery management plan that included a maximum size limit and so

    avoided capturing any of these mega spawners would be ideal because the large fish are a

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    14/58

    4 GLOVERS REEF ANNUAL REPORT

    critical source of fecundity. In the absence of a maximum size limit in the fishery, the

    fraction of mega spawners in the population should be greater than 20%, consistent

    with a population with a healthy age distribution (Froese 2004).

    To calculate the Froese (2004) indicators for spiny lobster, we assumed the size at

    maturity was 70 to 80 mm carapace length (CL, FAO 2000). The minimum legal size forlobsters in Belize is 3 inches CL (76 mm), which is around the age at maturity, so that we

    expect most lobsters caught to be above this length. The optimal length (Lopt) was

    calculated as the length at which the numbers at age (assuming only natural mortality)multiplied by the weight at age reached a maximum using the von Bertalaffy growth

    curve [L=L(1-exp(-K(t-t0)))], using parameter values from Gongora (2010), a weight

    length relationship from FAO (2001) (W = 0.00460 CL ^2.630) and exponential decline

    in numbers, with a natural mortality rate of 0.34.

    Average length data can also be used to estimate total mortality (Z) based on average

    length and life history parameters taken from the literature, using the method of Beverton

    and Holt (1957) as modified by Ehrhardt and Ault (1992) and Ault et al. (2008, 2005).The original Beverton and Holt (1957) method makes the following assumptions:

    recruitment has been relatively constant in recent years; fish growth follows the von Bertalanffy growth model, with parameters K (growth

    rate) and L (asymptotic length);

    the total mortality rate (Z) is relatively constant over time and fish ages; and there is knife edge recruitment into the fishery at length Lc, and all fish above this

    size are equally likely to be captured.

    Given these assumptions, the total mortality can be calculated as:

    (1))()(

    cLLLLKZ

    =

    Ehrhardt and Ault (1992) showed that this method can be biased if the fishery does not

    exploit all older age classes of fish (for example if older individuals move into deeperwater). They proposed the following formulation that also includes a maximum size of

    capture (

    L ) assumed to be less than L.

    (2))()(

    )()(

    LLKLLZ

    LLKLLZ

    LL

    LL cK

    Z

    c +

    +=

    Given these estimates of total mortality (Z) for each species, we calculated fishing

    mortality rate (F) by subtracting the natural mortality rate (M) taken from the literature.Any population for which F is much larger than M has probably experienced overfishing

    in its recent history. The method of Ehrhardt and Ault (1992) has previously been applied

    to spiny lobsters in the Caribbean (FAO 2001).

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    15/58

    GLOVERS REEF ANNUAL REPORT 5

    Lengths were reported in mm carapace length (CL) in both the LAMP data and the WCS

    catch data. The catch data also included tail length (TL) and second segment width

    (SW). Both TL and SW were recorded more often than CL in the WCS catch data setbecause the data recorders often had no access to lobster tails before they were processed

    by the fishermen. Nevertheless, the available life history data and the LAMP data used

    CL, so we used CL for all calculations, converting TL to CL using the linear relationbetween CL and TL calculated from the lobsters for which both lengths were available.

    There are many published growth curves for spiny lobster. We used a von Bertalanffygrowth curve, with values ofL=183 mm CL,K= 0.24, and t0=0.44, consistent with the

    most recent national assessment (Gongora 2010). We estimated total mortality from the

    WCS CPUE data set, as well as the LAMP visual survey data both in the General Use

    Zone and in the Conservation Zone.

    Abundance trends from the WCS catch per unit effort data set

    WCS researchers collected data on the number and size of lobsters caught fromfishermen on the fishing grounds at Glovers Reef between 2004 and the present. For

    each fisherman, we calculated catch per unit of effort (CPUE) in whole weight of lobsters

    caught per fisherman hour. For more than 60% of the lobsters that were observed in thecatch data set, whole weights were recorded. For lobsters for which tail weights had been

    recorded, we converted to whole weight using the conversion of tail weight to total

    weight from FAO (2001) (WTotal=2.97Wtail - 0.000327 in kg for females, WTotal=3.38Wtail- 0.0238 for males). For individual lobsters for which no weights were

    recorded, we converted carapace length (WTotal= 0.00460CL2.630

    ) to total weight using

    relationships from FAO (2001).

    It was necessary to exclude data for which the fishermans name was not recorded

    because it was not possible to determine how many lobsters had been captured by each

    individual fisherman. There were 641 unique combinations of fisherman, boat and datefor which these data were collected. For each of these, we calculated CPUE as the weight

    of Caribbean spiny lobsters caught per hour fishing. There were a few cases (10 out of

    641) in which the individual fisherman were interviewed twice in one day; we calculatedonly one value of the CPUE in this case, counting all the lobsters they had caught that

    day and using the largest reported value for hours fished.

    Lobster CPUE is expected to be proportional to abundance. However, catch rates can alsovary depending on fishing location, environmental conditions and the relative

    effectiveness of different fishermen. Provided that data are available, a generalized

    linear model (GLM) can be used to estimate the impact of environmental conditions andother explanatory variables on the catch rates so that these effects can be removed from

    the estimated temporal trend. The GLM estimated trend should reflect only changes in

    abundance over time without being biased by any of the confounding factors (Maunderand Punt 2004).

    The data collected along with the lobster catches, biological data and hours fishing

    include the name of the boat, the name of the fisherman, the location, date, time and

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    16/58

    6 GLOVERS REEF ANNUAL REPORT

    depth fished. We classified the data into fishing seasons, assuming that lobster season

    started on June 15 and ended February 14 of every year, so that, for example, fishing

    season 2005 would begin on June 15, 2005, and include all fishing through the followingFebruary. Month within each fishing season was included in the model as a factor, so

    that the change in abundance during each fishing season could be tracked. We also

    included the moon phase (full: within 4 days of full, new: within 4 days of new, mid:otherwise) as a factor in case moon phase influenced catch rates.

    We did not include time of day in the analysis because most fishermen reported fishingsix hours or more, so that the time each individual lobster was captured was not precisely

    known. Also, most data were collected between noon and 3:00 PM, so that the fishermen

    were all fishing around the same time of day (morning and early afternoon). We also

    did not include depth in the analysis because, although the fishermen were asked to reportthe depth range at which they were fishing, most had fished for 6 hours or more, so that it

    seemed unlikely that they had stayed within one depth zone.

    Of the 18 boats for which lobster catch and effort data were recorded, only 12 weresampled on 3 or more days. For the models in which boat name was included as a factor,

    we included only the 12 boats that had been sampled on three or more occasions.Locations were described with different categories in 2004-2005 than in 2006-2010.

    From 2006 to 20010, the majority of the lobsters (61%) were taken in the central lagoon

    north of the conservation zone (areas G5-G7). It was not possible to include both boat

    and location in the model, because most combinations of boat and location contained zerodata points. Because there appeared to be more variability between boats than between

    locations, we chose to include boat in the model and ignore location.

    Using only data from the 12 boats with multiple samples, for the 2005through 2010

    fishing seasons, the number of CPUE records was 641. There were no zero observations

    because the data recorder did not fill out a data sheet for fishermen who did not catch anylobsters. The lack of zero observations may introduce a bias into the estimated time trend

    of abundance because fishermen are more likely to catch zero lobsters when lobster

    abundance is low.

    The GLM model was:

    (3) lkjikjilkji wayVMTCPUE ,,,,,, 2)log( ++++=

    where Tiis the effect of fishing year and month (i) for the 37 months between June, 2005

    and July, 2010 for which data were collected,Mjis the effect of moon phase (j=full, midor new), and Vkis the effect of individual boat (k= boat 1 through 12), and lkji ,,, is a

    normally distributed error term. All of the second order interactions between the termsare included.

    To determine which of these factors and their interaction significantly improve themodel, we used Akaikes Information Criterion (AIC, Akaike 1974):

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    17/58

    GLOVERS REEF ANNUAL REPORT 7

    (4) AIC=-2log(L)+2n

    where log(L) is the natural log of the likelihood of the model and n is the number ofparameters. The model with the lowest AIC thus optimizes the tradeoff between

    achieving a good fit between the GLM model and the CPUE data, and minimizing the

    number of parameters. We allowed the stepAIC function in the MASS library for R tochoose the model that minimized AIC (Venables and Ripley 2002). In the case where

    boat or any of the two way interactions with boat were included in the AIC best model,

    we treated these parameters as random effects, using the functionglmerin R (Bates 2010,Ortiz and Arocha 2004, R Development Core Team 2010). The AIC and the BIC

    (Bayesian information criterion; Bates 2010) were used to choose the best model with

    random effects.

    The time period (year and month) effect calculated by the mixed model was used to

    predict the log-CPUE for month and year and the predicted values and their standard

    errors were transformed from normal to lognormal to extract the temporal trend in

    abundance.

    Finally, to determine whether there was a significant decreasing trend in abundancewithin each fishing season, we repeated the GLM model with day within fishing season

    as a numerical variable to estimate the linear regression between day and CPUE within

    season:

    (5) lkjikjiilkji wayVMDYCPUE ,,,,,, 2)log( +++++=

    where Yiis the effect of fishing year i, andDiis the slope of the linear relationship

    between day since the beginning of fishing season iand log-CPUE.

    Abundance trends from the LAMP fishery-independent data set

    For lobster observations in the fishery independent LAMP data set, we used a similar

    generalized linear modeling approach. In the LAMP case, the sampling unit was onedive, so that the number of lobsters seen per dive is assumed to be an index of lobster

    abundance. For each lobster seen, the divers recorded the date, site, carapace length

    (CL), sex, whether eggs were visible, start time, number of minutes spent searching,depth, visibility and other physical variables.

    The LAMP data were collected at 11 fixed sampling locations that were either inside theconservation zone or in the general use zone near the boundary between zones. To testfor an effect of management zone on lobster abundance, we included distance from the

    Conservation Zone boundary as a numerical variable (with negative values inside the

    Conservation Zone). An alternative formulation included management zone as factorwith three levels: (1) general use zone more than 500 m from the conservation zone, (2)

    general use zone less than 500 m from the conservation zone, and (3) in the conservation

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    18/58

    8 GLOVERS REEF ANNUAL REPORT

    zone, in case the relationship between management zone and lobster abundance was non-

    linear.

    Of the 207 dives in the dataset, 40% recorded zero lobsters. Therefore, we used a delta

    lognormal modeling approach, in which the number of lobsters in dives in which lobsters

    were seen was modeled as lognormal, while presence or absence was modeled as abinomial process (Ortiz and Arocha 2004).

    As in the fisheries CPUE analysis, we included potential explanatory variables in themodel, to remove any effects of environmental conditions that may influence the count of

    lobsters. The potential explanatory variables we considered were the time period (year

    and month), the linear effect of distance from the management zone boundary, moon

    phase (full, new or mid), and the linear effects of time of day, visibility and depth.

    The GLM models were:

    (6) kjijikji waydtvZMTC ,,,, 2)log(

    +++++++=

    for positive sets, and :

    (7) waydtvZMTP jikji 2)(logit ,, ++++++=

    for presence or absence (P), where Tiis the effect of time period i,Mjis the effect of

    moon phase (j=full, new or mid), Z is the linear effect of distance from the Conservation

    Zone boundary (km), v is the linear effect of visibility (m), tis the effect time of day (in

    decimal 24 hour time), dis the linear effect of depth (m) and kji ,, is a normally

    distributed error term. Some 2 way interaction terms were also included, although it wasnot possible to include all interactions given the relatively small sample sizes.

    To determine which of these factors significantly improve the model, we used AkaikesInformation Criterion (AIC, Akaike 1974). The index of abundance was calculated by

    multiplying the inverse logit of the time period effect from the binomial model by the

    exponent of the time period effect from the lognormal model (with bias correction).

    Standard errors were calculated using the method of Lo et al. (1992). All factors weretreated as fixed effects.

    Abundance trends from the LAMP fishery-independent data set

    Catches and fishing effort (in vessel days) for region 3 (Glovers Reef) were provided by

    the Belize Fisheries Department by month, as reported by the National and Northern

    Cooperatives. The catches were reported as lobster tail weight and lobster head weight.We calculated total weights from tail weight as WTotal= 3.175 Wtail- 0.01206 (FAO 2001).

    The CPUE in lobster weight per fishing vessel day appeared to decline during mostfishing seasons. Therefore we used several modifications of the DeLury depletion model

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    19/58

    GLOVERS REEF ANNUAL REPORT 9

    (Robert et al. 2010, Quinn and Deriso 1999, Bataille and Quinn 2006) to estimate the

    biomass of lobsters in the open area at the beginning of each fishing season, using a

    Bayesian method to estimate the parameters of each model.Bayesian DeLury state-space model fitted to catch

    We assumed that all recruitment occurred between fishing seasons, so that no lobsterswould grow from sub-legal to legal size during the fishing season. During each month ofthe fishing season, the number of lobsters can be calculated as (Robert et al. 2010):

    (8) 2412,1, ,MNM

    titi eCeNN ti

    + =

    whereNi,t is number of legal sized lobsters in the General Use Zone at the beginning ofmonth t in fishing season i, C

    Ni,tis the catch in numbers during month tassumed to take

    place in the middle of the month,Mis the instantaneous natural mortality rate, assumed

    to constant across years;Mis in annual terms, so it is divided by 12 for a monthly timestep in Equation 8. Assuming that the average weight of lobsters is constant, so that

    biomass is proportional to numbers:

    (9) 2412,1, ,MM

    titi eCeBB ti

    + =

    whereBi,t is biomass of legal sized lobsters in the General Use Zone and Citis catch inweight. We used Equation 9 rather than Equation 8 because the catch data were available

    in weight not numbers. Bi,1, the biomass at the beginning of the fishing season i, is a

    parameter that must be estimated; biomass in each subsequent month can be calculatedfrom the starting biomass, natural mortality rates and catches using Equation 9.

    To estimate the model parameters, the predicted abundance trend from Equation 9 wasfitted to catch per unit of effort as an index of abundance. The abundance indices used

    were the CPUE index derived from the Cooperative data (i.e. the average of the weight of

    lobster caught per vessel day in each month), and the standardized index of abundance

    derived above for the WCS catch and effort data described above. The standardizeLAMP series could also be used as an index of abundance, but it was only available for

    two or three months in every year, so the we did not use it for the depletion model.

    The catch per unit effort from either the fishing Cooperative data or the WCS CPUE data

    was assumed to be proportional to abundance in the middle of the month, approximated

    by the average of abundance at the beginning and end of the month:

    (10) eBB

    qI titi

    jtij

    += +

    2

    1,,

    ,,

    where Ij,i,tis the value of thejth

    CPUE index of abundance in month tof fishing season i,

    qjis the constant of proportionality for abundance indexjand is a normally distributed

    error (with variance j2). Both qjand j

    2are assumed to be constant across months within

    a year; we ran some model formulations where they varied by year and some where they

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    20/58

    10 GLOVERS REEF ANNUAL REPORT

    were constant across all eight years (2002-2009). The fishing mortality rate in each

    monthly time step was approximated asFt=-log(1-Ct/Bt), and the annual fishing mortality

    rate was the sum of the monthly rates.

    We used a Bayesian method to estimate the model parameters, implemented in the

    WinBUGS software (Sturtz et al. 2010, Lunn et al. 2000), which uses a Markov ChainMonte Carlo (MCMC) algorithm to approximate the posterior distributions of the

    parameters. Several alternative model structures were used (Table 1a). For models A

    through D, we fit the two abundance series for all eight years simultaneously. In modelsA and B, the model estimated a common catchability and variance across years for each

    series and a common natural mortality rate, along with the starting biomasses in each

    year. Models C and D allowed the model to estimate a different catchability and variance

    in each year for each series. The models also differed in how the starting biomass ineach season (i= 2002 to 2009) was estimated. In models A and C, each years starting

    biomass was given an independent non-informative prior (Table 1). In models B and D a

    Bayesian hierarchical modeling framework was used, so that the starting biomasses in

    each fishing season was assumed to be randomly drawn from a lognormal distribution,with log-mean and log-standard deviation estimated by the model (Table 1a and b). This

    hierarchical structure allows the data from multiple years to inform the estimate ofstarting biomass in each year, thus increasing the precision of the estimates for each year

    (Royle and Dorazio 2008).

    The four multi-year models (A through D) were compared using the DevianceInformation Criterion (DIC, Royle and Dorazio 2008), which is the equivalent of the AIC

    for Bayesian models, and allows us to pick the model that optimizes the trade-off

    between the number of parameters and goodness of fit to the CPUE data. Note that thehierarchical models have a lower number of effective parameters than do the non-

    hierarchical models, because there is a correlation between starting biomasses in each

    year. As an additional sensitivity analysis, we fit the model to the CPUE data to eachseries in each year independently, using the same priors as in the multi-year models

    (model E).

    The prior distributions of the estimated parameters (Table 1b) were non-informative ,except for the prior forM, which was normally distributed with a mean of 0.34, and

    standard deviation of 0.04 (Gongora 2010, FAO 2001). This prior distribution

    constrained the value ofMto be within a biologically plausible range. To ensureadequate convergence of the MCMC, we ran three chains, with 450,000 iterations after a

    burn-in of 50,000 iterations, and a thin rate of 10. With these settings, all the models

    converged adequately according to the Gelman-Rubin diagnostic (Lunn et al. 2000).

    Bayesian DeLury regression model based on effort

    The decline in abundance during a fishing season can also be modeled using effort ratherthan catch:

    (11)tqUM

    titi eNN

    + = ,1,

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    21/58

    GLOVERS REEF ANNUAL REPORT 11

    where Utis the effort in montht. Therefore, the log of the abundance index (I) in each

    time period can be modeled as:

    (12) ttt qEtMqBI += )5.0()log()log( 1

    whereEtis cumulative effort up to the middle of month tand is a normally distributederror term (Quinn and Deriso 1999, Battaile and Quinn 2006). This is the classical

    DeLury regression method, with the addition of natural mortality. The model was fitted

    to the average CPUE per vessel trip from the Cooperative data and the Cooperative effort

    data in vessel days. We used a Bayesian method to estimate the parameters for thismodel, with the same priors forM, qand the error variance that were used in the state-

    space model (Table 1). The prior for qonly allowed positive values of this parameter; we

    also re-ran the model with an unrestricted prior for qto determine whether the datasupport a relationship between cumulative effort and CPUE (i.e. whether the value of q

    was positive and significant). The annual fishing mortality rate was calculated asF=qEt

    at the end of the season.

    RESULTS

    Length - based metrics of fishing pressure

    Of the 3309 lobsters recorded in the WCS catch dataset, TL was measured for all, but CL

    was measured for only 2113. For the 2089 lobsters for which both CL and TL data were

    measured and the two values were consistent with each other, the regression wasCL=14.6+0.54TL (R

    2=0.47). We used this equation to convert TL to CL. The optimal

    length (Lopt) was 119 mm CL, corresponding to an age of 4.8 years. The values of theFroese (2004) indicators were: (1) 78-96% of the catch was mature individuals; (2) 15%were near the optimal length; and (3) 4% were mega-spawners. These values indicate

    that there is some potential to harvest a higher yield of lobsters from Glovers Reef if

    they were allowed to grow somewhat bigger before they are harvested.

    In general, the average sizes within the size range most commonly taken in the fishery

    (between 89 and 180 cm CL) were slightly higher in the conservation zone LAMP data

    than in the general use zone LAMP data, and both were larger than in the fisheries data(Table 2, Figure 1). The distribution of sizes for male and female lobsters was fairly

    similar to each other in each data set (Figure 1). Because of the difference in average

    size, the estimated fishing mortality rate was higher for the fishery data than for theLAMP data in the fished zone, which was higher than the estimate in the unfished zone.

    The estimated value of F from the fishery data was 0.88, which is considerably lower

    than the national average fishing mortality rate of 1.3, but higher than the Fmaxof 0.85(Gongora 2010). The higher average size in the LAMP data may be in part explained by

    spillover from the marine reserve. The size distribution of lobsters seen in the LAMP

    survey more than 500 m from the Conservation Zone (Figure 1b) is similar to the length

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    22/58

    12 GLOVERS REEF ANNUAL REPORT

    distribution in the fishery (Figure 1a), while there are many more lobsters greater than

    100mm CL within 500 m of the boundary (Figure 1c).

    The annual average size of individuals above the minimum size in the LAMP data appear

    to have increased and then decreased again between 2002 and 2009 (Figure 2), while the

    average size in the fisheries data seems to be fairly constant. The lack of change inaverage size between years is consistent with relatively stable recruitment and relatively

    similar fishing mortality rates in each year. Within the fisheries data, the average sizes are

    fairly constant across months in most years (Figure 3), the exception being a decline inaverage size in 2006 and an increase in 2005.

    Abundance trends from the WCS catch per unit effort data set

    The unstandardized log-CPUE data (Figure 4) appear to show a downward trend in log-

    CPUE with time within most fishing seasons. Log-CPUE also appears to be lower in the

    new moon, and variable between fishing boats. Fishing location shows no obvious

    patterns in the raw data.

    In the GLM, all of the direct effects of time period, boat and moon phase were highly

    significant (Table 3a). The interactions between boat and moon phase and boat and timeperiod were also included in the AIC best fit model with fixed effects. This model

    explained about 47% of the variability in the log CPUE data. The diagnostics showed a

    good fit between the model and the data (Figure 5). When boat and the 2-wayinteractions were treated as random effects, both the BIC and the AIC found that the best

    model was the one that included the three main effects plus the time period x boat and

    time period x moon phase interactions (Table 3b). This model was used to calculate the

    standardized CPUE trend.

    The standardized CPUE by month (Figure 6) is highest in the first month of the season

    for all seasons, while the last month of each season has the lowest CPUE. If the fishingmortality remained at a sustainable level, we would expect CPUE to decline during the

    fishing season, and increase again at the beginning of the next season. While the CPUE

    at the beginning of each season is higher than that at the end of the first season, there alsoappears to be a declining trend across the entire time series. When a linear trend was

    estimated for CPUE across days within the fishing season (rather than including month asa factor), there was a decline in CPUE during every fishing seasons except 2006.

    Unfortunately, the data set includes catch and effort from only fishermen who caught

    lobster; fishermen who went out looking for lobsters and did not find any on the day

    when they were interviewed are not included in the dataset (i.e. no zero data arerecorded). A histogram of the count of lobsters caught per fishermen in the dataset

    (Figure 7) shows that it is quite common for fishermen to catch only one or two lobsters;

    thus, it is probably common for fishermen to catch zero lobsters. This lack of zeroobservations can introduce bias into the use of CPUE as an index of abundance. For

    example, if low abundance of lobster causes fishermen to spend more time searching for

    lobsters without finding any, the lack of zero observations in the data would cause the

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    23/58

    GLOVERS REEF ANNUAL REPORT 13

    CPUE method to overestimate abundance at times when abundance was low, thus

    reducing the estimated change in abundance.

    Abundance trends from the LAMP fishery-independent data set

    In the LAMP data set, about 39% of dives recorded zero spiny lobsters, although somereported as many as twenty (Figure 8). A total of 579 lobsters were observed, of which

    67% were above the legal size. The natural log of lobsters seen per dive appeared to vary

    by time period, visibility, depth, time of day, sampling site, management zone, moon

    phase and whether lobster season is open (Figure 9). Estimating the impact of thesevariables on the number of lobsters seen would thus improve the estimate of changes in

    abundance over time.

    For both GLM of the log of positive CPUE and the presence/absence GLM, the AIC best

    fit models (Table 4, Figure 10) included time period and distance from the Conservation

    Zone. The best model also included visibility and depth for the presence/absence model.

    The interaction between distance from the Conservation Zone and time period was notsignificant and was not included in the AIC best model; implying that the temporal trend

    in abundance was the same both inside and outside of the Conservation Zone. In both

    models, distance from the Conservation Zone had a negative effect on abundance,although the effect was only significant in presence/absence model.

    These models explained 24% of the deviance in the presence/absence data and 71% ofthe deviance in the abundance if present. The diagnostics (Figure 10) showed a good fit

    to the positive CPUE model (Figure 10b), although the qq-normal plot of the

    presence/absence GLM (Figure 10a) shows some departure from normality.

    When an abundance index was calculated as the product of the predicted fraction of divesto see a lobster, times the expected number of lobsters, from the AIC best fit models, theabundance of lobsters is quite variable but shows a generally increasing trend (Figure 11).

    Despite the fact that more lobsters are seen in the Conservation Zone than the General

    Use Zone (Figure 9), the temporal trend is the same both inside and outside the

    Conservation Zone. There is also a tendency for abundance to be higher around thebeginning of lobster season in most years (Figure 11).

    Estimates of total abundance and fishing mortality from depletion analysis

    The reported catch of spiny lobster at Glovers Reef, from the Northern and Central

    Cooperatives, has been lower in 2005 through 2009 than in 2002 through 2004; reportedcatches also declined between the beginning and end of the lobster season in most years(Figure 12). The CPUE (i.e. average of catch per vessel-day as reported to the

    Cooperatives) also declined during the first few months of the lobster season every year

    (Figure 12b), although there are also some high CPUE values late in the year in 2004 andespecially 2008. The low reported catches in recent years are not consistent with the

    WCS data (Figure 12c). Although WCS has consistently been sampling on 10-20% of

    the days in each month, there are some months when WCS sampled a larger catch than

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    24/58

    14 GLOVERS REEF ANNUAL REPORT

    was reported to the cooperatives (fraction of catch greater than 1 in Figure 12c). This

    implies that some of the decline in Glovers Reef catches reported to the cooperatives is

    likely an error, perhaps caused by incorrect allocation of catches from area 3 (GloversReef) to other regions.

    Bayesian DeLury state-space model fitted to catch

    The Bayesian depletion models, whether fitted to data from only one year, or to all years

    simultaneously were able to fit the declining trends in CPUE during each year (Figure13). For the single year models in 2008, the trend estimated with the only the

    Cooperative CPUE data was different from that estimated with only the WCS CPUE

    data, because in that year, the WCS data showed a decline while the Cooperative data

    showed an increase in CPUE throughout the fishing season. The multiyear models andthe single year models produced similar trends every year except 2009. In 2009, the

    multi-year models showed very little decline throughout the fishing season while the

    single year model showed a decline.

    The posterior distributions of the biomass at the beginning of the fishing season (Figure

    14) implied that the biomass was very poorly estimated in most years. Although therewas a distinct peak in the posterior distribution at biomass levels on the order of 100 t in

    most years, implying that values in this range were the most likely, the posterior

    distribution had a long tail to the right, implying that even very high biomass levels had

    posterior probabilities greater than zero.

    Of the four multi-year models, the DIC preferred the models with separately estimated

    variances and catchabilities in each year over the models with fixed catchability andvariance (Table 5). The DIC best model was the one with time-varying qand variance

    and without hierarchical structure in the starting biomasses in each year (Model C, Table

    5). Model C estimated an increase in both catchability and variance in the Cooperativeseries; both catchability and variance were variable but decreasing for the WCS series

    (Figure 16). The reason for these estimated trends in catches is not clear. The

    catchability for the Cooperative CPUE series, based on catches per vessel day, could

    change between years if trip length or number of fishermen per boat changed, or if therewere changes in how data are recorded. Catchability may be more constant between

    years in the WCS series based on catch per fishermen hour, if fishing methodologies have

    not changed. It is also possible that catchability changes over time within fishing season,for example if lobsters are easier to find earlier in the season or that there is non-linear

    relationship between catch rates and abundance.

    The hierarchical models across all years (B and D) gave a more precise estimate of the

    starting year biomass than the non-hierarchical models (A and C), and models that

    allowed variance and catchability to vary across years (C and D) were more precise thanthose with catchability and variance fixed across years (A and B) (Figure 15). All of the

    multi-year models except model D give more precise results than did the single year

    models (Figure 14, Figure 15a). Model D, which allowed q and variance and starting

    year biomass to vary freely between years was, as expected, nearly identical to the results

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    25/58

    GLOVERS REEF ANNUAL REPORT 15

    obtained by fitting data from each year separately. The hierarchical models, as expected,

    estimated more similar abundance levels in each year than did the year by year models.

    Interestingly, the non-hierarchical multi-year model with time-varying qand variance(model C) also gave more similar starting biomass estimates across years than did the

    single year models, implying that whether or not catchability and error variance are

    allowed to vary across time periods has a significant influence on the results. The yearby year models give a reasonably precise estimate of the starting year biomass in years

    when the CPUE appeared to decline exponentially over the course of the season (e.g.

    2002 for the Cooperative series, 2007 for the WCS series). For years in which the CPUEincreased during the fishing season (e.g. 2008 for the Cooperative data series), the year-

    by-year model estimated an extremely broad credibility interval for starting year biomass.

    The models estimated starting biomass levels from about 20 to 200 t live weight oflobsters in the General Use Zone (Figure 15a). The lobster biomass was depleted to

    about 55-75% of starting biomass in each fishing year (Figure 13). The fishing mortality

    rates estimated by the models ranged from 0.05 to 0.5 (Figure 15b). Like the biomass

    estimates, theFestimates are more precise for the multi-year models than for the year byyear models. Because the multi-year models (except for model D) estimate relatively

    constant starting biomasses across the year, they estimate a declining trend in fishingmortality rate. The year to year trend in biomass and fishing mortality also varies with

    model structure.

    Bayesian DeLury regression model based on effort

    The Leslie regression methods were able to estimate beginning year biomass levels from

    the Cooperative effort data in every year (Figure 17, Figure 15). Because of the

    informative prior forM, and the fact thatqand was constrained to be positive, the modelestimated a declining trend in each year, even when CPUE appeared to increase with

    cumulative effort in 2008. An alternative run in which negative qwas allowed estimated

    a negative starting biomass in 2008, but produced identical results in every other year.

    The regression methods generally estimated a starting biomass in each season in the

    lower range of the posterior distribution estimated by the Bayesian models and alsoestimated that starting biomass declined between 2002 through 2009 (Figure 15a).

    Because of the decline in biomass, these models implied an increase in fishing mortalityrate between 2002 and 2009 (Figure 15b), and the estimated fishing mortality rates were

    much lower than those estimated by the state-space models.

    DISCUSSION

    The analysis presented here provides a somewhat complex picture of the status and trendsin abundance of spiny lobsters at Glovers Reef marine reserve (Table 6). According to

    the size based indicators, most of the harvested lobsters at Glovers Reef are above the

    size at maturity, but many are below the optimal size for harvest. The fishing mortalityrate based on the length data from the fisheries (F=0.88) is just above Fmax, and well

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    26/58

    16 GLOVERS REEF ANNUAL REPORT

    above both F0.1 and M; it is also less than the current national fishing mortality rate

    (F=1.3) (Figure 18). There are no obvious trends in average length over time, which

    would indicate a change in fishing mortality rate.

    The abundance data from the LAMP survey shows a generally increasing trend across the

    time series, although abundance seems to be higher around the beginning of the lobsterseason than it is later in the season. This increase in abundance, combined with the fact

    that the LAMP survey found that lobsters tend to be bigger and more abundant inside the

    Conservation Zone is consistent with the Conservation Zone providing significantprotection for lobsters. All but two of the LAMP survey sites for lobster are either inside

    the Conservation Zone or within 500 m of the boundary, so that it is to be expected that

    the LAMP survey trend would be dominated by the Conservation Zone where lobsters

    are more abundant.

    The two CPUE indices of abundance (from the Cooperative data and from the WCS data)

    show a decline in relative abundance during the fishing season in most years, and no

    obvious trend between years except a slight decline in the WCS data. The CPUE in catchper fisherman hour (the WCS data) is more likely to be an accurate measure of

    abundance than the catch per vessel day (the Cooperative data), because effort ismeasured more precisely. The CPUE in terms of vessel day can be biased if, for

    example, the number of fishermen associated with a vessel changes, or if the vessel loses

    a days fishing due to weather.

    Some measure of catch (or effort) is necessary to estimate sustainable catch levels.

    Unfortunately, the region 3 catches reported by the National and Northern Cooperatives

    do not appear to include a significant fraction of catches from Glovers Reef, particularlyafter 2005. In part because the catch and effort data are inconsistent with the CPUE data,

    the results of the Bayesian depletion estimates are quite variable. The state-space model

    (using catch data) estimated very low fishing mortality rates, ranging from 0.05 to 0.5depending on the structure of the model (Figure 18). These mortality rates are quite low

    compared to the current national averaging fishing mortality rate of 1.3 (Gongora 2010).

    On the other hand, the regression model fitted to the effort time series estimated fishing

    mortality rates very similar to those from Gongora (2010), with a current (2009) medianFof 1.5. Which of these two sets of estimates is more accurate is difficult to say; both

    are based on the same CPUE indices of abundance, but the regression method uses effort

    data while the state-space method uses catch data. Also, the different model structuresimply different error structures, which can influence the results. It would be worthwhile

    to determine what fraction of Glovers Reef lobster catch is reported at the National and

    Northern Cooperatives. If fishermen sell some of their catch elsewhere, especially if thefraction of catch sold elsewhere has changed over time, the catch and effort data may be

    very misleading.

    It should also be noted that, because these analyses are based on data from lobsters that

    were caught by fishermen, the estimated biomass at the beginning of the season is only

    the biomass that is available to the fishery, corresponding to the biomass of legal sized

    lobsters in the General Use Zone within free-diving depths at the beginning of the lobster

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    27/58

    GLOVERS REEF ANNUAL REPORT 17

    season. Spillover of lobsters from the Conservation Zone during the lobster season

    would be interpreted by the models as lower fishing mortality rates, because such

    spillover would prevent the CPUE indices from declining as rapidly as they wouldotherwise. Also, the models assume that no lobsters grow to the legal size during the

    fishing season; such growth would be interpreted as lower fishing mortality by the model.

    Assuming that the National and Northern Cooperative data capture all or most of the

    lobsters taken from Glovers Reef, it would be possible to set a total allowable catch

    (TAC) for Glovers Reef based on these data. For example, using F0.1as a target fishingmortality rate, and using the biomass estimates from the same models shown in Figure

    18, the appropriate target catches range from much lower than the current catch, to as

    high as catches used to be in 2002 through 2004 (Figure 19). Given the uncertainty of the

    catch and effort data, these values should probably not be used. Alternatively, an ad hocmanagement system could be developed using the indicators that we have calculated, for

    example using a decision tree in which the population is considered overfished if several

    indicators show a negative trend (e.g. Prince 2008). Finally, relative densities inside and

    outside the no-take zone could be used to determine an appropriate level of harvest. Forany management strategy, it is critical to be able to document the total catch and/or total

    effort at Glovers Reef, either by improving the reliability of the area designations in theCooperative data, or by gathering complete catch and effort data from the fishermen

    while they are at Glovers Reef.

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    28/58

    18 GLOVERS REEF ANNUAL REPORT

    REFERENCES

    Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on

    Automatic Control. 19:716 723

    Ault, J.S., Smith, S.G. & Bohnsack, J.A. 2005. Evaluation of average length as anindicator of exploitation status for the Florida coral reef fish community. ICES

    Journal of Marine Science 62:417423.

    Ault, J. S. S. G. Smith, J. Luo, M. E. Monaco and R. S. Appeldoorn. 2008. Length-based

    assessment of sustainability benchmarks for coral reef fishes in Puerto Rico.

    Environmental Conservation 35 (3): 221231.

    Battaile, B. C. and T. J. Quinn. 2006. A Delury depletion estimator for walleye pollock

    (Theragra chalcogramma) in the Eastern Bering Sea. Natural Resources Modeling

    19: 655-674.

    Bates, D. 2010. Package LME4: Linear mixed-effects models using S4 classes.

    http://lme4.r-forge.r-project.org/.

    Beverton, R.J.H. and Holt, S.J. 1957. On the Dynamics of Exploited Fish Populations.

    Ministry of Agriculture, Fisheries and Food, Fishery Investigations Series II,

    Volume 19.Cope, J. M. and A. E. Punt. 2009. Length-based reference points for data-limited

    situations: Applications and restrictions. Marine and Coastal Fisheries: Dynamics,

    Management, and Ecosystem Science 1:118, 2009

    Ehrhardt, N.M. & Ault, J.S. 1992. Analysis of two length-based mortality models appliedto bounded catch length frequencies. Transactions of the American FisheriesSociety 121: 115122.

    FAO. 2001. Report on the FAO/DANIDA/CFRAMP/WECAFC Regional Workshops onthe Assessment of the Caribbean Spiny lobster (Panulirus argus). FAO Fisheries

    Report No. 619.

    Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Journal of FishBiology 56: 758773.

    Gongora, M. 2010. Assessment of the spiny lobster (Panulirus argus) of Belize based onfishery-dependent data. Belize Fisheries Department. March, 2010.

    Grant, S. 2004. Glovers Reef Marine Reserve Fisheries Boat Census 2004 (Part 1).Wildlife Conservation Society.

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    29/58

    GLOVERS REEF ANNUAL REPORT 19

    Lo, N. C. H., L. D. Jacobson, and J. L. Squire. 1992. Indices of relative abundance from

    fish spotter data based on delta-lognormal models. Canadian Journal of Fisheries

    and Aquatic Sciences 49: 251 5-2526.

    Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000) WinBUGS -- a Bayesian

    modelling framework: concepts, structure, and extensibility. Statistics andComputing, 10:325--337.

    Maunder, M.N. and A. E. Punt. 2004. Standardizing catch and effort data: a review ofrecent approaches. Fisheries Research 70:141159.

    Ortiz, M. and F. Arocha. 2004. Alternative error distribution models for standardization

    of catch rates of non-target species from a pelagic longline fishery: billfish speciesin the Venezuelan tuna longline fishery. Fisheries Research 70: 275297.

    Prince, J. D., H. Peeters, H. Gorfinec and R. W Dayc. 2008. The novel use of harvest

    policies and rapid visual assessment to manage spatially complex abaloneresources (Genus Haliotis). Fisheries Research 94:330338

    Quinn, T.J., II, and Deriso, R.B. 1999. Quantitative Fishery Dynamics. Oxford, New

    York.

    R Development Core Team. 2010. R: A Language and Environment for StatisticalComputing, Vienna, Austria http://www.R-project.org.

    Robert, M., A Faraj, M. K. McAllister and E. Rivot. 2010. Bayesian state-space modelingof the DeLury depletion model: strengths and limitations of the method, and

    application to the Moroccan octopus fishery. ICES journal of Marine Science .

    Royle, J.A. and R. M. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology:

    The Analysis of Data from Populations, Metapopulations and Communities.

    Elsevier.

    Sturtz, S., U. Liggesy and A. Gelman. 2010. R2WinBUGS: A Package for Running

    WinBUGS from R. www.cran.org

    Shin, Y. J. ,M.J. Rochet, S. Jennings,J. G. Field, and H. Gislason. 2005. Using size-based

    indicators to evaluate the ecosystem effects of fishing. ICES Journal of Marine

    Science: 62: 384-396.

    Venables, W.N. and B. D. Ripley. 2002. Modern Applied Statistics with S. 4th Edition.

    Springer.

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    30/58

    20 GLOVERS REEF ANNUAL REPORT

    TABLES AND FIGURES

    Table 1. Parameters and their prior distributions for the Bayesian depletion models.

    (a) Model parameters

    Model configuration Parameters

    A. All years, both series, constant qand 2 M q1, q2 12, 2

    2 Bi,1 for 8 years

    B. Same, but hierarchical model ofBi,1 M q1, q2 12, 2

    2 Bi,1for 8 years B, B

    2

    C. All years, both series, variable qand 2 M q1- q12 12- 12

    2 Bi,1for 8 years

    D. Same, but hierarchical model ofBi,1 M q1- q12 12- 12

    2 Bi,1for 8 years B, B

    2

    E. Each individual series (12 runs) M q 2 B1

    (b) Priors for the model parameters

    Parameter Description Prior Range

    M Natural mortality rate M=Normal(=0.34, =0.04) - -

    B Average across years of startingbiomass

    log(B)=Normal(=0, =1000) 1000-1.0E7

    B Variance between years of startingbiomass

    1/ B2=Gamma(0.01,0.01) 0-

    Bi,1 Exploitable biomass of lobsters atthe beginning of the lobsterseason i

    log(Bi,1)=Normal(= B, = B) for the

    hierarchical models,

    log(Bi,1)=Normal(= 0, =1000) for

    non-hierarchical models

    0-

    1000-1.0E7

    qj Catchability for abundance indexj log(qj)=Normal(=0, =0.01) 1.0E-7-1.0

    j Observation error variance forabundance indexj

    1/ j =Gamma(0.01,0.01) 0.001-100

    Table 2. Fishing mortality rate estimated from average length using the method of

    Ehrhardt and Ault (1992).

    Data source n Lc n in range L se Z M F

    Catch data 3293 90 1859 105.3 0.33 1.22 0.34 0.88

    LAMP general use zone 228 90 89 117.8 2.51 0.56 0.34 0.22LAMP conservation zone 341 90 214 120.3 1.69 0.49 0.34 0.15

    Table 3. GLM of lobster log CPUE in whole weight of legal sized lobsters per

    fisherman-hour, as a function of time period (T), boat (B) and moon phase (M), for

    (a) the AIC best model with fixed effects, and (b) random effects models with all

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    31/58

    GLOVERS REEF ANNUAL REPORT 21

    possible second order interactions. The best random effects model according to the

    AIC and the BIC is in bold.

    (a) For AIC best model with fixed effects

    Df DevianceResid.Df

    Resid.Dev F Pr(>F) % deviance

    NULL 614 558.3

    T 36 155.4 578 402.9 7.63 0.0000 0.28

    B 11 29.4 567 373.5 4.72 0.0000 0.05

    M 2 5.0 565 368.5 4.40 0.0128 0.01

    T x B 38 47.1 527 321.4 2.19 0.0001 0.08

    T x M 8 17.8 519 303.6 3.94 0.0002 0.03

    B x M 2 11.2 517 292.5 9.86 0.0001 0.02

    (b) With random effects.

    Model AIC BIC deviance

    T+M+B 1590.25 1771.53 1463.39T+M+B+TxB 1577.84 1763.55 1477.21

    T+M+B+TxM 1581.12 1766.83 1507.77

    T+M+B+BxM 1591.67 1777.38 1465.41

    T+M+B+TxB+TxM 1572.01 1762.14 1502.30

    T+M+B+TxB+BxM 1579.82 1769.95 1477.59

    T+M+B+TxM+BxM 1581.42 1771.55 1509.36

    T+M+B+TxB+TxM+BxM 1573.29 1767.84 1504.66

    Table 4. Analysis of deviance table for AIC best fit model of log of the count of

    lobsters per dive in the LAMP survey (T=time period[month and year], Z=distance

    from conservation zone boundary, v=visibility and d=depth).(a) presence/absence

    Df Deviance Resid. Df Resid. Dev P(>|Chi|) % deviance

    NULL 220 305

    T 20 43.4 200 261.6 0.0018 0.14

    v 1 11 199 250.6 0.0009 0.04

    d 1 9.4 198 241.2 0.0022 0.03

    Z 1 9.5 197 231.7 0.0021 0.03

    (b) log count of lobsters for positive dives.

    Df DevianceResid.Df

    Resid.Dev F Pr(>F)

    %deviance

    NULL 133 248.6

    T 20 176.7 113 71.9 14.04 0 0.71

    Z 1 1.5 112 70.5 2.31 0.1314 0.01

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    32/58

    22 GLOVERS REEF ANNUAL REPORT

    Table 5. DIC results for the Bayesian state space models. Model C (catchability and

    variance different in each year, no hierarchical structure for starting biomass) has

    the lowest DIC.

    Model Dbar Dhat pD DIC Delta DIC

    A 144.20 134.84 9.36 153.56 36.27B 144.76 137.68 7.08 151.84 34.56

    C 100.25 83.21 17.04 117.28 0.00

    D 99.99 73.50 26.50 126.49 9.21

    Table 6. Summary of results for spiny lobster

    Analysis Status

    Froese indicators Most are mature, but too few large lobsters

    F from ave. length F above F0.1 and close to Fmax

    Catches Lower in 2005-2009 then in 2002-2004WCS CPUE Declines during season, between years

    CPUE from Coop Declines during season, no trend between years

    LAMP abundance Decrease during seasons, increase between years

    B from depletion models Stable or decreasing depending on model

    F from depletion models Increasing or decreasing depending on model

    Figure 1. Length frequency distributions of spiny lobster in the LAMP and WCS

    catch data. Lobsters mature at 70-80 mm CL (Gongora 2010), and the legal

    minimum size is 78 mm CL.

    0 20 40 60 80 100 130 160 190 220 250

    Female

    MaleUnknown

    Coun

    t

    0

    200

    400

    600

    (a) Fishery

    0 20 40 60 80 100 130 160 190 220 250

    0

    2

    4

    6

    8

    10

    (b) LAMP General Use Zone far from boundary

    0 20 40 60 80 100 130 160 190 220 250

    Carapace length (mm)

    C

    oun

    t

    0

    5

    10

    15

    20

    (c) LAMP General Use Zone near boundary

    0 20 40 60 80 100 130 160 190 220 250

    Carapace length (mm)

    0

    10

    20

    30

    40

    (d) LAMP Conservation Zone

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    33/58

    GLOVERS REEF ANNUAL REPORT 23

    Figure 2. Average lengths plus or minus one standard error for the LAMP data in

    both unfished and fished zones and for the WCS fisheries data, for all lobsters for

    which carapace length (CL) was greater than the minimum size limit.

    2004 2005 2006 2007 2008 2009

    0

    50

    100

    150

    Year

    CL(mm

    )

    (a) LAMP Conservation Zone

    2004 2005 2006 2007 2008 2009

    0

    50

    100

    1

    50

    Year

    CL(mm

    )

    (b) LAMP General Use Zone

    2004 2005 2006 2007 2008 2009

    0

    20

    40

    60

    80

    100

    1

    20

    Year

    CL(mm

    )

    (c) Catch CL

    Figure 3. Average lengths by months within years, in WCS catch data set.

    2 4 6 8 10 12

    0

    50

    100

    150

    Month

    CL(mm)

    20042005

    20062007

    20082009

    Figure 4. Raw log-CPUE (in kg) data summary, showing the trend in log-CPUE (a)

    by month within each fishing season (i.e. 2005.01 means the first month in the 2005

    fishing season),(b) by moon phase, (c) by boat and (d) by location.

    5

    6

    7

    8

    9

    log

    CPUE

    2005

    .01

    2005

    .02

    2005

    .03

    2005

    .04

    2005

    .07

    2005

    .08

    2006

    .01

    2006

    .03

    2006

    .04

    2006

    .05

    2006

    .06

    2006

    .08

    2007

    .01

    2007

    .02

    2007

    .03

    2007

    .04

    2007

    .05

    2007

    .06

    2007

    .07

    2007

    .08

    2008

    .01

    2008

    .02

    2008

    .03

    2008

    .04

    2008

    .06

    2008

    .07

    2008

    .08

    2009

    .01

    2009

    .02

    2009

    .03

    2009

    .04

    2009

    .05

    2009

    .06

    2009

    .08

    2009

    .09

    2010

    .01

    2010

    .02

    (a) Month in season

    5

    6

    7

    8

    9

    log

    CPUE

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    23

    24

    25

    26

    27

    28

    29

    (b) Days after full moon

    1 2 3 4 5 6 7 8 9 10 11 12

    5

    6

    7

    8

    9

    log

    CPUE

    (c) Boat

    Eastern Reef G3 G4 G5 G6 G7 G8 North Point

    5

    6

    7

    8

    9

    log

    CPUE

    (d) Location

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    34/58

    24 GLOVERS REEF ANNUAL REPORT

    Figure 5. Residuals versus fitted values, and qq normal plot, for the AIC best fit

    mixed effects model (Table 3.2b) for lobster log-CPUE.

    5.0 5.5 6.0 6.5 7.0 7.5 8.0

    -2

    -1

    0

    1

    2

    Residuals versus fitted

    Predicted values

    Res

    idua

    ls

    -3 -2 -1 0 1 2 3

    -2

    -1

    0

    1

    2

    Normal Q-Q Plot

    Theoretical Quantiles

    Samp

    leQuan

    tiles

    Figure 6. Trend in CPUE (solid line) during each fishing season from the AIC best

    fit model (Table 3.2), plus and minus one standard error (dashed line), along with

    unstandardized CPUE values (points).

    2005 2006 2007 2008 2009 2010

    0

    1

    2

    3

    4

    Year

    CPUE

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    35/58

    GLOVERS REEF ANNUAL REPORT 25

    Figure 7. Histogram of number of lobsters caught per fisherman in the WCS catch

    data.

    Lobsters per fisherman

    Coun

    t

    0

    10

    20

    30

    40

    50

    60

    70

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

    Figure 8. Histogram of lobsters observed per dive in the LAMP data set.

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

    Legal

    All sizes

    Number of lobsters

    Num

    bero

    fdives

    0

    20

    40

    60

    80

    100

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    36/58

    26 GLOVERS REEF ANNUAL REPORT

    Figure 9. Log number of lobsters observed per dive [log(Count+0.01)] in the LAMP

    data, by month, visibility, depth, time of day, sampling site, distance from the

    conservation zone boundary, management zone, days from full moon and whether

    lobster season is open, including dives for which no lobsters were observed.

    -6

    -4

    -2

    0

    2

    Time period

    log-count

    2004.0

    8

    2004.1

    0

    2005.0

    3

    2005.0

    5

    2005.1

    1

    2006.0

    3

    2006.0

    7

    2006.0

    9

    2007.0

    2

    2007.0

    5

    2007.0

    8

    2007.1

    1

    2008.0

    2

    2008.0

    5

    2008.0

    8

    2008.1

    1

    2009.0

    2

    2009.0

    6

    2009.0

    8

    2010.0

    55 10 15 20

    -4

    0

    2

    4

    68

    Visisbility

    Visibility(m)

    log-count

    5 10 15

    -10

    -5

    0

    5

    Depth

    Depth(m)

    log-count

    8 10 12 14 16

    -8

    -4

    0

    2

    4Start time

    Time

    log-count

    prC10AB prC1AB prC3AB prC6AB prC8AB

    -6

    -4

    -2

    0

    2

    Site

    log-count

    -2 -1 0 1 2 3

    -8

    -4

    0

    4

    Distance from conservation zone

    Distance (km)

    log-count

    CZ Line GUZ

    -6

    -4

    -2

    02

    Management zone

    log-count

    0 5 10 15 20 25 30

    -4

    -2

    0

    2

    4

    6Days from full moon

    Day

    log-count

    1 2

    -6

    -4

    -2

    02

    Fishing season

    fishseason

    log-count

    Figure 10. Residuals and qq-normal plot of the AIC best fit model of (a) presence or

    absence of lobsters and (b) log lobster sightings per minute in the LAMP

    observations for dives in which lobsters were seen.

    (a) Presence/absence

    -4 -2 0 2 4

    -2

    -1

    0

    1

    2

    3

    Predicted values

    Res

    idua

    ls

    Residuals vs Fitted6

    5765

    -3 -2 -1 0 1 2 3

    -2

    -1

    0

    1

    2

    3

    Theoretical Quantiles

    Std

    .dev

    ianceres

    id.

    Normal Q-Q6

    5718

    (b) Positive log-lobsters per dive

    0.5 1.0 1.5

    -2

    -1

    0

    1

    Predicted values

    Res

    iduals

    Residuals vs Fitted

    2938

    183

    -2 -1 0 1 2

    -2

    -1

    0

    1

    2

    Theoretical Quantiles

    Std

    .dev

    iance

    res

    id.

    Normal Q-Q

    29

    38

    183

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    37/58

    GLOVERS REEF ANNUAL REPORT 27

    Figure 11. LAMP lobster standardized trend (liness), plus and minus one standard

    error, from the AIC best fit models (Table 4). The CPUE abundance index is the

    product of the predicted fraction of dives seeing a lobster times the predicted

    number of lobsters seen given that any were seen. Unstandardized average count

    for sites in the General Use Zone is also shown (points). The index and the raw data

    have been divided by their means. Vertical lines indicate the beginning (at the tickmark) and end of the fishing season.

    2004 2005 2006 2007 2008 2009 2010

    0

    1

    2

    3

    4

    5

    6

    Fishing season

    Lo

    bster

    abun

    dance

    index

    Figure 12. Lobster (a) catches and (b) catch per unit of effort from area 3 (Glovers

    Reef) from the Belize fisheries data set by month, for Northern and National

    Cooperatives combined, and (c) comparison between catch and effort sampled byWCS and catch and effort reported to the cooperatives.

    (a)

    Who

    lewe

    ight(kg

    )

    0

    5000

    10000

    2002 2003 2004 2005 2006 2007 2008 2009

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    38/58

    28

    GLOVERSREEFANNUALREPORT

    Year

    (c)

    Fractionofcatchsampled

    Fractionofdayssampled

    0.0 0.2 0.4 0.6 0.8 1.0

    2004.04

    2005.01

    2005.02

    2005.03

    2005.04

    2005.07

    2006.01

    2006.03

    2006.04

    2006.05

    2006.06

    2007.01

    2007.02

    2007.03

    2007.04

    2007.05

    2007.06

    2007.07

    2008.01

    2008.02

    2008.03

    2008.04

    2008.06

    2008.07

    2009.01

    2009.02

    2009.03

    2009.04

    2009.05

    2009.06

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    39/58

    GLOVERS REEF ANNUAL REPORT 29

    Figure 13. CPUE data points from the Cooperative data (by vessel-trip) and from

    the WCS catch and effort data (by fisherman-hour), along with the median values of

    the fitted biomass trends from the depletion model fitted to the data from each year

    separately (fitted to each index independently and to the two together), as well as the

    biomass trend from the models fitted to data from all years simultaneously.

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0 2002 2003 2004

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0 2005 2006 2007

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    2 4 6 8 10 12

    2008

    2 4 6 8 10

    2009

    Coop CPUE

    WCS CPUE

    Trend Coop 1 yr

    Trend WCS 1 yr

    Trend Both 1 yr

    Trend multiyear

    2 4 6 8 10

    Month

    CPUE

    Figure 14. Posterior distributions of starting exploitable biomass of lobsters at

    Glovers Reef, from the Bayesian depletion model with catchability and variance

    different in each year (Model C), compared to the models fit to data from one year

    at a time.

    2002

    0.0

    0.1

    0.2

    0.3

    0.4 2003 2004

    2005

    0.0

    0.1

    0.2

    0.3

    0.4 2006 2007

    2008

    0.0

    0.1

    0.2

    0.3

    0.4

    0 200 400 600 800 1000

    2009

    0 200 400 600 800 1000

    All years: Model C

    By year, Coop

    By year, WCS

    By year, both

    0 200 400 600 800 1000

    Biomass (t)

    Probability

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    40/58

    30 GLOVERS REEF ANNUAL REPORT

    Figure 15. Comparison of depletion model results for the Bayesian state space

    models described in Table 1, and the DeLury regression model fitted to effort.

    (a) Starting biomass

    - --

    - - --

    -

    2002 2003 2004 2005 2006 2007 2008 2009

    0

    200

    400

    600

    800

    1000

    Year

    Start

    ing

    biomass

    (t)

    - --

    - -- -

    -

    - - - - - - - -

    --

    -

    - -

    --

    -

    - - - - - - - -- --

    - - - - -- -

    -

    - - - - -

    -

    -

    -

    -

    -

    -

    -- -

    -

    - - - - -- - - -- - -

    --

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    - - - - - - - -- - - - - - - -

    All years:AAll years:B

    All years:CAll years:D

    By year:CoopBy year:WCS

    By year:Both

    Regression

    (b) Fishing mortality rate

    - - - - - - - -

    2002 2003 2004 2005 2006 2007 2008 2009

    0.0

    0.5

    1.0

    1.5

    2.0

    Year

    Fishingmorta

    lityra

    te

    -

    --

    - - -- -- - - - - - - -

    -

    --

    - --

    - -

    --

    -

    - - -- -

    --

    -

    --

    --

    --

    - - - - - - -

    -

    - --

    - --

    -

    -

    - - - - - - -- - - -- - - -

    -

    - --

    - --

    -

    - --

    -

    -

    --

    -

    -- -

    -

    -

    -

    -

    -

    --

    - -

    -

    -

    -

    -All years:AAll years:BAll years:CAll years:D

    By year:CoopBy year:WCS

    By year:BothRegression

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    41/58

    GLOVERS REEF ANNUAL REPORT 31

    Figure 16. Catchability (q) and error variance by year for the non hierarchical

    models with and without time-varying q and variance (Table 1, models A andC).

    2002 2003 2004 2005 2006 2007 2008 2009

    0.0

    0

    0.0

    4

    0.08

    0.1

    2

    Year

    q(*1000)

    (a) q for Coop series

    2005.0 2005.5 2006.0 2006.5 2007.0 2007.5 2008.0

    0.0

    0

    0.0

    2

    0.04

    0.0

    6

    Year

    q(*1000)

    (b) q for WCS series

    2002 2003 2004 2005 2006 2007 2008 2009

    0.0

    0.2

    0.4

    0.6

    Year

    V

    ariance

    (c) Variance for Coop series

    2005.0 2005.5 2006.0 2006.5 2007.0 2007.5 2008.0

    0

    200

    400

    600

    800

    Year

    V

    ariance

    (d) Variance for WCS series

    Figure 17. Observed (points) and predicted (lines) log-CPUE from the Cooperative

    data versus cumulative effort from the Cooperative data, from the Delury

    regression.

    2002

    0

    1

    2

    3

    4

    2003 2004

    2005

    0

    1

    2

    3

    4

    2006 2007

    2008

    0

    1

    2

    3

    4

    100 200 300 400 500

    2009

    0 200 400 600 800 0 200 400 600 800

    Cumulative effort (vessel days)

    Log

    (CPUE)

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    42/58

    32 GLOVERS REEF ANNUAL REPORT

    Figure 18. Fishing mortality rates estimated from Glovers Reef data (methods on

    y-axis), compared to the values computed for the whole of Belize in 2009, and Fmax

    and F0.1(Gongora 2010). The value of M is also shown for comparison.

    | | |

    0.0 0.5 1.0 1.5 2.0

    Fishing mortality

    X

    | | |

    | | |

    | | |

    | | |

    | | |

    Model A, all years

    Model A, 2009

    Model C, all years

    Model C, 2009

    Regression, all years

    Regression, 2009

    From ave. length

    Belize F-2009FmaxF0.1M

    Figure 19. Expected catches with a F0.1harvest strategy, applied to the biomass

    estimates from the models specified in the y-axis.

    | |

    0 10000 20000 30000 40000 50000 60000

    Catch (kg live wt)

    | |

    | |

    | | |

    | | |

    |||

    Model A, all years

    Model A, 2009

    Model C, all years

    Model C, 2009

    Regression, all years

    Regression, 2009

    C-2

    002

    C-2

    003

    C-2

    004

    C-2

    005

    C-2

    006

    C-2

    007

    C-2

    008

    C-2

    009

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    43/58

  • 8/13/2019 Report on spiny lobster abundance and fishing mortality and preliminary analysis of existing fisheries data at Glov

    44/58

    34 GLOVERS REEF ANNUAL REPORT

    included as a numerical variable instead of months, to test for a linear trend within each

    fishing season.

    We did not include time of day or depth in the analysis because most fishermen reported

    fishing six hours or more, so that the time and depth at which each conch was captured

    was not precisely known. Of the 26 boats for which conch catch and effort data wererecorded, 19 were sampled on 3 or more days and were included in the analysis. There

    was much less variability in catch rates between locations than there was between boats,

    so we included boat as a factor in the model but not location.