90
A Classification of the Bird Species of South America South American Classification Committee American Ornithologists' Union (Part 5) Part 5. Trogoniformes to Psittaciformes (below) __________________________________________________ Part 1. Rheiformes to Podicipediformes Part 2. Columbiformes to Caprimulgiformes Part 3. Apodiformes Part 4. Opisthocomiformes to Strigiformes Part 6. Suboscine Passeriformes, A (Sapayoidae to Formicariidae ) Part 7. Suboscine Passeriformes, B (Furnariidae )

Remsen/SACCBaseline05.docx · Web vie

Embed Size (px)

Citation preview

Page 1: Remsen/SACCBaseline05.docx · Web vie

A Classification of the Bird Species of South America

South American Classification Committee

American Ornithologists' Union

(Part 5)

Part 5. Trogoniformes to Psittaciformes (below)

__________________________________________________

Part 1. Rheiformes to PodicipediformesPart 2. Columbiformes to CaprimulgiformesPart 3. ApodiformesPart 4. Opisthocomiformes to StrigiformesPart 6. Suboscine Passeriformes, A (Sapayoidae to Formicariidae)Part 7. Suboscine Passeriformes, B (Furnariidae)Part 8. Suboscine Passeriformes, C (Tyrannidae to Tityridae)Part 9. Oscine Passeriformes, A (Vireonidae to Sturnidae)Part 10. Oscine Passeriformes, B (Motacillidae to Emberizidae)Part 11. Oscine Passeriformes, C (Cardinalidae to end)

Hypothetical ListHybrids and Dubious TaxaLiterature Cited

Page 2: Remsen/SACCBaseline05.docx · Web vie

TROGONIFORMES 1

TROGONIDAE (TROGONS)Pharomachrus pavoninus Pavonine Quetzal 16Pharomachrus auriceps Golden-headed Quetzal 16, 16bPharomachrus fulgidus White-tipped Quetzal 17, 18Pharomachrus antisianus Crested Quetzal 17, 19Trogon massena Slaty-tailed Trogon 11, 12Trogon comptus Blue-tailed Trogon 11, 14Trogon mesurus Ecuadorian Trogon 11, 13Trogon melanurus Black-tailed Trogon 11, 12Trogon chionurus White-tailed Trogon 1a, 2, 3, 4Trogon viridis Green-backed Trogon 1a, 2, 3, 4Trogon caligatus Gartered Trogon 8, 8aTrogon ramonianus Amazonian Trogon 8, 8aTrogon violaceus Guianan Trogon 8, 8aTrogon curucui Blue-crowned Trogon 6, 7, 7a, 7bTrogon surrucura Surucua Trogon 5, 6Trogon rufus Black-throated Trogon 6, 7Trogon collaris Collared Trogon 6, 7, 9Trogon personatus Masked Trogon 6, 10, 10a

__________________________________________________

1. The monophyly of the Trogoniformes has never been questioned; its relationships to other birds, however, are uncertain. Traditional classifications have considered the Trogonidae to be more closely related to the Coraciiformes than to other orders, or to a group that includes Coraciiformes + Piciformes; see reviews in Sibley & Ahlquist (1990), Espinosa de los Monteros (2000), and Mayr (2003); some genetic data (Sibley & Ahlquist 1990) are consistent with this view. A recent analysis of morphological data (Mayr 2003b, Mayr & Clarke 2003) suggested that the Steatornithidae and the Trogoniformes and might be sister taxa. Some genetic (Espinosa de los Monteros 2000) data suggest a sister relationship with the Coliiformes (mousebirds), whereas other genetic data (Fain & Houde 2004) support a sister relationship with the Old World Bucerotidae. However, the most recent, comprehensive genetic data sets (Hackett et al. 2008, Jarvis et al. 2014, Prum et al. 2015) reveal strong support for their traditional position: they are members of a group of orders that consists of the Coraciiformes, Piciformes, Bucerotiformes, and Upupiformes. Recent genetic data (Moyle 2005) suggest that the quetzals (Pharomachrus + Euptilotis) might be basal to all other

Page 3: Remsen/SACCBaseline05.docx · Web vie

trogons, including Old World genera. SACC proposal passed to invert linear sequence of genera.

1a. Within the genus Trogon, genetic data (Moyle 2005, DaCosta and Klicka 2008, Ornelas et al. 2009) provide strong support for two major groups: (1) those with brown-backed females (collaris, personatus, and rufus, along with Middle American aurantiiventris, elegans, and mexicanus) and (2) those with gray-backed females (the rest). Within the latter group, two additional groups are strongly supported: (3) those with blue-headed males and strongly contrasting black-and-white tail patterns (viridis, surrucura, violaceus, and curucui, along with Middle American melanocephalus, citreolus, and bairdii) and (4) those with green-headed males and mostly dark, unpatterned tails (massena, comptus, melanurus, and Middle American clathratus). SACC proposal passed to change linear sequence of species.

2. Ridgely & Greenfield (2001) considered the subspecies chionurus of the Chocó region to be a separate species from Trogon viridis; followed by Hilty (2003); SACC proposal to recognize this split did not pass because of insufficient published data. Genetic data (DaCosta & Klicka 2008) suggest that chionurus is more closely related to T. bairdii than either are to Amazonian T. viridis. SACC proposal passed to recognize chionurus as a species. Sibley & Monroe (1990) considered Trogon viridis to form a superspecies with Central American T. bairdii, and suggested that they might be conspecific.

3. Collar (2001) also included Middle American Trogon melanocephalus and T. citreolus in a superspecies with T. viridis (including chionurus) and T. bairdii, and genetic data (DaCosta & Klicka 2008) indicate that these two form a sister group to T. viridis + T. bairdii.

4. Trogon viridis was formerly (e.g., Pinto 1937, Peters 1945) called Trogon strigilatus, but see Zimmer (1948).

5. The subspecies aurantius was formerly (e.g., Cory 1919, Pinto 1937) treated as a separate species from Trogon surrucura; they were treated as conspecific by Peters (1945), and this treatment has been followed in subsequent classifications until del Hoyo & Collar (2014) again treated aurantius as a separate species based mainly on plumage differences.

6. Trogon collaris, T. personatus, T. rufus, T. surrucura, and T. curucui were formerly (e.g., Cory 1919, Pinto 1937) placed in a separate genus, Trogonurus, but this was merged into Trogon by Peters (1945). Genetic data (Moyle et al. 2005, DaCosta & Klicka 2008, Ornelas et al. 2009) indicate that "Trogonurus" is not a monophyletic group (see Note 1a).

7. Species names used in Cory (1919), Pinto (1937), and other literature before Peters (1945) used incorrect names that were sorted out by Schneider (1938);

Page 4: Remsen/SACCBaseline05.docx · Web vie

the name curucui was applied to T. collaris and to T. rufus, whereas T. curucui was called T. variegatus.

7a. The western subspecies bolivianus was formerly (e.g., Cory 1919) considered a separate species from Trogon curucui. Peters (1945) treated them as conspecific, and this treatment has been followed in subsequent classifications.

7b. "Trogon variegatus," known from throughout much of range of T. curucui and treated as a valid species by Cory (1919); it was considered by Peters (1945) <a color variant?> and a synonym of nominate curucui. See Hybrids and Dubious Taxa.

8. The subspecies ramonianus and caligatus were formerly (e.g., Cory 1919, Pinto 1937) considered separate species from Trogon violaceus, but Peters (1945) considered them all conspecific. Ridgely & Greenfield (2001) considered caligatus of Middle America and northwestern South America to be a separate species from Trogon violaceus, and this was followed by Hilty (2003); SACC proposal to recognize this split did not pass because of insufficient published data. Genetic data (DaCosta & Klicka 2008) indicate that caligatus is basal to a group that includes Amazonian T. violaceus, T. curucui, and T. surrucura (and that Amazonian violaceus may be paraphyletic with respect to the latter two species). SACC proposal passed to recognize caligatus as a species. SACC proposal passed to recognize ramonianus as a separate species from T. violaceus. Del Hoyo & Collar (2014) questioned the vocal and plumage evidence in support of this split. Proposal needed.

8a. Trogon violaceus (including caligatus) was formerly (e.g., Cory 1919, Pinto 1937) placed in a separate genus, Chrysotrogon, but this was merged into Trogon by Peters (1945). Genetic data (Moyle 2005, DaCosta & Klicka 2008, Ornelas et al. 2009) provide no support for recognition of this monotypic genus.

9. The subspecies puella of Middle American was formerly (e.g., Cory 1919) considered a separate species from Trogon collaris; they were considered conspecific by Peters (1945), and this treatment has been followed in subsequent classifications. Genetic data (DaCosta & Klicka 2008) indicate that puella is more closely related to Middle American T. aurantiiventris than either is to Amazonian T. collaris. Proposal needed.

10. Ridgely & Greenfield (2001) suggested that the higher-elevation subspecies temperatus deserves recognition as a separate species from lower elevation Trogon personatus, as originally designated by Chapman (1923) and so treated by Meyer de Schauensee (1964); their voices also differ; their apparent elevational parapatry in Ecuador would be sufficient evidence for recognition as separate species, and so the details of this situation need to be examined

Page 5: Remsen/SACCBaseline05.docx · Web vie

and published. Zimmer (1948) agreed that the abrupt elevational replacement in Colombia suggested species rank, but considered T. p. assimilis of northern Ecuador and southern Colombia to show characters intermediate between the two suggestive of intergradation.

10a. The subspecies assimilis of the W. Andes was formerly (e.g., Cory 1919) considered a separate species from Trogon personatus; Peters (1945) treated them as conspecific, and this treatment has been followed in subsequent classifications.

11. Trogon massena, T. comptus, T. mesurus, and T. melanurus form a closely related group, along with Central American T. clathratus (Collar 2001), but geographic overlap prevents considering them as a superspecies (Meyer de Schauensee 1966); see also Zimmer (1948) for discussion of overlap and confusing character distribution of these three in western Colombia; they were formerly (e.g., Cory 1919, Pinto 1937) placed in a separate genus, Curucujus, but this was merged into Trogon by Peters (1945). Genetic data (Moyle 2005, DaCosta & Klicka 2008, Ornelas et al. 2009) provide strong support for recognition of this group as monophyletic, but to treat it as a separate genus would require recognition of at least one additional genus with broadly defined Trogon.

12. <?Hellmayr 1929> considered the South American subspecies australis as a separate species from Middle American Trogon massena; Zimmer (1948) suspected that australis might actually be a subspecies of T. melanurus. The subspecies macroura of northwestern Colombia and Panama was formerly (e.g., REF<?Hellmayr 1929>) considered a species separate from Trogon melanurus, and it may deserve recognition as a separate species (Zimmer 1948).

13. Ridgely & Greenfield (2001) considered mesurus of western Ecuador and northwestern Peru to be a separate species from T. melanurus; SACC proposal to recognize this split did not pass because of insufficient published data. Genetic data (DaCosta & Klicka 2008) indicate that melanurus may be paraphyletic with respect to T. massena and T. comptus. SACC proposal passed to recognize mesurus as a species.

14. Called "White-eyed Trogon" in Sibley & Monroe (1990) and "Chocó Trogon" in Ridgely & Greenfield (2001). SACC proposal to change English name did not pass.

16. Sibley & Monroe (1990) and Collar (2001) considered Pharomachrus auriceps and P. pavoninus to form a superspecies; they were formerly (e.g., Peters 1945, Zimmer 1948) considered conspecific, but most classifications have followed Meyer de Schauensee (1966) in treating them as separate species. The subspecies hargitti of the Venezuelan Andes has been occasionally

Page 6: Remsen/SACCBaseline05.docx · Web vie

treated as a subspecies of (e.g., Howard & Moore 1991), or synonym of (e.g., Peters 1945), P. pavoninus instead of P. auriceps. The subspecies P. a. heliactin of western Ecuador has been considered (e.g., Peters 1945) a subspecies of P. pavoninus when auriceps treated as a subspecies of P. pavoninus; Fjeldså & Krabbe (1990) stated that heliactin may be a separate species; Zimmer (1948) and Collar (2001), however, considered heliactin indistinguishable from P. a. auriceps.

16b. "Pharomachrus xanthogaster”, known only from the type specimen from "Bogotá”, was treated as a valid species by Cory (1919), but he suspected that it was a color variant of P. auriceps; Peters (1945) considered it a synonym of auriceps. See Hybrids and Dubious Taxa.

17. Pharomachrus fulgidus and P. antisianus may form a superspecies (REF); (REFS) considered them conspecific. Other authors suspect that P. fulgidus may be part of the P. auriceps-P. pavoninus superspecies (Collar 2001). <incorp. Berlioz 1956>

18. The subspecies festatus of the Santa Marta Mountains was formerly (e.g., Cory 1918) considered a separate species from Pharomachrus fulgidus, but Peters (1945) treated them as conspecific.

19. Sibley & Monroe (1990) and Collar (2001) considered Pharomachrus antisianus to form a superspecies with Middle American P. mocinno, but did not include fulgidus. Peters (1945), Zimmer (1948), and Phelps & Phelps (1958a) considered antisianus to be conspecific with Middle American P. mocinno, but most classifications have followed Meyer de Schauensee (1966) in treating them as separate species.

__________________________________________________

CORACIIFORMES 1

ALCEDINIDAE (KINGFISHERS)Megaceryle torquata Ringed Kingfisher 2, 3, 4, 5Megaceryle alcyon Belted Kingfisher (NB) 2, 3Chloroceryle amazona Amazon Kingfisher 6Chloroceryle americana Green Kingfisher 6Chloroceryle inda Green-and-rufous Kingfisher 6Chloroceryle aenea American Pygmy Kingfisher 6, 7

__________________________________________________

1. The monophyly of the Coraciiformes is controversial (see reviews in Sibley & Ahlquist 1990, Johansson et al. 2001). The most comprehensive genetic

Page 7: Remsen/SACCBaseline05.docx · Web vie

survey (Hackett et al. 2008) found strong support for the monophyly of the traditional Coraciiformes only if limited to the families Meropidae, Coraciidae, Brachypteraciidae, Todidae, Momotidae, and Alcedinidae (and thus excluding hornbills, hoopoes, and Leptosomus). Sibley-Ahlquist (1990) divided the Alcedinidae into three families, which consist of the three traditional subfamilies elevated to family rank (Alcedinidae, Dacelonidae, and Cerylidae) because of DNA-DNA hybridization data indicated deep divergences among these three; New World kingfishers were placed in the Cerylidae.

2. Megaceryle torquata and M. alcyon have been placed in the genus Ceryle in many classifications (e.g., Meyer de Schauensee 1970, AOU 1983, 1998), but most classifications have followed Fry (1980) in restricting Ceryle to Old World C. rudis (e.g., Sibley & Monroe 1990, Fry & Fry 1992, Woodall 2001). Recent genetic data (Moyle 2006) indicate that Old World Ceryle rudis is the sister to Chloroceryle, and so Megaceryle must be recognized if Chloroceryle is maintained as a genus.

3. Megaceryle torquata and M. alcyon were considered sister species by Fry (1980) in a superspecies complex that included Old World M. maxima and M. lugubris. Moyle's (2006) data are consistent with their status as sister species.

4. The name Streptoceryle was formerly (e.g., Ridgway 1914, Cory 1919) used in place of Megaceryle, but see Miller (1920).

5. Ceryle is masculine, so the correct spelling of the species name is torquatus (David & Gosselin 2002b) when that genus is used; Megaceryle, however, is feminine, so the species name remains torquata when that genus is used (David & Gosselin 2002b).

6. Fry (1980) and Fry & Fry (1992) proposed that plumage similarities indicate that Chloroceryle amazona and C. americana are sister species, as are C. inda and C. aenea. Genetic data (Moyle 2006), however, indicate that C. americana and C. inda are sisters, that C. aenea is sister to this pair, and that C. amazona is sister to the ancestor of all other species in the genus. Proposal pending to change linear sequence.

7. Chloroceryle aenea was formerly known as "Pygmy Kingfisher", but most sources (e.g., AOU 1983, 1998, Stiles & Skutch 1989, Sibley & Monroe 1990, Fry et al. 1992, Ridgely & Greenfield 2001, Woodall 2001, Hilty 2003) now call this "American Pygmy Kingfisher" to avoid confusion with African taxa Ceyx pictus ("African Pygmy Kingfisher") and C. madagascariensis ("Madagascar Pygmy Kingfisher").

__________________________________________________

MOMOTIDAE (MOTMOTS) 1

Page 8: Remsen/SACCBaseline05.docx · Web vie

Hylomanes momotula Tody MotmotElectron platyrhynchum Broad-billed Motmot 2Baryphthengus martii Rufous Motmot 3Baryphthengus ruficapillus Rufous-capped Motmot 3Momotus subrufescens Whooping Motmot 4Momotus bahamensis Trinidad Motmot 4Momotus momota Amazonian Motmot 4Momotus aequatorialis Andean Motmot 4

__________________________________________________

1. The monophyly of the Momotidae has never been seriously questioned. Several data sets (e.g., Olson 1976, Mayr 1998, Espinosa de los Monteros 2000, Johansson et al. 2001, Overton & Rhoads 2004) indicated that the Momotidae and the West Indian Todidae are sister families, but Ericson et al. (2004), Hackett et al. (2008) and Prum et al. (2015) supported a sister relationship between the Alcedinidae and Momotidae. SACC proposal needed to invert sequence of families. Although generic limits in the family have remained fairly constant (see Snow 2001), the relationships of genera within the Momotidae have not been subjected to any modern analyses. <incorp Maurer & Raikow 1981>

2. Because they lack racket tips on their tails, Meyer de Schauensee (1966) suggested that the pyrrholaemum subspecies group east of the Andes might deserve treatments as a separate species from Electron platyrhynchum.

3. Baryphthengus martii, formerly considered a subspecies of B. ruficapilla (e.g., Peters 1945, Meyer de Schauensee 1970), is now generally considered a separate species, following Sick (1993); however, no formal analysis has ever been published, although at one time (e.g., Ridgway 1914, Cory 1918) they were considered not only separate species but martii was placed in a separate genus, Urospatha; they form a superspecies (Sibley & Monroe 1990).

4. All Momotus were treated as a single species in most recent classifications since Peters (1945), but see Stiles (2009) for rationale for recognizing five species, four of which occur in South America. SACC proposal passed to revise species limits. The subspecies aequatorialis, venezuelae, subrufescens, microstephanus, and argenticinctus were all formerly (e.g., Ridgway 1914, Cory 1919) considered separate species from M. momota, as were two Middle American taxa. Chapman (1923) recognized four species in South America: M. subrufescens (including "venezuelae") of the Caribbean rim of northern South America, M. bahamensis of Trinidad, M. aequatorialis of the Andes, and M. momota (including microstephanus) of the rest of South America, including argenticinctus of western Ecuador and northwestern Peru. Peters (1945) considered them all conspecific, and this was followed by Meyer

Page 9: Remsen/SACCBaseline05.docx · Web vie

de Schauensee (1970) and AOU (1983, 1998). Fjeldså & Krabbe (1990) proposed that the Andean form aequatorialis was a separate species from M. momota, and this was followed by Ridgely & Greenfield (2001), Dickinson (2003), and Schulenberg et al. (2007), thus returning to the classification of Cory (1919) and Chapman (1923, 1926). However, no formal analysis had ever been published, and the published evidence in support of treating aequatorialis as a species-level taxon is weak. SACC proposal passed for treating aequatorialis as conspecific with M. momota. The latter decision was reversed, however, by the more recent proposal to revise species limits based on new data.

__________________________________________________

GALBULIFORMES 1GALBULIDAE (JACAMARS) 1a

Galbalcyrhynchus leucotis White-eared Jacamar 2Galbalcyrhynchus purusianus Purus Jacamar 2Brachygalba albogularis White-throated Jacamar 3Brachygalba lugubris Brown Jacamar 3, 4Brachygalba goeringi Pale-headed Jacamar 3Brachygalba salmoni Dusky-backed Jacamar 3Jacamaralcyon tridactyla Three-toed Jacamar 5Galbula albirostris Yellow-billed Jacamar 6, 7Galbula cyanicollis Blue-cheeked Jacamar 6, 8Galbula ruficauda Rufous-tailed Jacamar 9, 10Galbula galbula Green-tailed Jacamar 9Galbula tombacea White-chinned Jacamar 9Galbula cyanescens Bluish-fronted Jacamar 9Galbula pastazae Coppery-chested Jacamar 9Galbula chalcothorax Purplish Jacamar 11Galbula leucogastra Bronzy Jacamar 11Galbula dea Paradise Jacamar 11aJacamerops aureus Great Jacamar 12

__________________________________________________

1. Evidence from genetics (Sibley & Ahlquist 1990, Johansson et al. 2001, Johansson & Ericson 2003, Cracraft et al. 2004, Ericson et al. 2006, Hackett et al. 2008) and morphology (e.g., Sibley 1956, Simpson and Cracraft 1981, Swierczewski and Raikow 1981, Mayr et al. 2003, Manegold 2005) strongly indicate that the Galbulidae and the Bucconidae are sister taxa, a relationship identified over 250 years ago. The monophyly of each has never been

Page 10: Remsen/SACCBaseline05.docx · Web vie

seriously questioned (see reviews in Sibley & Ahlquist 1990, Rasmussen & Collar 2002, Tobias 2002). They are usually considered to be a suborder, Galbulae, of the Piciformes, but some evidence (Sibley and Ahlquist 1972, 1985, 1986, Olson 1983, 1985, Burton 1984, Mayr 1998, Höfling & Alvarenga 2001) suggested that they might be more closely related to the Coraciiformes. The original the genetic evidence for this relationship (Sibley & Ahlquist 1990) is actually ambiguous (Harshman 1994). Almost all recent genetic evidence (Johansson & Ericson 2003, Mayr et al. 2003, Cracraft et al. 2004, Ericson et al. 2006, Hackett et al. 2008; cf. Fain & Houde 2004) supports the traditional placement of the Galbuliformes as sister to the Piciformes, so maintaining them as a separate order is arbitrary. However, these two lineages are estimated to have diverged roughly 50 mya (Jarvis et al. 2014, Prum et al. 2015) , and so they are as old as most lineages treated as separate orders.

1a. Within-family relationships in the Galbulidae have not been subjected to any modern analyses; see Tobias et al. (2002) for a summary of literature that supports the traditional linear sequence of genera used here.

2. Galbalcyrhynchus leucotis and G. purusianus were formerly (e.g., Cory 1919, Pinto 1937) treated as separate species, but Peters (1948) and Meyer de Schauensee (1970) considered them conspecific ("Chestnut Jacamar"). Haffer (1974) noted that they are parapatric in the Río Ucayali area with no sign of interbreeding and that they differ in plumage to the same degree as other jacamars currently ranked as species; they constitute a superspecies (Haffer 1974, Sibley & Monroe 1990, Tobias et al. 2002).

3. The four Brachygalba species form a superspecies (Haffer 1967, 1974, Sibley & Monroe 1990, Tobias et al. 2002).

4. The subspecies fulviventris (with caquetae) and melanosterna were formerly (e.g., Cory 1919) each considered separate species from B. lugubris, but they were all treated as conspecific by Peters (1948). The subspecies phaeonota was also formerly (e.g., Todd 1943, Peters 1948) considered a separate species from Brachygalba lugubris, but was treated as conspecific by Meyer de Schauensee (1966) and subsequent classifications.

5. Jacamaralcyon and Brachygalba are presumably sister genera (Haffer 1974).

6. Galbula albirostris and G. cyanicollis were formerly considered conspecific (e.g., Peters 1948, Meyer de Schauensee 1970), but Haffer (1974) noted that they are parapatric in eastern Peru area with no sign of interbreeding; they constitute a superspecies (Haffer 1974, Tobias et al. 2002); they had formerly (e.g., Cory 1919, Pinto 1937) been considered separate species, and in fact, albirostris was formerly (e.g., Cory 1919) placed in a separate, monotypic genus, Psilopornis (which was merged into Galbula by Pinto 1937 and Peters 1948).

Page 11: Remsen/SACCBaseline05.docx · Web vie

7. The subspecies chalcocephala may represent separate species from Galbula albirostris (Tobias et al. 2002); it shows no signs of intergradation with nominate albirostris where their ranges approach (Haffer 1974). Del Hoyo & Collar (2014) treated chalcocephala as a separate species (“Cerise-crowned Jacamar”) based on plumage and bare parts, and on lack of evidence of intergradation. Proposal needed.

8. Called "Blue-necked Jacamar" by Sibley & Monroe (1990) and Tobias et al. (2002).

9. Galbula ruficauda, G. galbula, G. tombacea, G. cyanescens, and G. pastazae are considered to form a superspecies (Haffer 1974, Sibley & Monroe 1990, Tobias et al. 2002); evidence for ranking them at species level rather weak (except perhaps for pastazae), but there is no sign of hybridization among them where their ranges are in contact.

10. The subspecies rufoviridis (with heterogyna) is geographically separated from northern subspecies by Galbula galbula and other members of the superspecies; thus, whether G. ruficauda, as presently constituted, is monophyletic warrants study; rufoviridis was formerly (e.g., Cory 1919, Pinto 1937) considered a separate species. Trans-Andean melanogenia was also formerly (e.g., Ridgway 1914, Cory 1919, Haffer 1967) considered a separate species, but apparent intergradation with nominate ruficauda (Wetmore 1968) has led to them being considered conspecific (e.g., Peters 1948, Meyer de Schauensee 1970, Tobias et al. 2002).

10a. Galbula cyanescens has been considered a subspecies of G. tombacea by some authors (e.g., Cory 1919, Pinto 1937), but Peters (1948) treated them as separate species, and this has been followed by virtually all subsequent authors. <check Haffer for history and rationale>

11. Galbula chalcothorax and G. leucogastra were formerly considered conspecific (e.g., Cory 1919, Peters 1948, Meyer de Schauensee 1970, Haffer 1974), but there is no indication of hybridization between the two, and they differ as much or more in plumage than most parapatric jacamars ranked at the species level (Parker & Remsen 1987); they constitute a superspecies (Sibley & Monroe 1990, Tobias et al. 2002).

11a. Galbula dea was formerly (e.g., Cory 1919, Pinto 1937) placed in the monotypic genus Urogalba; Peters (1948) included it in Galbula, and this has been followed by all subsequent authors.

12. Jacamerops is masculine, so the correct spelling of the species name is aureus (David & Gosselin 2002b).

Page 12: Remsen/SACCBaseline05.docx · Web vie

__________________________________________________

BUCCONIDAE (PUFFBIRDS) 1Notharchus hyperrhynchus White-necked Puffbird 1a, 1b, 1cNotharchus macrorhynchos Guianan Puffbird 1bNotharchus swainsoni Buff-bellied Puffbird 1bNotharchus pectoralis Black-breasted Puffbird 2Notharchus ordii Brown-banded Puffbird 2Notharchus tectus Pied Puffbird 3Bucco macrodactylus Chestnut-capped Puffbird 4Bucco tamatia Spotted Puffbird 5, 5aBucco noanamae Sooty-capped Puffbird 5, 5aBucco capensis Collared PuffbirdNystalus radiatus Barred Puffbird 6, 6aNystalus obamai Western Striolated-Puffbird 6, 6a, 6bNystalus striolatus Eastern Striolated-Puffbird 6, 6a, 6bNystalus chacuru White-eared Puffbird 6aNystalus maculatus Spot-backed Puffbird 7, 7aHypnelus ruficollis Russet-throated Puffbird 8, 9Malacoptila fusca White-chested Puffbird 10Malacoptila semicincta Semicollared Puffbird 10Malacoptila striata Crescent-chested Puffbird 10, 10aMalacoptila rufa Rufous-necked PuffbirdMalacoptila panamensis White-whiskered Puffbird 11Malacoptila fulvogularis Black-streaked Puffbird 11, 11aMalacoptila mystacalis Moustached Puffbird 11Micromonacha lanceolata Lanceolated MonkletNonnula rubecula Rusty-breasted Nunlet 12Nonnula sclateri Fulvous-chinned Nunlet 13Nonnula brunnea Brown Nunlet 13Nonnula frontalis Gray-cheeked Nunlet 14Nonnula ruficapilla Rufous-capped Nunlet 14Nonnula amaurocephala Chestnut-headed Nunlet 15Hapaloptila castanea White-faced Nunbird 15aMonasa atra Black Nunbird 16Monasa nigrifrons Black-fronted Nunbird 16Monasa morphoeus White-fronted Nunbird 16, 16aMonasa flavirostris Yellow-billed NunbirdChelidoptera tenebrosa Swallow-winged Puffbird 17

Page 13: Remsen/SACCBaseline05.docx · Web vie

__________________________________________________

1. The monophyly of the Bucconidae has never been seriously questioned. Within-family relationships in the Bucconidae have not been subjected to any modern analyses; see Rasmussen & Collar (2002) for a summary of literature that supports the traditional linear sequence of genera used here.

1a. Notharchus was merged into Bucco by Cottrell (1968), and this was followed by the AOU (1983), but not by other classifications; see Monroe et al. (1993).

1b. The taxon swainsoni of the Atlantic forest region was formerly (e.g., Cory 1919, Pinto 1937) considered a separate species from Notharchus macrorhynchos, but Peters (1948) treated them as conspecific; this was followed by most subsequent classifications. Rasmussen & Collar (2002) elevated swainsoni to species rank, and Alvarenga et al. (2002) provided rationale in support of that treatment. SACC proposal passed to elevate swainsoni to species rank. The hyperrhynchus subspecies group was also formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) considered a separate species, but it was also treated as conspecific with N. macrorhynchos by Peters (1948). Rasmussen & Collar (2002) also suggested that the hyperrhynchus group might also warrant species rank. SACC proposal passed to elevate hyperrhynchus to species rank; SACC proposal passed to apply English name "Guianan Puffbird" to narrowly distributed macrorhynchos; SACC proposal passed to retain "White-necked" for widely distributed hyperrhynchus.

1c. The correct spelling of the species name is hyperrhynchus, not hyperrynchus, as in several publications (e.g. Peters 1948, Dickinson 2003); see Eisenmann (1958).

2. Some authors (e.g., REFS, Rasmussen & Collar 2002) consider Notharchus pectoralis and N. ordii to form a superspecies.

3. Trans-Andean subspecies subtectus was formerly (e.g., REFS) considered a separate species from Notharchus tectus. <delete if REF can't be found>. Del Hoyo & Collar (2014) treated subtectus as a separate species (“Lesser Pied Puffbird”) based on plumage and unpublished vocal differences, but see Donegan et al. (2015).

4. Bucco macrodactylus was formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) placed in the monotypic genus Argicus, but this was merged into Bucco by Peters (1948); this has been followed by most subsequent classifications, except for Rasmussen & Collar (2002), who resurrected Argicus. Penhallurick (2008) noted that Cyphos has priority over Argicus, and del Hoyo & Collar (2014) used Cyphos.

Page 14: Remsen/SACCBaseline05.docx · Web vie

5. Bucco tamatia and B. noanamae were formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) placed in the genus Nystactes, but this was merged into Bucco by Peters (1948), and this has been followed by most subsequent classifications, except for Rasmussen & Collar (2002) and del Hoyo & Collar (2014), who resurrected Nystactes.

5a. Bucco tamatia and B. noanamae form a superspecies (REFS, Rasmussen & Collar 2002).

6. Nystalus radiatus and N. striolatus may form superspecies (Rasmussen & Collar (2002).

6a. Nystalus radiatus, N. striolatus, and N. chacuru were formerly (e.g., Ridgway 1914, Cory 1919) treated in a separate genus, Ecchaunornis, but Peters (1948) merged this into Nystalus.

6b. Whitney et al. (2013) described the population of western Amazonia as a new species, Nystalus obamai and also recommended treating the subspecies torridus of SE Amazonia as a separate species. SACC proposal passed to recognize two species. SACC proposal passed on English names.

7. Silva (1991) considered striatipectus a separate species from Nystalus maculatus; this not followed by Rasmussen & Collar (2002).

7a. Called "Spot-bellied Puffbird" in Rasmussen & Collar (2002).

8. Although Cory (1919) and Peters (1948) considered the subspecies bicinctus to be a separate species from Hypnelus ruficollis, Meyer de Schauensee (1966, 1970) considered them conspecific, evidently <check> on the basis that the subspecies described by Phelps & Phelps (1958) was intermediate between the two, and because another population was also considered intermediate. Rasmussen & Collar (2002) considered bicinctus (with stoicus) as a separate species from H. ruficollis; they reported that hybridization in area of contact was infrequent and certainly not indicative of free interbreeding, as is often stated or implied (e.g., Sibley & Monroe 1990). Del Hoyo & Collar (2014) also treated bicinctus as a separate species (“Two-banded Puffbird”). Donegan et al. (2015) also treated it as a separate species based in part on vocal differences. Proposal needed.

9. Hypnelus was merged into Bucco by Cottrell (1968), but this has not been followed by most subsequent authors.

10. Malacoptila fusca and M. semicincta form a superspecies (Haffer 1987, Rasmussen & Collar 2002); they were once considered conspecific (e.g., Peters 1948), but see Traylor (1951, 1956<?>). Ferreira et al. (2016) confirmed that they are sister species. Sibley & Monroe (1990) also included M. striata in

Page 15: Remsen/SACCBaseline05.docx · Web vie

the superspecies, but Ferreira et al. (2016) found that M. rufa was the sister taxon to M. fusca + M. semicincta.

10a. Malacoptila striata was formerly (e.g., Cory 1919) known as M. torquata, but see Peters (1948).

10b. The subspecies minor was treated as a separate species from Malacoptila striata by del Hoyo & Collar (2014) based on size and measurements. Ferreira et al. (2016) supported this treatment based on genetic distance.

11. Sibley & Monroe (1990) considered Malacoptila panamensis and M. mystacalis to form a superspecies; Rasmussen & Collar (2002) also included M. fulvogularis.

11a. The Colombian subspecies substriata was formerly (e.g., Cory 1919) considered a separate species from Malacoptila fulvogularis, but Peters (1948) treated them as conspecific; Rasmussen & Collar (2002) treated substriata as a synonym of fulvogularis, regarded by them as a monotypic species.

12. Nonnula rubecula may consist of more than one species (Rasmussen & Collar 2002).

13. Nonnula sclateri and N. brunnea form a superspecies (REFS); they have been considered conspecific by some authors (e.g., REFS). Also, N. rubecula is sometimes (e.g., (REFs, Rasmussen & Collar 2002) included in this superspecies, but it may be sympatric with N. brunnea w. Amazonia.

14. Many authors (e.g., Meyer de Schauensee 1970) have treated Nonnula frontalis as subspecies of N. ruficapilla, following Meyer de Schauensee (1946b); published evidence for considering them separate species is weak; Sibley & Monroe (1990) and Rasmussen & Collar (2002) considered them to form a superspecies.

15. Nonnula amaurocephala was considered to form a superspecies with N. frontalis and N. ruficapilla by REFS, Rasmussen & Collar (2002).

15a. Called "White-faced Puffbird" in Fjeldså & Krabbe (1990).

16. Rasmussen & Collar (2002) considered Monasa morphoeus and M. nigrifrons to form a superspecies with M. atra, but the first two are broadly sympatric and cannot be considered allospecies.

16a. The subspecies grandior, fidelis, similis, pallescens (with sclateri and minor), and rikeri were formerly (e.g., Ridgway 1914, Cory 1919) each considered separate species from Monasa morphoeus, but Peters (1948) treated them all

Page 16: Remsen/SACCBaseline05.docx · Web vie

as conspecific (and similis as a synonym of fidelis, and rikeri as a synonym of nominate morphoeus).

17. Called "Swallow-wing" by Meyer de Schauensee (1970), Snyder (1966), Haverschmidt (1968), Meyer de Schauensee & Phelps (1978), Sibley & Monroe (1990), Haverschmidt & Mees (1994), and elsewhere; Hilty & Brown (1986) evidently were the first to use "Swallow-winged Puffbird," and this has been followed by Ridgely & Greenfield (2001), Rasmussen & Collar (2002), Hilty (2003).

__________________________________________________

PICIFORMES 1CAPITONIDAE (NEW WORLD BARBETS) 2

Capito aurovirens Scarlet-crowned BarbetCapito dayi Black-girdled Barbet 3Capito maculicoronatus Spot-crowned Barbet 4Capito squamatus Orange-fronted Barbet 4Capito hypoleucus White-mantled Barbet 4aCapito wallacei Scarlet-banded Barbet 5Capito quinticolor Five-colored Barbet 4aCapito brunneipectus Brown-chested Barbet 6, 7Capito niger Black-spotted Barbet 6Capito auratus Gilded Barbet 6, 6bEubucco richardsoni Lemon-throated Barbet 8, 8aEubucco tucinkae Scarlet-hooded Barbet 9Eubucco bourcierii Red-headed Barbet 10Eubucco versicolor Versicolored Barbet 8a, 10, 11

SEMNORNITHIDAE (TOUCAN-BARBETS) 2Semnornis ramphastinus Toucan Barbet

__________________________________________________

1. Genetic data (Sibley and Ahlquist 1985, 1986, 1990, Johansson et al. 2001, Prychitko & Moore 2003, Fain & Houde 2004, Hackett et al. 2008) support traditional morphological data (e.g., Simpson and Cracraft 1981, Swierczewski and Raikow 1981) that the Piciformes, as constituted here, are a monophyletic group. Most classifications also include jacamars and puffbirds in this order (e.g., Ridgway 1914, Wetmore 1960), but see notes under Galbuliformes.

Page 17: Remsen/SACCBaseline05.docx · Web vie

2. The families Capitonidae, Semnornithidae, and Ramphastidae are each other's closest relatives with respect to Old World barbets (Burton 1984, Prum 1988, Sibley and Ahlquist 1990, Lanyon & Hall 1994, Barker & Lanyon 2000, Johansson et al. 2001, Johannson & Ericson 2003, Moyle 2004). [Old Word barbets are here tangentially but implicitly treated as separate families, Asian Megalaimidae and African Lybiidae; recent genetic data (Moyle 2004) support the monophyly of the barbet radiations within each region.] To emphasize the close relationships among New World taxa, these three families were treated as subfamilies of a single family, Ramphastidae, by AOU (1998) and Cracraft (2013). SACC proposal passed to treat these taxa at family rank. Semnornis is treated as separate family until affinities resolved. Swierczewski and Raikow's (1981) analysis of characters of the hindlimb musculature supported the traditional inclusion (e.g., Meyer de Schauensee 1970) of Semnornis in the barbets, but Prum's (1988a) analysis of morphological data indicated that Semnornis is the sister taxon to the Ramphastidae, not the Capitonidae. Genetic data indicate that Semnornis may be basal to both families (Barker and Lanyon 2000); Moyle (2004) found weak support for that relationship, but also weak support for a sister relationship to Ramphastidae.

3. Capito dayi was considered conspecific with a broadly defined C. niger by Ripley (1945), but see Ripley (1946) and Haffer (1997). Genetic data (Armenta et al. 2005) indicate that C. dayi is definitely not part of the C. niger group, but more closely related to other species of Capito, especially C. quinticolor.

4. Sibley & Monroe (1990) considered Capito maculicoronatus and C. squamatus to form a superspecies; they were considered conspecific by Ripley (1945). Genetic data (Armenta et al. 2005) indicate that they are sister taxa.

4a. Capito hypoleucos was considered conspecific with C. quinticolor by Ripley (1945).

5. Described since Meyer de Schauensee (1970): O'Neill et al. (2000). A new species, Capito fitzpatricki, was described by Seeholzer et al. (2012); it is the sister taxon to C. wallacei. SACC proposal to rank at species level did not pass. Dickinson & Remsen (2013) and Del Hoyo & Collar (2014) treated fitzpatricki as a separate species (“Sira Barbet”).

6. Capito brunneipectus and C. auratus were formerly (e.g., Peters 1948, Meyer de Schauensee 1970) considered conspecific with C. niger. Haffer (1997) split brunneipectus and auratus from niger because: (1) no good evidence was ever presented for the treatment of the three as conspecific; (2) no evidence exists for gene flow between niger and auratus where they are in contact; and (3) brunneipectus differs dramatically in coloration from auratus and niger. Genetic data (Armenta et al. 2005) support this treatment. Sibley & Monroe (1990), Short & Horne (2001), and Short & Horne (2002a) treated brunneipectus as separate species but not auratus. Capito niger, C. auratus, and C.

Page 18: Remsen/SACCBaseline05.docx · Web vie

brunneipectus presumably form a superspecies (Haffer 1997), but Short & Horne (2001) were not confident that brunneipectus belongs in that group; C. niger and C. brunneipectus are monotypic, with all subspecies-level taxa in the group included under C. auratus. Ridgway (1914), Cory (1919), Pinto (1937), and Chapman (1928) treated auratus as a separate species, but Bond & Meyer de Schauensee (1943), Ripley (1945), and Peters (1948) considered them conspecific.

6b. "Capito aurantiiventris," known from the "Upper Amazon Valley" and formerly (e.g., Cory 1919) treated as a species, was subsequently (e.g., Peters 1948) treated as a synonym of C. auratus amazonicus. "Capito peruvianus," known from eastern Peru and Ecuador, and formerly (e.g., Cory 1919) treated as a species, was subsequently treated as a synonym of C. auratus auratus (<> Chapman 1928).

7. Called "Cinnamon-breasted Barbet" in Sibley & Monroe (1990), Short & Horne (2001), and Short & Horne (2002a).

8. The subspecies aurantiicollis was formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) considered a separate species from Eubucco richardsoni, but Berlioz (1938), Ripley (1945), and Peters (1948) treated them as conspecific. Del Hoyo & Collar (2014) treated aurantiicollis as a separate species (“Flame-throated Barbet”) on plumage differences.

8a. Eubucco richardsoni and E. versicolor were considered conspecific by Ripley (1945), but see, for example, Traylor (1951b).

9. Eubucco tucinkae was formerly considered to form superspecies with (Sibley & Monroe 1990), the sister taxon of (Haffer 1987), or even conspecific with (e.g., Peters 1948), E. bourcierii, but lowland distribution and habitat makes it unlikely that they are even sister species; Short & Horne (2001) also made this point, but based it on morphology; see also Traylor (1951b).

10. Eubucco bourcierii and E. versicolor were considered to form a probable superspecies by Parker et al. (1985); cf. Short & Horne (2002a).

11. The subspecies steerii and glaucogularis were formerly (e.g., Ridgway 1914, Cory 1919) each considered a separate species from Eubucco versicolor, but Berlioz (1938), Ripley (1945), and Peters (1948) treated them all as conspecific. Del Hoyo & Collar (2014) treated steerii (“Blue-cowled Barbet”) and glaucogularis (“Blue-chinned Barbet”) as separate species on plumage differences.

__________________________________________________

RAMPHASTIDAE (TOUCANS) 1

Page 19: Remsen/SACCBaseline05.docx · Web vie

Ramphastos toco Toco ToucanRamphastos ambiguus Yellow-throated Toucan 23, 24, 25Ramphastos tucanus White-throated Toucan 22, 22a, 22b, 23,

23bRamphastos sulfuratus Keel-billed Toucan 18, 21Ramphastos brevis Choco Toucan 18, 20Ramphastos vitellinus Channel-billed Toucan 18, 19, 19aRamphastos dicolorus Red-breasted Toucan 18, 18a, 18bAulacorhynchus prasinus Emerald Toucanet 1aAulacorhynchus sulcatus Groove-billed Toucanet 2, 3Aulacorhynchus derbianus Chestnut-tipped Toucanet 3, 3aAulacorhynchus whitelianus Tepui Toucanet 3, 3aAulacorhynchus haematopygus Crimson-rumped Toucanet 4Aulacorhynchus huallagae Yellow-browed Toucanet 4Aulacorhynchus coeruleicinctis Blue-banded Toucanet 4, 5Andigena hypoglauca Gray-breasted Mountain-Toucan 17Andigena laminirostris Plate-billed Mountain-Toucan 17Andigena cucullata Hooded Mountain-Toucan 17Andigena nigrirostris Black-billed Mountain-ToucanSelenidera spectabilis Yellow-eared Toucanet 14Selenidera piperivora Guianan Toucanet 14, 14aSelenidera reinwardtii Golden-collared Toucanet 14, 15Selenidera nattereri Tawny-tufted Toucanet 14Selenidera gouldii Gould's Toucanet 14, 16Selenidera maculirostris Spot-billed Toucanet 14Pteroglossus bailloni Saffron Toucanet 13Pteroglossus viridis Green Aracari 6Pteroglossus inscriptus Lettered Aracari 6, 7a, 7b, 10bPteroglossus torquatus Collared Aracari 10a, 11, 11aPteroglossus aracari Black-necked Aracari 10, 10cPteroglossus castanotis Chestnut-eared Aracari 10Pteroglossus pluricinctus Many-banded Aracari 10aPteroglossus azara Ivory-billed Aracari 8, 9, 9a, 10, 10bPteroglossus beauharnaesii Curl-crested Aracari 12Pteroglossus bitorquatus Red-necked Aracari 8, 8a

__________________________________________________

1. Multiple independent data sets identify the Capitonidae/Semnornithidae as the sister to the Ramphastidae (see notes under those families above). The

Page 20: Remsen/SACCBaseline05.docx · Web vie

Ramphastidae have a number of unusual characters that distinguish them from all barbets, New World and Old World, including a unique arrangement of the caudal vertebrae and sleeping posture (see Short & Horne 2001) and a unique cranial morphology (Höfling 1991, 1998); the genus Aulacorhynchus shares these characters and is firmly embedded in the Ramphastidae, despite Sibley & Ahlquist's (1990) suggestion that it was intermediate in some respects between toucans and Capitonidae. Genetic data are consistent with the monophyly of the Ramphastidae (Moyle 2004). Genetic data (Barker & Lanyon 2000, Moyle 2004) indicate that Ramphastos is basal to all other toucan genera, and other genetic data sets are consistent with this (Sibley & Ahlquist 1990, Nahum et al. 2003). Moyle (2004), Weckstein (2004), and Pereira & Wajntal (2008) found that Andigena and Selenidera were sister genera, and Moyle (2004) and Weckstein (2004) found that Aulacorhynchus was the sister of Andigena + Selenidera. SACC proposal passed to change linear sequence of genera to the one used in this classification.

1a. Ridgely & Greenfield (2001) suggested that Aulacorhynchus prasinus may consist of more than one species-level taxon, but see Short & Horne (2001), who pointed out that the allopatric taxa are no more distinctive than those known to intergrade. The subspecies caeruleogularis, lautus, albivitta, cyanolaemus, dimidiatus, and atrogularis, as well as Middle American wagleri, were formerly (e.g., Ridgway 1914, Cory 1919) each considered separate species from (and in some cases not particularly closely related to) Aulacorhynchus prasinus, but Peters (1948) and Haffer (1974) treated them all as conspecific. <add synopsis of Navarro et al. (2001)>. Puebla-Olivares et al. (2008) identified three clades in South America based on mtDNA and proposed species rank for each. Del Hoyo & Collar (2014) treated broadly defined A. prasinus as consisting of six species, four of which occur in South America: caeruleogularis (“Blue-throated Toucanet”), albivitta (“Grayish-throated Toucanet”), cyanolaemus (“Black-billed Toucanet”), and atrogularis (“Black-throated Toucanet”). Donegan et al. (2015) were unable to find any consistent vocal differences among these taxa and rejected species rank for them. Winker (2016) concluded that five species should be recognized in the complex, three of which occur in South America (caeruleogularis, albivitta, and atrogularis). Proposal badly needed. <<wait NACC>>

2. The taxon calorhynchus was formerly (e.g., Cory 1919, Peters 1948, Phelps & Phelps 1958a, Meyer de Schauensee 1970) treated as a separate species ("Yellow-billed Toucanet") from Aulacorhynchus sulcatus, but in their area of contact in Venezuela, only individuals with intermediate bill characters are found (Schwartz 1972b). Nonetheless, they were still treated as separate species by Hilty (2003) and del Hoyo & Collar (2014). Donegan et al. (2015) were unable to find consistent vocal differences between the two. Donegan et al. (2015), however, proposed that the subspecies erythrognathus of the Paria Peninsula and mountains in Sucre, Venezuela, might merit species rank based on vocal differences.

Page 21: Remsen/SACCBaseline05.docx · Web vie

3. Aulacorhynchus sulcatus and A. derbianus form a superspecies (Haffer 1974, Short & Horne 2001, Short & Horne 2002b), and their sister relationship has been confirmed by genetic data (Bonaccorso et al. 2011, Bonaccorso & Guayasamin 2013); they are treated as separate species because of differences in voice and bill shape.

3a. The whitelianus subspecies group of the Tepui region was formerly (e.g., Cory 1919) considered a separate species (“Whitely’s Toucanet”) from Aulacorhynchus derbianus, but they were treated as conspecific by Peters (1948). Genetic data (Bonaccorso et al. 2011, Bonaccorso & Guayasamin 2013), however, indicate that Andean derbianus is more closely related to A. sulcatus than either is to the whitelianus group. SACC proposal passed to elevate whitelianus group to species rank.

4. Aulacorhynchus haematopygus, A. huallagae, and A. coeruleicinctis were considered to form a superspecies by Haffer (1974), Fjeldså & Krabbe (1990), Short & Horne (2001), and Short & Horne (2002b). Genetic data (Bonaccorso et al. 2011) confirm the sister relationship of the latter two but indicate that A. haematopygus is the sister to those two plus also A. whitelianus, A. sulcatus, and A. derbianus, or (Bonaccorso & Guayasamin 2013) to just A. whitelianus, A. sulcatus, and A. derbianus.

5. Species name often given incorrectly as "coeruleicinctus.

6. Pteroglossus viridis and P. inscriptus form a superspecies (Haffer 1974, Sibley & Monroe 1990, Short & Horne 2001); their sister relationship has been confirmed by genetic data (Patel et al. 2010). <incorp. Cracraft & Prum 1988>

7a. Cory (1919) treated the subspecies humboldti as a separate species from P. viridis and P. inscriptus. Peters (1948) treated humboldti as a subspecies of Pteroglossus viridis, but Haffer (1974) included it in P. inscriptus; intermediate specimens from their area of contact led Haffer (1974) to treat humboldti as conspecific with and a subspecies of P. inscriptus. Genetic data (Pereira & Wajntal 2008, Patel et al. 2010) support the close relationship of the three taxa and indicate that humboldti and inscriptus are sister taxa. Del Hoyo & Collar (2014) treated humboldti as a separate species (“Humboldt’s Aracari”) based on coloration and insufficient evidence for free interbreeding. Proposal needed.

7b. "Pteroglossus didymus," known from eastern Peru and treated as a valid species by Cory (1919), is now considered a synonym of Pteroglossus inscriptus humboldti (Traylor 1958, Friedmann 1958, Borrero 1959, Haffer 1974, Short & Horne 2002b). See Hybrids and Dubious Taxa.

8. Pteroglossus bitorquatus and P. azara were considered to form a superspecies by Haffer (1974), but Short & Horne (2002b) considered P. bitorquatus to be

Page 22: Remsen/SACCBaseline05.docx · Web vie

probably more closely related to P. viridis/P. inscriptus. Genetic data (Pereira & Wajntal 2008, Patel et al. 2010) indicate that P. pluricinctus, P. castanotis, and P. aracari form a monophyletic group. <incorp. Cracraft & Prum 1988>

8a. The subspecies sturmii was treated as a separate species from Pteroglossus bitorquatus by del Hoyo & Collar (2014) based mainly on color differences.

9. Haffer (1974) showed that Pteroglossus mariae, formerly (e.g., Peters 1948, Meyer de Schauensee 1970) considered a separate species ("Brown-mandibled Aracari"), forms hybrid zones with subspecies flavirostris wherever they are in contact and is thus best treated as a subspecies, as suspected by Peters (1948) and treated by Cory (1919) and Pinto (1937); this treatment has been followed by most subsequent authors except Ridgely & Greenfield (2001); previous reports of sympatry (Todd 1943, Meyer de Schauensee 1966) are now considered erroneous (Haffer 1974). Analysis of plumage characters (REF) supports and genetic data (Pereira & Wajntal 2008, Patel et al. 2010; cf. Hackett & Lehn 1997) confirm their treatment as sister taxa.

9a. Sibley & Monroe (1990) pointed out that Pteroglossus azara is the correct name used for this species, not P. flavirostris, the latter used since Peters (1948).

10. Pteroglossus torquatus (including sanguineus, erythropygius, and Middle American P. frantzii), P. pluricinctus, P. aracari, and P. castanotis were considered to form a superspecies by Haffer (1974); however, P. pluricinctus is widely sympatric with P. castanotis in western Amazonia. Sibley & Monroe (1990) considered Pteroglossus torquatus and P. pluricinctus to form a superspecies, but genetic data (Hackett & Lehn 199, Pereira & Wajntal 2008, Patel et al. 2010) provide no support for that relationship. Pteroglossus aracari and P. castanotis are generally considered to be sister species based on plumage similarities (e.g., Prum 1988b); Sibley & Monroe (1990), Short & Horne (2001), and Short & Horne (2002b) considered P. aracari and P. castanotis to form a superspecies, but genetic data (Pereira & Wajntal 2008, Patel et al. 2010) indicate that P. azara is more closely related to P. castanotis + pluricinctus than to P. aracari.

10b. "Pteroglossus olallae," known only from the type specimen from the Rio Jurua, Brazil, was treated as a species by Peters (1948) and Meyer de Schauensee (1966) but is generally considered a hybrid or aberrant individual (e.g. see Zimmer & Mayr 1943). See Hybrids and Dubious Taxa.

10c. "Pteroglossus formosus," known from an uncertain locality and treated as a valid species by Cory (1919), is considered a synonym of Pteroglossus a. aracari by Short & Horne (2002b). See Hybrids and Dubious Taxa.

11. Subspecies sanguineus ("Stripe-billed Aracari") and erythropygius ("Pale-mandibled Aracari") were formerly (e.g., Ridgway 1914, Cory 1919, Peters

Page 23: Remsen/SACCBaseline05.docx · Web vie

1948, Meyer de Schauensee 1970, Dickinson 2003) considered separate species from Pteroglossus torquatus, but hybridization in areas of contact with each other and with nominate torquatus (e.g., Haffer 1967) has led some subsequent authors (e.g., Haffer 1974, Short and Horne 2002b) to consider them as subspecies of P. torquatus. Haffer (1967) interpreted specimen data as indicating free interbreeding between torquatus and sanguineus in northwestern Colombia; these two differ no more from each other than do sanguineus and erythropygius from each other, and so Haffer (1974) considered the latter also as a subspecies of torquatus. Short & Horne (2001) also reported signs of extensive intergradation between sanguineus and erythropygius and between torquatus and sanguineus. Genetic data (Hackett & Lehn 1997, Pereira & Wajntal 2008, Patel et al. 2010) are consistent with a close relationship among these taxa, as well as Middle American frantzii, as is the traditional treatment based on plumage characters (e.g., Prum 1988b). Sibley & Monroe (1990) and Ridgely & Greenfield (2001) continued to rank them all as species. SACC proposal to recognize sanguineus and erythropygius as separate species did not pass. Del Hoyo & Collar (2014) treated sanguineus and erythropygius as separate species. Donegan et al. (2015) found no obvious vocal differences between sanguineus and torquatus.

11a. Called "Spot-breasted Aracari" in Haffer (1974) and Short & Horne (2001).

12. Unusual crown feathers and face pattern led to former placement of Pteroglossus beauharnaesii in monotypic genus Bauharnaisius by some authors (e.g., Ridgway 1914, Cory 1919, Pinto 1937). Genetic data (Hackett & Lehn 1997, Pereira & Wajntal 2008) indicate that beauharnaesii is not only nested within Pteroglossus, but also the sister species to P. bitorquatus. SACC proposal passed to change linear sequence.

12a. Wright (2015) proposed that the correct spelling for the species name is beauharnaisii), but see Bock & Schodde (2016). SACC proposal pending.

13. Pteroglossus bailloni has previously been placed nearly universally in a monotypic genus, Baillonius. Peters (1948) placed Baillonius bailloni in Andigena, but genetic data (Hackett & Lehn 1997, Barker & Lanyon 2000, Nahum et al. Moyle 2004, Weckstein 2004) support the widespread view (e.g., Haffer 1974, Short & Horne 2001) that Baillonius and Pteroglossus are sister genera. Recent genetic data (Kimura et al. 2004, Eberhard and Bermingham 2005, Pereira and Wajntal 2008, Patel et al. 2010) further indicate that Baillonius is embedded within Pteroglossus and thus should be merged into that genus. Morphological and vocal data (Haffer 1974, Sick 1997, Short and Horne 2001, Höfling 2004) are also consistent with this merger. SACC proposal passed to merge Baillonius into Pteroglossus. SACC proposal passed to change linear sequence.

Page 24: Remsen/SACCBaseline05.docx · Web vie

14. The species in the genus Selenidera are considered to form a superspecies (Haffer 1974; cf. Short & Horne 2001, 2002b); however, Lutz et al. (2013) found that Selenidera spectabilis grouped with Andigena rather than with other Selenidera but cautioned that additional data be obtained before making any taxonomic changes. Lutz et al. (2013)

14b. The species name for Selenidera culik was formerly (e.g., <check Cory 1919> Pinto 1937) piperivora, but see Peters (1930, 1948). Pacheco & Whitney (2006) proposed that piperivora is indeed the valid name for this taxon, but this remains controversial (Walters 2007, Piacentini et al. 2010). SACC proposal passed to use piperivora.

15. The subspecies langsdorffii was formerly (e.g., Cory 1919, Peters 1948) treated as separate species from Selenidera reinwardtii, but they were considered conspecific by Meyer de Schauensee (1966) and subsequent authors. <summarize Haffer>. Del Hoyo & Collar (2014) treated langsdorffii as a separate species based mainly on color differences.

16. Selenidera gouldii was formerly (e.g., Cory 1919, Pinto 1937, Peters 1948, Meyer de Schauensee 1970) considered a subspecies of S. maculirostris, but they were treated as separate species by Haffer (1974); they are presumably sister species.

17. Andigena hypoglauca, A. laminirostris, and A. cucullata were considered to form a superspecies by Haffer (1974), Sibley & Monroe (1990), and Short & Horne 2001, 2002b). However, Lutz et al. (2013) found that A. nigrirostris was the sister to A. hypoglauca + A. cucullata.

18. Haffer (1974) and Sibley & Monroe (1990) considered Ramphastos sulfuratus, R. brevis, R. vitellinus, and R. dicolorus to form a superspecies. Genetic data (Patané et al. 2009) indicate that R. dicolurus is the sister to R. brevis + R. vitellinus.

18a. Genetic data (Weckstein 2004, Patané et al. 2009) indicate that Ramphastos toco is the basal species in the genus, and that Haffer's (1974) "croaker" group (R. vitellinus, R. brevis, R. sulfuratus) and "yelper" group (R. tucanus, R. ambiguus/swainsonii) were monophyletic; support for the placement of R. sulfuratus, however, in the "croaker" group was weak. SACC proposal passed to change linear sequence of species.

18b. Called "Green-billed Toucan" in Mazar Barnett & Pearman (2001).

19. Cory (1919) and Meyer de Schauensee (1966, 1970) treated R. culminatus ("Yellow-ridged Toucan") and R. citrolaemus ("Citron-throated Toucan") as separate species from Ramphastos vitellinus. Haffer (1974) treated these as a subspecies of R. vitellinus, and this treatment, actually a partial return to the

Page 25: Remsen/SACCBaseline05.docx · Web vie

classification of Pinto (1937) and Peters (1948), has been followed by most subsequent authors (but not Sibley & Monroe 1990, Hilty 2003, del Hoyo & Collar 2014). Haffer identified broad hybrid zones between vitellinus and culminatus wherever they meet; see Short & Horne (2001) for additional information; genetic data (Patané et al. 2009) confirm that they form a monophyletic group. "Ramphastos osculans," known from northern Brazil, Venezuela, and Guyana, and treated as a valid species by Cory (1918), is a population of intergrades between R. culminatus and R. vitellinus (Hellmayr 1933, Haffer 1974). See Hybrids and Dubious Taxa.

19a. The subspecies ariel of eastern and southeastern Brazil was formerly (e.g., Cory 1919) considered a separate species from Ramphastos vitellinus, but Pinto (1937) and Peters (1948) treated them as conspecific. Weckstein (2004) and Patané et al. (2009) found that Amazonian ariel was more closely related to culminatus than either was to nominate vitellinus (opposite the relationship suggested by plumage characters; Prum 1988b); also, Weckstein (2004) and Patané et al. (2009) also found that ariel from the Atlantic forest region was not the sister taxon to Amazonian ariel. Nonetheless, del Hoyo & Collar (2014) treated ariel as a separate species (“Ariel Toucan”), but see Donegan et al. (2015).

20. Ramphastos brevis was formerly (e.g., Peters 1948) considered a subspecies of R. ambiguus, but the two differ in vocalizations [REF- check Haffer], and genetic data (Patané et al. 2009) indicate that R. brevis is the sister to R. vitellinus. Plumage characters suggest that R. brevis and R. sulfuratus are sister species (Prum 1988b), but this is not supported by genetic data (Weckstein 2004, Patané et al. 2009).

21. Called "Rainbow-billed Toucan" by Short & Horne (2001) and Short & Horne (2002b).

22. Haffer (1974) showed that R. cuvieri ("Cuvier's Toucan") and R. tucanus form a broad hybrid zone in northern and eastern Amazonia, and, therefore, treated cuvieri (with inca, also considered a separate species by Peters 1948) as a subspecies of Ramphastos tucanus; see also Short & Horne (2001); this treatment has been followed by most subsequent authors, but Sibley & Monroe (1990) and del Hoyo & Collar (2014) continued to treat cuvieri as a species, following earlier classifications (e.g., Cory 1919, Peters 1948, Meyer de Schauensee 1970). Genetic data (Patané et al. 2009) are consistent with their treatment as conspecific; see also Donegan et al. (2015).

22b. Also known as "White-breasted Toucan" (Haffer 1974, Hilty 2003) and "Red-billed Toucan" (Meyer de Schauensee 1970).

Page 26: Remsen/SACCBaseline05.docx · Web vie

23. Haffer (1974) considered Ramphastos tucanus and R. ambiguus (including swainsonii) to form a superspecies; genetic data (Patané et al. 2009) indicate that they are sister taxa.

23b. "Ramphastos aurantiirostris," formerly (e.g., Peters 1948, Phelps & Phelps 1958a, Meyer de Schauensee 1966, 1970) treated as a species, is only a color variant of nominate R. tucanus (Pinto 1938, Haffer 1974). See Hybrids and Dubious Taxa.

24. Haffer (1974) considered the taxon swainsonii to be a subspecies of R. ambiguus, and this treatment has been followed by Short & Horne (2001, 2002b); they have very similar if not identical voices and differ only in color of facial skin and mandible (e.g., Prum 1988b). Others continue to treat them as component species in a superspecies (e.g., AOU 1998, Ridgely & Greenfield 2001). Stiles et al. (1999) noted vocal and biometric differences between abbreviatus and ambiguus and noted that abbreviatus of the Magdalena valley should be treated as conspecific with swainsonii (not ambiguus as treated by some authors) if the species is split. The R. a. swainsonii group and R. a. ambiguus apparently replace one another on opposite slopes of the Eastern Andes and show a 1.4% difference in mtDNA sequences (Donegan et al. 2007). Treatment of swainsonii as a species (e.g., Ridgway 1914, Cory 1919, Peters 1948, Meyer de Schauensee 1970) may have persisted because of the sympatry between it and R. brevis, which was described as, and long thought to be, a subspecies of ambiguus (e.g., Peters 1948, Meyer de Schauensee 1966; see Short & Horne 2001, Short & Horne 2002b). SACC proposal to treat swainsonii as a separate species did not pass.

25. Called "Yellow-throated Toucan" by Haffer (1974), Short & Horne (2001), Short & Horne (2002b), and del Hoyo & Collar (2014). SACC proposal passed to change to “Yellow-throated Toucan”.

__________________________________________________

PICIDAE (WOODPECKERS) 1Picumninae

Picumnus aurifrons Bar-breasted Piculet 2, 3, 4Picumnus pumilus Orinoco Piculet 5, 5aPicumnus lafresnayi Lafresnaye's Piculet 4, 5Picumnus exilis Golden-spangled Piculet 5b, 6, 7Picumnus sclateri Ecuadorian PiculetPicumnus squamulatus Scaled PiculetPicumnus spilogaster White-bellied Piculet 8, 9Picumnus minutissimus Arrowhead Piculet 8, 9, 10, 16Picumnus pygmaeus Spotted Piculet 11, 17b

Page 27: Remsen/SACCBaseline05.docx · Web vie

Picumnus steindachneri Speckle-chested PiculetPicumnus varzeae Varzea Piculet 11, 12Picumnus cirratus White-barred Piculet 12, 13, 14, 16Picumnus dorbignyanus Ocellated Piculet 13, 15, 16Picumnus temminckii Ochre-collared Piculet 13, 16Picumnus albosquamatus White-wedged Piculet 16, 17, 17bPicumnus fuscus Rusty-necked Piculet 18Picumnus rufiventris Rufous-breasted PiculetPicumnus fulvescens Tawny Piculet 19, 20Picumnus limae Ochraceous Piculet 19, 20Picumnus nebulosus Mottled Piculet 20, 20aPicumnus castelnau Plain-breasted Piculet 21Picumnus subtilis Fine-barred Piculet 21Picumnus olivaceus Olivaceous Piculet 22Picumnus granadensis Grayish Piculet 22Picumnus cinnamomeus Chestnut Piculet

PicinaeMelanerpes candidus White Woodpecker 23Melanerpes formicivorus Acorn Woodpecker 24, 25Melanerpes cruentatus Yellow-tufted Woodpecker 26, 27, 28, 29Melanerpes flavifrons Yellow-fronted Woodpecker 26, 27Melanerpes pulcher Beautiful Woodpecker 26, 30, 31Melanerpes pucherani Black-cheeked Woodpecker 26, 30Melanerpes cactorum White-fronted Woodpecker 32Melanerpes rubricapillus Red-crowned Woodpecker 33, 34, 35Sphyrapicus varius Yellow-bellied Sapsucker (V) 35aPicoides fumigatus Smoky-brown Woodpecker 41, 41a, 41bVeniliornis kirkii Red-rumped Woodpecker 41, 44Veniliornis cassini Golden-collared Woodpecker 45Veniliornis spilogaster White-spotted Woodpecker 42Veniliornis mixtus Checkered Woodpecker 36, 37, 38Veniliornis lignarius Striped Woodpecker 36, 37Veniliornis sanguineus Blood-colored WoodpeckerVeniliornis passerinus Little Woodpecker 42, 43Veniliornis frontalis Dot-fronted Woodpecker 42Veniliornis callonotus Scarlet-backed WoodpeckerVeniliornis dignus Yellow-vented Woodpecker 39, 40Veniliornis nigriceps Bar-bellied Woodpecker 40Veniliornis affinis Red-stained Woodpecker 44, 45, 46

Page 28: Remsen/SACCBaseline05.docx · Web vie

Veniliornis chocoensis Choco Woodpecker 45Veniliornis maculifrons Yellow-eared WoodpeckerPiculus leucolaemus White-throated Woodpecker 47, 47a, 48, 49,

35Piculus litae Lita Woodpecker 48Piculus flavigula Yellow-throated Woodpecker 50Piculus chrysochloros Golden-green Woodpecker 51, 52Piculus aurulentus White-browed Woodpecker 51Colaptes rubiginosus Golden-olive Woodpecker 47, 53, 54, 55Colaptes rivolii Crimson-mantled Woodpecker 47, 55, 56, 57Colaptes atricollis Black-necked Woodpecker 58, 59, 35Colaptes punctigula Spot-breasted Woodpecker 58, 59, 61Colaptes melanochloros Green-barred Woodpecker 58, 59, 60,

61Colaptes pitius Chilean Flicker 62, 63Colaptes rupicola Andean Flicker 62, 63, 64Colaptes campestris Campo Flicker 62, 65, 66Celeus loricatus Cinnamon Woodpecker 66Celeus torquatus Ringed Woodpecker 74, 75Celeus galeatus Helmeted Woodpecker 76, 76aCeleus grammicus Scale-breasted Woodpecker 66, 68Celeus undatus Waved Woodpecker 66Celeus flavus Cream-colored Woodpecker 72Celeus spectabilis Rufous-headed Woodpecker 73Celeus obrieni Kaempfer's Woodpecker 73, 73aCeleus elegans Chestnut Woodpecker 69, 70, 70aCeleus lugubris Pale-crested Woodpecker 69, 70a, 71Celeus flavescens Blond-crested Woodpecker 69, 69aDryocopus lineatus Lineated Woodpecker 76a, 77, 78, 79Dryocopus schulzi Black-bodied Woodpecker 77, 80, 80aCampephilus pollens Powerful Woodpecker 81, 82Campephilus haematogaster Crimson-bellied Woodpecker 82,

83, 84Campephilus rubricollis Red-necked Woodpecker 81, 85, 85aCampephilus robustus Robust WoodpeckerCampephilus melanoleucos Crimson-crested Woodpecker 81,

86, 87Campephilus gayaquilensis Guayaquil Woodpecker 81, 87Campephilus leucopogon Cream-backed Woodpecker 81Campephilus magellanicus Magellanic Woodpecker 88

Page 29: Remsen/SACCBaseline05.docx · Web vie

__________________________________________________

1. The monophyly of the Picidae has never been seriously questioned. Within the Piciformes, evidence supports a sister relationship to the Old World Indicatoridae (<REFS>, Prychitko & Moore 2003, Cracraft et al. 2004, Fain & Houde 2004, Webb & Moore 2005, Benz et al. 2006, Ericson et al. 2006, Hackett et al. 2008). The linear arrangement and composition of genera below in general follows that of Short (1982), who placed the piculets in a separate subfamily, Picumninae, and divided the typical woodpeckers, Picinae, into six tribes, four of which have representatives in South America: Melanerpini for a broadly defined Melanerpes and Sphyrapicus; Campetherini for a broadly defined Picoides and Veniliornis; Colaptini for Piculus, Colaptes, and Celeus; and Campephilini for Dryocopus and Campephilus. In general, Short's classification, culminating in a monographic treatment of the family (Short 1982), merged many previously recognized genera into many fewer, broadly defined genera. <incorp. Goodge 1972>. Genetic data (Webb & Moore 2005, Benz et al. 2006) that most of these groups are not monophyletic. Webb and Moore (2005), generally supported by Benz et al. (2006), recommended a classification with three tribes for the three major groups in the Picinae: (1) Malarpicini for Colaptes, Piculus, Celeus, Dryocopus, and several Old World genera; (2) Dendropicini for Picoides, Veniliornis, Melanerpes, Sphyrapicus, and several Old World genera; and (3) Campephilus, Chrysocolaptes, and two Old World genera. Proposal pending for change in linear sequence. Genetic data (Benz et al. 2006) support the monophyly and distinctiveness of the Picumninae (Picumnus and Old World Sasia, but not Caribbean Nesoctites) as the sister taxon to all other woodpeckers.

2. Species-level taxonomy in the genus Picumnus needs major re-evaluation; interbreeding, to varying degrees, between various pairs of parapatric and partially sympatric species is inordinately high; see Short (1982).

3. Following Short (1982), Sibley & Monroe (1990), and Winkler & Christie (2002), Picumnus aurifrons here includes P. borbae (with juruanus), treated as a separate species (as "Bar-breasted Piculet," with aurifrons called "Gold-fronted Piculet") by Peters (1948), Meyer de Schauensee (1970), and others. The subspecies wallacii was also formerly (e.g., Cory 1919) considered a separate species from Picumnus aurifrons, but Peters (1948) treated them as conspecific. The subspecies pusillus was described and treated as a separate species (Pinto 1937), but Peters (1948) treated it as conspecific with P. aurifrons.

4. Picumnus lafresnayi was formerly (e.g., Peters 1948, Meyer de Schauensee 1970) considered a subspecies of P. aurifrons, but see Short (1982) for rationale for treating as a separate species, representing a return to the classification of Cory (1919). The subspecies punctifrons was also formerly

Page 30: Remsen/SACCBaseline05.docx · Web vie

(e.g., Cory 1919) considered a separate species, but Peters (1948) treated them as conspecific. Short (1982) proposed that the sister species of P. lafresnayi could be either P. aurifrons or P. exilis.

5. Picumnus pumilus was formerly (e.g., Short 1982) treated as a subspecies of P. lafresnayi, and they are presumed sister species that form a superspecies (Sibley & Monroe 1990); they overlap slightly in se. Colombia with no sign of interbreeding (Hilty & Brown 1986, Winkler & Christie 2002).

5a. "Picumnus stellae," known from the Río Orinoco, Venezuela, and treated as a valid species by Cory (1919), is now considered a synonym of P. pumilus (Peters 1948). See Hybrids and Dubious Taxa.

5b. Picumnus exilis was considered by Short (1982) to be most closely related to the P. aurifrons group (of Note 3 above). Rêgo et al. (2014) presented evidence that P. exilis actually consists of five PSC species.

6. The taxon nigropunctatus was formerly (e.g., Phelps & Phelps 1958a, Meyer de Schauensee 1970) considered a separate species ("Black-spotted Piculet") from Picumnus exilis, but Short (1982) stated that it was a synonym of P. exilis, and this treatment was followed by Sibley & Monroe (1990). It continues to be ranked as a species by Rodner et al. (2000) and Winkler & Christie (2002), based in part on unpublished data of M. Lentino, which is summarized in Winkler & Christie (2002). Rêgo et al. (2014) provided evidence that it is a junior synonym of Picumnus squamulatus obsoletus; Del Hoyo & Collar (2014) continued to treat it as a separate species.

7. The subspecies undulatus, buffoni, and salvini were formerly (e.g., Cory 1919) each considered a separate species from Picumnus exilis, but Peters (1948) treated them all as conspecific.

8. The subspecies pallidus was formerly (e.g., Pinto 1937, Peters 1948) considered a separate species from Picumnus spilogaster, or was considered as a subspecies of Picumnus minutissimus (Meyer de Schauensee 1966); plumage pattern, however, favors treatment as a subspecies of P. spilogaster (Short 1982, Winkler & Christie 2002).

9. Picumnus spilogaster was formerly (e.g., Cory 1919, Pinto 1937, Peters 1948) known as P. leucogaster, but see Zimmer & Phelps (1950) and Meyer de Schauensee (1966); Peters (1948) considered it a synonym of P. minutissimus, but see <REF-check Short book>.

10. Called "Guianan Piculet" in Sibley & Monroe (1990) and Dickinson (2003).

11. Meyer de Schauensee (1966) suggested that Picumnus varzeae might be a subspecies of P. pygmaeus, but see Short (1982).

Page 31: Remsen/SACCBaseline05.docx · Web vie

12. Picumnus varzeae and P. cirratus hybridize to an uncertain extent along the Amazon River (Short 1982).

13. Picumnus cirratus, P. dorbignyanus, and P. temminckii are considered to form a superspecies (Sibley & Monroe 1990, Winkler & Christie 2002); they interbreed to varying and uncertain degrees where parapatric (Short 1982, Winkler & Christie 2002), and thus have all been considered conspecific by some (e.g., Short 1982). Relationships among these three and also P. albosquamatus (see Note 16) are badly in need of detailed study; see also Hayes (1995).

14. The Peruvian subspecies jelskii was formerly (e.g., Cory 1919) considered a separate species from Picumnus cirratus, but Peters (1948) treated them as conspecific, and this has been followed by Short (1982) and most subsequent classifications.

15. Winkler & Christie (2002) pointed out that an error has been perpetuated in the spelling of the species name, usually given incorrectly as "dorbygnianus" (e.g., Meyer de Schauensee 1970).

16. Picumnus albosquamatus interbreeds to varying uncertain degrees with P. dorbignyanus, P. temminckii, and P. cirratus (Short 1982, Winkler & Christie 2002), and may be part of that superspecies (Short 1982); it was considered conspecific with P. minutissimus by Meyer de Schauensee (1966), following Gyldenstolpe (1945), but see Short (1982).

17. The southern Brazilian subspecies guttifer was formerly (e.g., Cory 1919, Pinto 1937, Peters 1948) considered a separate species from Picumnus albosquamatus/minutissimus, but Meyer de Schauensee (1966) and Short (1982) treated them as conspecific, following Bond and Meyer de Schauensee (1943).

17b. "Picumnus asterias," known only from the type specimen from "Brazil" and treated as a valid species by Cory (1919), Pinto (1937), and Peters (1948), and as tentatively valid by Meyer de Schauensee (1966), is possibly a variant of P. pygmaeus (Meyer de Schauensee 1966, 1970) or P. albosquamatus guttifer (Short 1982, Sibley & Monroe 1990). "Picumnus arileucus," described from Mato Grosso and treated as a valid species by Pinto (1937), is now considered a synonym of P. albosquamatus corumbanus (Peters 1948). See Hybrids and Dubious Taxa.

18. Picumnus fuscus was considered a doubtful species by Peters (1948) and Meyer de Schauensee (1966), and was not recognized as a species by Meyer de Schauensee (1970); Short (1982) recognized it as a valid species, and this has been followed by subsequent authors.

Page 32: Remsen/SACCBaseline05.docx · Web vie

19. Picumnus fulvescens was formerly (e.g., Meyer de Schauensee 1970) treated as a subspecies of P. limae; they are presumably sister species (Winkler & Christie 2002); see Short (1982) for rationale for treating fulvescens as a species, Picumnus limae saturatus is a synonym of P. fulvescens; see Pinto (1978).

20. Short (1982) suspected that Picumnus nebulosus might be closely related to P. fulvescens and P. limae.

20a. "Picumnus iheringi," known from southeastern Brazil; and treated as a valid species by Pinto (1937), is now considered a synonym of P. nebulosus (Gyldenstolpe 1945, Peters 1948).

21. Picumnus castelnau and P. subtilis were considered to be sister species by Short (1982) and Winkler & Christie (2002); they may occasionally hybridize (Short 1982).

22. Picumnus olivaceus and P. granadensis were considered to form a superspecies by Short (1982), Sibley & Monroe (1990), and Winkler & Christie (2002), and evidence for treatment as separate species is weak; they were formerly (e.g., Ridgway 1914) considered conspecific.

23. Melanerpes candidus was formerly (e.g., Cory 1919, Pinto 1937, Peters 1948, Meyer de Schauensee 1970) placed in the monotypic genus Leuconerpes, but most authors have followed Short (1982) in merging this into Melanerpes.

24. Melanerpes formicivorus was formerly (e.g., Ridgway 1914, Cory 1919) placed in a separate genus Balanosphyra, but most authors have followed Peters (1948) in merging this into Melanerpes.

25. The Colombian subspecies flavigula was formerly (e.g., Cory 1919) considered a separate species from Middle American Melanerpes formicivorus, but Peters (1948) and Short (1982) treated them as conspecific.

26. Melanerpes cruentatus, M. flavifrons, M. chrysauchen, and M. pucherani were formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) treated in a separate genus, Tripsurus, but Peters (1948) merged this into Melanerpes; these four species were considered by Short (1982) to form a superspecies.

27. Melanerpes cruentatus and M. flavifrons form a superspecies (Short 1982, Sibley & Monroe 1990, Winkler & Christie 2002).

28. Called "Red-fronted Woodpecker" by Short (1982).

Page 33: Remsen/SACCBaseline05.docx · Web vie

29. The form "rubrifrons" was formerly (e.g., Pinto 1937, Phelps & Phelps 1958a, Meyer de Schauensee 1966, 1970) considered a separate species, but most recent authors have followed Griscom & Greenway (1941) and Short (1982) in treating it as a regional color morph of M. cruentatus.

30. Melanerpes chrysauchen and M. pucherani form a superspecies (Sibley & Monroe 1990, Winkler & Christie 2002). Short (1982) also included M. cruentatus and M. flavifrons in this superspecies; in head and back pattern, M. flavifrons is more similar to distant M. chrysauchen and M. pucherani than it is to nearby M. cruentatus.

31. The Colombian taxon pulcher was considered a separate species from Central American Melanerpes chrysauchen by Cory (1919), Eisenmann (1955), and Stiles & Skutch (1989); however, Peters (1948) treated them as conspecific, and that treatment has been followed by most subsequent authors (e.g., Meyer de Schauensee 1979, Short 1982, Hilty & Brown 1986, Winkler et al. 1995, AOU 1998, Winkler & Christie 2002, Dickinson 2003). Wetmore (1968) provided rationale for treating pulcher as a separate species, as noted by Meyer de Schauensee (1966), but this has not been followed by most subsequent authors. SACC proposal passed to recognize pulcher as separate species.

32. Melanerpes cactorum was formerly (e.g., Cory 1919, Peters 1948, Meyer de Schauensee 1970) placed in a separate monotypic genus Trichopicus, but recent authors have followed Short (1982) in merging this into Melanerpes, as suggested long ago by Wetmore (1926).

33. Melanerpes rubricapillus was formerly (e.g., Ridgway 1914, Cory 1919, Phelps & Phelps 1958a) placed in the genus Centurus, along with many North and Middle American species; Peters (1948) merged Centurus into Melanerpes, and this has been followed by most recent authors.

34. Melanerpes rubricapillus was considered conspecific with Middle American M. pygmaeus by Peters (1948) and Short (1982); they were treated as members of a superspecies by Sibley & Monroe (1990), and Winkler & Christie (2002).

35. Melanerpes rubricapillus was formerly (e.g., Ridgway 1914, Cory 1919) known as M. subelegans, but see Peters (1948).

35a. Published photograph report from n. Colombia in the Santa Marta Mountains (Luna et al. 2011). SACC proposal passed to move to main list.

36. Veniliornis lignarius and V. mixtus form a superspecies (Short 1982, Fjeldså & Krabbe 1990, Sibley & Monroe 1990, Winkler & Christie 2002); justification is weak for their treatment as separate species (Short 1970, 1971, 1982); genetic data (Weibel & Moore 2002a, b) confirm their relationship as sister species.

Page 34: Remsen/SACCBaseline05.docx · Web vie

37. Veniliornis lignarius and V. mixtus were formerly (e.g., Cory 1919, Pinto 1937) treated in a separate genus, Dyctiopicus, but Peters (1948) merged this into Dendrocopos, which was then merged into Picoides by Short (1970, 1971, 1982); see Goodwin (1968) and Ouellet (1978) for differing view. Recent genetic data (Weibel & Moore 2002a, 2002b, Webb & Moore 2005), however, indicate that the widespread genus Picoides is polyphyletic unless Veniliornis and Dendropicos are included. In particular, the two South American species formerly treated in Picoides are more closely related to Veniliornis (as represented by V. nigriceps and V. callonotus) than they are to Northern Hemisphere Picoides; see also Moore et al. (2006). This result is exceptionally robust with respect to analytical techniques, and it includes both mitochondrial and nuclear genes. However, it might be best to wait for additional taxon-sampling before proposing a merger (and to wait for broader rearrangement of Picoides, which consists of at least five lineages worthy of generic recognition, including restoration of Dendrocopos and Dryobates). Data from Moore et al. (2006), however, require removal of lignarius and mixtus from Picoides. SACC proposal passed to transfer to Veniliornis. SACC proposal passed to change linear sequence within Veniliornis.

38. The northeastern subspecies cancellatus was formerly (e.g., Cory 1919, Pinto 1937) considered a separate species from Veniliornis mixtus, but Peters (1948) treated them as conspecific; they intergrade where their ranges meet in northeastern Paraguay (Short 1982).

39. The Peruvian subspecies valdizani was formerly (e.g., Cory 1919) considered a separate species from Veniliornis dignus, but Peters (1948) and Short (1982) treated them as conspecific.

40. Short (1982) noted that plumage similarities suggest that Veniliornis dignus and V. nigriceps are sister species, but see Moore et al. (2006).

41. Winkler et al. (2014) resurrected Dryobates and placed all South American Picoides and Veniliornis in that genus; however, this was based on a single mitochondrial locus. Del Hoyo & Collar (2014) followed this except that they also resurrected Leuconotopicus for some New World Picoides (including fumigatus) and retained Veniliornis. Fuchs & Pons (2015) also resurrected Leuconotopicus for fumigatus, restricting Picoides to the Holarctic three-toed species. Proposal needed. <<wait NACC>>

41a. Veniliornis fumigatus was formerly (e.g., Ridgway 1914, Cory 1919) known as V. oleaginus, but see Peters (1948).

41b. Genetic data (Moore et al. 2006) indicate that Veniliornis fumigatus is embedded within Picoides and is not closely related to Veniliornis sense stricto. SACC proposal passed to transfer to Picoides. Peters (1948) stated Gray (1855) designated fumigatus as the type species of Veniliornis, but this is

Page 35: Remsen/SACCBaseline05.docx · Web vie

incorrect: Gray designated sanguineus as the type species (as noted by Cory 1919).

42. Veniliornis passerinus and V. frontalis are sister taxa (Zimmer 1942a, Moore et al. 2006) that form a superspecies (Short 1982); they may hybridize to a limited extent (Short 1982, Winkler & Christie 2002). Short (1982) also noted that plumage similarities suggest that V. spilogaster might be the sister species to V. dignus + V. nigriceps, but see Moore et al. (2006).

43. The subspecies taenionotus (with "cearae") of eastern Brazil was formerly (e.g., Cory 1919) considered a separate species from Veniliornis passerinus, but Zimmer (1942a), Peters (1948), and Short (1982) treated them as conspecific. The subspecies fidelis, agilis, and olvinus were also formerly (e.g., Cory 1919) each considered separate species from V. passerinus, but Zimmer (1942a), Peters (1948), and Short (1982) also treated them all as conspecific.

44. Veniliornis kirkii, V. affinis, V. cassini, and V. maculifrons were considered to form a superspecies (Short 1982, Haffer 1987, Sibley & Monroe 1990, Winkler & Christie 2002); however, the apparent broad geographic overlap between V. kirkii and V. a. chocoensis would invalidate the superspecies designation, as does the phylogeny of the genus (Moore et al. 2006).

45. The taxon chocoensis was formerly (e.g., Meyer de Schauensee 1970) regarded as a subspecies of Veniliornis cassini, but it was transferred to V. affinis by Short (1974, 1982). It was treated as a separate species ("Choco Woodpecker") by Sibley & Monroe (1990), Winkler et al. (1995), Ridgely & Greenfield (2001), and Winkler & Christie (2002), but little evidence is published to support this; chocoensis differs from V. affinis and V. cassini only in minor plumage details. SACC proposal passed to elevate chocoensis to species rank.

46. The subspecies ruficeps (with "haematostygma" = hilaris; see Zimmer 1942a) and orenocensis were formerly (e.g., Cory 1919) both considered separate species from Veniliornis affinis, but they were all treated as conspecific by Zimmer (1942a), Peters (1948), and Short (1982).

47. Genetic data (Webb & Moore 2005, Benz et al. 2006. Moore et al. 2011) indicate that the genus Piculus is paraphyletic with respect to Colaptes: P. rubiginosus and P. rivolii are embedded within Colaptes. SACC proposal passed to transfer the latter two to Colaptes.

47a. The name formerly (e.g., Ridgway 1914, Cory 1919) used for the genus Piculus was Chloronerpes, but see Peters (1948).

Page 36: Remsen/SACCBaseline05.docx · Web vie

48. The subspecies litae of the Chocó was formerly (e.g., Cory 1919) considered a separate species from Piculus leucolaemus; Peters (1948) treated them as conspecific, and this was followed by many subsequent authors (e.g., Meyer de Schauensee 1970, Short 1982). Recently, litae was treated as a species ("Lita Woodpecker") by Sibley & Monroe (1990), Ridgely & Greenfield (2001), and Winkler & Christie (2002), but published evidence to support this is weak. On the other hand, litae resembles P. flavigula in some aspects of its plumage as much as it does P. leucolaemus; in fact, specimens of litae from southwestern Colombia have been misidentified as P. flavigula (REF, Winker & Christie 2002). SACC proposal passed to elevate litae to species rank.

49. Sibley & Monroe (1990) considered Piculus leucolaemus to form a superspecies with Middle American P. simplex and P. callopterus; some authors (e.g., Short 1982, AOU 1983) have considered them all as conspecific, and Peters (1948) considered P. callopterus to be a subspecies of P. leucolaemus. See Wetmore (1968) and Stiles & Skutch (1989) for rationale for treating them as separate species.

50. The subspecies erythropis of eastern and southeastern Brazil was formerly (e.g., Cory 1919, Pinto 1937) considered a separate species from Piculus flavigula, but Peters (1948) and Short (1982) treated them as conspecific; Winkler & Christie (2002) suggested that it might deserve recognition as a separate species.

51. Piculus chrysochloros and P. aurulentus form a superspecies (Short 1982, Sibley & Monroe 1990, Winkler & Christie 2002).

52. The subspecies xanthophyllous was formerly (e.g., Cory 1919) considered a separate species from Piculus chrysochloros, but Peters (1948) and Short (1982) treated them as conspecific.

53. Piculus rubiginosus and Middle American P. auricularis form a superspecies (Short 1982, Sibley & Monroe 1990, Winker & Christie 2002). Moore et al. (2011) and Dufort (2015) found that P. rubiginosus was not a monophyletic taxon, with some populations more closely related to P. auricularis and other to P. atricollis than to other rubiginosus populations.

54. The Peruvian subspecies chrysogaster was formerly (e.g., Cory 1919) considered a separate species from Piculus rubiginosus, but Peters (1948) and Short (1982) treated them as conspecific.

55. Short (1982) considered Colaptes rivolii to be the sister species to C. rubiginosus/auricularis based on plumage similarities, but see Moore et al. (2011).

Page 37: Remsen/SACCBaseline05.docx · Web vie

56. Colaptes rivolii was formerly (e.g., Cory 1919) treated in a separate genus, Hypoxanthus, but Peters (1948) merged this into Piculus.

57. The southern subspecies atriceps was formerly (e.g., Cory 1919) considered a separate species from Colaptes rivolii, but Peters (1948) and Short (1982) treated them as conspecific. Del Hoyo & Collar (2014) treated atriceps as a separate species (“Black-crowned Woodpecker”).

58. Colaptes atricollis, C. punctigula, and C. melanochloros were formerly (e.g., Cory 1919, Pinto 1937, Peters 1948, Phelps & Phelps 1958a, Meyer de Schauensee 1970) treated in a separate genus, Chrysopterus, but Short (1965, 1972a, 1982) merged this into Colaptes. Ridgely & Greenfield (2001) and Hilty (2003) retained Chrysoptilus for punctigula only. Plumage similarities of these three species to Piculus suggested that further study may reveal a closer relationship to that genus; in fact, recent genetic data with limited taxon-sampling suggest that Piculus and South American Colaptes are more closely related to each other than either is to North American Colaptes (Prychitko & Moore 2000, Weibel & Moore 2002a, b; see also Webb & Moore 2005).

59. Colaptes atricollis, C. punctigula, and C. melanochloros were called "Flickers" by Short (1982).

60. The subspecies melanolaimus (with nigroviridis and leucofrenatus) was formerly (e.g., Cory 1919, Traylor 1951c, Meyer de Schauensee 1970; but not Laubmann 1934, Peters 1948) considered a separate species ("Golden-breasted Woodpecker") from Colaptes melanochloros, but they intergrade where in contact (Short 1972a, Hayes 1995, Winkler & Christie 2002). The subspecies nigroviridis and "mariae" were also formerly (e.g., Cory 1919) each considered separate species from Colaptes melanochloros, but Peters (1948) treated them all as conspecific; "mariae" is not currently recognized as a valid taxon at any level (Short 1972a, 1982, Winkler & Christie 2002).

61. Short (1972a, 1982) and Sibley & Monroe (1990) considered Colaptes punctigula and C. melanochloros to form a superspecies.

62. Colaptes campestris and C. rupicola were formerly (e.g., Cory 1919) treated in a separate genus, Soroplex, but Peters (1948) merged this into Colaptes. Colaptes pitius was also formerly (e.g., Cory 1919) treated in a separate monotypic genus, Pituipicus, but Peters (1948) also merged this into Colaptes. Short (1982) considered Colaptes campestris to be the sister species to Colaptes pitius + C. rupicola, but see Moore et al. (2011). Although these South American flickers have been considered congeneric with North American Colaptes since Peters (1948), their distribution and plumage similarities to Piculus and "Chrysoptilus" suggest that their morphological similarities to North American flickers may be due to convergence, as verified by Moore et al. (2011). Short (1972a) proposed that the broadly defined Colaptes was the

Page 38: Remsen/SACCBaseline05.docx · Web vie

sister genus to Piculus, and he suspected that they could be merged into a single genus, as partially confirmed by Moore et al. (2011).

63. Plumage similarities and somewhat complementary distributions suggested that Colaptes pitius and C. rupicola are sister species (Short 1982), and this was confirmed by Moore et al. (2011).

64. The northern subspecies cinereicapillus and puna were formerly (e.g., Cory 1919) both considered separate species from Colaptes rupicola, but Peters (1948) and Short (1982) treated them all as conspecific; Short (1972a) interpreted patterns of geographic variation in cinereicapillus, puna, and nominate rupicola to suggest intergradation among the three forms. Short (1982) reported differences in vocalizations between cinereicapillus and the other taxa, but it hybridizes to some extent with C. r. puna where in contact in central Peru. Del Hoyo & Collar (2014) treated cinereicapillus as a separate species based largely on plumage differences.

65. The subspecies campestroides was formerly (e.g., Cory 1919, Meyer de Schauensee 1970; but not Pinto 1937 or Peters 1948) considered a separate species ("Field Flicker") from Colaptes campestris, but they evidently freely interbreed where in contact (Short 1972a, 1982, Winkler & Christie 2002). Del Hoyo & Collar (2014) treated campestroides as a separate species (“Pampas Flicker”) based on plumage differences and unpublished minor vocal differences.

66. Haffer (1974) considered Celeus loricatus, C. grammicus, and C. undatus to form a superspecies; however, Short (1982), Sibley & Monroe (1990), and Winkler & Christie (2002) excluded loricatus from the superspecies. Genetic data (Benz & Robbins 2011), however, indicate that loricatus and torquatus are sisters and that together they are sister to all other Celeus. SACC proposal passed to change linear sequence. Benz & Robbins (2011) also found that C. undatus and C. grammicus are sisters, but noted that they might be best treated as conspecific. Proposal needed.

67. [deleted]

68. Called "Scaly-breasted Woodpecker" by Winkler & Christie (2002).

69. Short (1972b, 1982) and Sibley & Monroe (1990) considered Celeus elegans, C. lugubris, C. flavescens, and Middle American C. castaneus to form a superspecies; Peters (1948) considered lugubris to be conspecific with C. flavescens. Celeus elegans and C. lugubris occasionally hybridize where in contact in Brazil (Short 1972b). Benz & Robbins (2011) found that C. castaneus is not a member of this group, but is sister to C. undatus + C. grammicus; the other three formed a monophyletic group (see also Note 69a).

Page 39: Remsen/SACCBaseline05.docx · Web vie

69a. Genetic data (Benz & Robbins 2011) revealed that the subspecies ochraceus of eastern Brazil is actually the sister to C. flavescens + C. elegans + C. lugubris, and treated it as a separate species. Del Hoyo & Collar (2014) treated ochraceus as a separate species (“Ochre-backed Woodpecker”) based on these results. SACC proposal pending to elevate ochraceus to species rank.

70. The subspecies citreopygius and jumana were formerly (e.g., Cory 1919, Pinto 1937) both considered separate species from Celeus elegans; Peters (1948) treated citreopygius and jumana as conspecific, but still considered jumana to be a separate species from C. elegans. Meyer de Schauensee (1966) and Short (1972b, 1982) considered the jumana group to be conspecific with C. elegans, and this has been followed by subsequent authors; they evidently intergrade in eastern Venezuela (Short 1972b). However, Benz & Robbins (2011) found that the jumana group was the sister to C. flavescens, not the elegans group, but recommended additional analyses.

70a. "Celeus roosevelti," described from southwestern Brazil and treated as a valid species by Cory (1919), is now considered a probable hybrid or backcross between C. elegans jumanus and C. lugubris (Short 1972b). See Hybrids and Dubious Taxa.

71. The subspecies kerri was formerly (e.g., Cory 1919) considered a separate species from Celeus lugubris, but Peters (1948) and Short (1972b, 1982) treated them as conspecific.

72. Celeus flavus was formerly (e.g., Cory 1919, Pinto 1937) treated in a separate monotypic genus, Crocomorphus, but Peters (1948) merged this into Celeus.

73. Celeus obrieni, known from one specimen from Piauí, Brazil, is traditionally (e.g., Short 1973, 1982) considered a subspecies of C. spectabilis, but it differs so dramatically in plumage from C. spectabilis that this seems unlikely (Whittaker & Oren 1999, Winkler & Christie 2002). SACC proposal passed to elevate obrieni to species rank. Genetic data (Benz & Robbins 2011, Azevedo et al. 2013) also support treatment as a separate species, sister to C. spectabilis.

73a. Formerly known as "Caatinga Woodpecker”. SACC proposal passed to change English name.

74. Celeus torquatus was formerly (e.g., Cory 1919, Pinto 1937) treated in a separate genus, Cerchneipicus, but Peters (1948) merged this into Celeus.

75. The subspecies tinnunculus (with occidentalis) was formerly (e.g., Cory 1919, Pinto 1937) considered a separate species from Celeus torquatus, but Peters (1948) and Short (1982) treated them as conspecific. Del Hoyo & Collar (2014) treated both tinnunculus and occidentalis as separate species (“Atlantic

Page 40: Remsen/SACCBaseline05.docx · Web vie

Black-breasted Woodpecker”, “Amazonian Black-breasted Woodpecker”) based on plumage differences.

76. Winkler et al. (2014) found that Old World Dryocopus were more closely

related to Mulleripicus than either is to New World Dryocopus and thus merged Mulleripicus into Dryocopus. Del Hoyo & Collar (2014), however, resurrected Hylatomus for New World Dryocopus.

76a. Dryocopus lineatus and D. galeatus were formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) treated in a separate genus, Ceophloeus, but Peters (1948) merged this into Dryocopus. Short (1982) noted that D. galeatus shares some plumage and structural features with Celeus, especially C. spectabilis. Benz et al. (2015) found that D. galeatus is indeed a Celeus. SACC proposal passed to transfer galeatus to Celeus.

77. Dryocopus lineatus and D. schulzi, along with North American D. pileatus, are considered to form a superspecies by Mayr and Short (1970), Short (1982), Sibley & Monroe (1990), and Winkler & Christie (2002); D. lineatus and D. schulzi hybridize to a limited extent where their ranges meet (Short 1982, Hayes 1995).

78. The subspecies fuscipennis of western Ecuador and northwestern Peru was formerly (e.g., Cory 1919) considered a separate species from Dryocopus lineatus, but Peters (1948) and Short (1982) treated them as conspecific. Del Hoyo & Collar (2014) treated fuscipennis as a separate species (“Dusky-winged Woodpecker”).

79. The subspecies erythrops was formerly (e.g., Cory 1919, Pinto 1937, Peters 1948) considered a separate species from Dryocopus lineatus; it has been considered a color morph of D. lineatus (Pinto 1947, Pergolani de Costa 1962), but see Short (1975, 1982) for treatment as a subspecies of D. lineatus.

80. Dryocopus schulzi was formerly (e.g., Cory 1919) treated in a separate genus, Neophloeotomus, but Peters (1948) merged this into Dryocopus.

80a. "Dryocopus shiptoni," known from Tucumán, Argentina, and treated as a valid species by Cory (1918), is considered a variant of D. schulzi (Peters 1948, Pergolani de Costa 1962, Meyer de Schauensee 1966, Short 1982). See Hybrids and Dubious Taxa.

81. Campephilus pollens, C. rubricollis, C. melanoleucos, C. leucopogon, and C. gayaquilensis were formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) treated in a separate genus, Scapaneus, but Peters (1948) merged this into Phloeoceastes, and this was followed by Phelps & Phelps (1958a) and Meyer de Schauensee (1970). Most recent authors have followed REFS, Short (1982) in merging Phloeoceastes into Campephilus. <check robustus>

Page 41: Remsen/SACCBaseline05.docx · Web vie

82. Short (1982) considered Campephilus pollens and C. haematogaster to be sister species based on plumage and morphology.

83. Campephilus haematogaster was formerly (e.g., Ridgway 1914, Cory 1919, Pinto 1937) treated in a separate monotypic genus, Cniparchus, but Peters (1948) merged this into Phloeoceastes, which was then merged into Campephilus by REFS?, Short (1982).

84. Ridgely & Greenfield (2001) suggested that the subspecies splendens of the Western Andes might deserve recognition as a separate species from Campephilus haematogaster). Del Hoyo & Collar (2014) treated splendens as a separate species (“Splendid Woodpecker”) based on plumage plumages and unpublished vocal differences. Donegan et al. (2015) also treated it as separate species based in on vocal differences. Proposal needed.

85. The southwestern subspecies trachelopyrus was formerly (e.g., Cory 1919, Pinto 1937) considered a separate species from Campephilus rubricollis, but they intergrade in western Amazonia (Peters 1948, Short 1982).

85a. Called "Red-headed Woodpecker" in Fjeldså & Krabbe (1990), presumably a lapsus.

86. The northwestern subspecies malherbii was formerly (e.g., Cory 1919) considered a separate species from Campephilus melanoleucos, but Peters (1948) treated them as conspecific; they intergrade in eastern Colombia (Short 1982).

87. Campephilus melanoleucos and C. gayaquilensis, along with Middle American C. guatemalensis, are considered to form a superspecies by Short (1982), Fjeldså & Krabbe (1990), Sibley & Monroe (1990), and Winkler & Christie (2002); Campephilus melanoleucos and C. gayaquilensis were considered conspecific by Peters (1948), but see Meyer de Schauensee (1966).

88. Campephilus magellanicus was formerly (e.g., Cory 1919) treated in a separate monotypic genus, Ipocranter, but Peters (1948) merged this into Campephilus.

______________________________________________________________________

CARIAMIFORMES______________________________________________________________________

CARIAMIDAE (SERIEMAS) 1Cariama cristata Red-legged Seriema

Page 42: Remsen/SACCBaseline05.docx · Web vie

Chunga burmeisteri Black-legged Seriema

______________________________________________________________________

1. The Cariamidae has been traditionally included in the Gruiformes, but recent genetic and morphological data do not support their inclusion in that order or any existing orders. SACC proposal passed to move in linear sequence or orders to precede Falconiformes. See Note 1 under Gruiformes.

__________________________________________________

FALCONIFORMES 1FALCONIDAE (FALCONS) 1a

HerpetotherinaeHerpetotheres cachinnans Laughing FalconMicrastur ruficollis Barred Forest-Falcon 8Micrastur plumbeus Plumbeous Forest-Falcon 8aMicrastur gilvicollis Lined Forest-Falcon 8a, 9, 10aMicrastur mintoni Cryptic Forest-Falcon 10, 10aMicrastur mirandollei Slaty-backed Forest-FalconMicrastur semitorquatus Collared Forest-FalconMicrastur buckleyi Buckley's Forest-Falcon 10b

FalconinaeSpiziapteryx circumcincta Spot-winged Falconet 11, 11aCaracara cheriway Crested Caracara 2, 3b, 6, 7Caracara plancus Southern Caracara 6, 7Ibycter americanus Red-throated Caracara 2Phalcoboenus carunculatus Carunculated Caracara 2, 3, 3a 3bPhalcoboenus megalopterus Mountain Caracara 3, 3aPhalcoboenus albogularis White-throated Caracara 3, 4Phalcoboenus australis Striated Caracara 3, 5Daptrius ater Black Caracara 2Milvago chimachima Yellow-headed Caracara 2, 7bMilvago chimango Chimango CaracaraFalco tinnunculus Eurasian Kestrel (V) 10c, 10dFalco sparverius American Kestrel 11bFalco columbarius Merlin (NB) 11cFalco rufigularis Bat Falcon 11d, 12Falco deiroleucus Orange-breasted Falcon 12

Page 43: Remsen/SACCBaseline05.docx · Web vie

Falco femoralis Aplomado Falcon 12aFalco peregrinus Peregrine Falcon 12, 12b

__________________________________________________

1. SACC proposal passed to separate Accipitriformes from Falconiformes. See Note 1 under Accipitriformes. Ericson et al. (2006) and Hackett et al. (2008) found that the Falconiformes are actually more closely related to the Psittaciformes and Passeriformes than to any other orders. SACC proposal passed to change linear sequence of orders.

1a. The monophyly of the Falconidae is well supported (REFS, Griffiths 1999, Griffiths et al. 2004). Genetic and morphological data (Griffiths 1999, Griffiths et al. 2004, Fuchs et al. 2011) indicate that there are three major, deep divisions in the Falconidae: (1) the caracaras and Spiziapteryx, (2) the falcons (Falco plus extralimital Polihierax and Microhierax), and (3) the forest-falcons (Micrastur and Herpetotheres), with the latter group basal to the other two. SACC proposal passed to add subfamily ranks and change in linear sequence. Fuchs et al. (2014) recognized each of the three as subfamilies, i.e. Polyborinae to include Spiziapteryx and the caracaras.

2. Ibycter americanus was formerly (e.g., Hellmayr & Conover 1949, Friedmann 1950, Phelps & Phelps 1958a, Meyer de Schauensee 1970, Stresemann & Amadon 1979. Haverschmidt & Mees 1994) placed in genus Daptrius, but Griffiths (1994, 1999) and Griffiths et al. (2004) showed that americanus was more closely related to Milvago and Phalcoboenus than to D. ater, therefore requiring the resurrection of Ibycter, as proposed by Brown & Amadon (1968). Griffiths et al. (2004) also found that Caracara was basal in the caracara group. SACC proposal passed to change in linear sequence of genera.

3. Amadon & Bull (1988), ?Vuilleumier REF) considered the four species of Phalcoboenus to form a superspecies; Sibley & Monroe (1990) excluded P. australis from the superspecies. Some authors (e.g., Hellmayr & Conover 1949, Stresemann & Amadon 1979) have considered P. carunculatus and P. megalopterus conspecific with P. albogularis, but most authors have followed Amadon (1964) in treating all four as separate species.

3a. Poulsen (1993) showed that there is no evidence, contrary to earlier claims, for hybridization between Phalcoboenus megalopterus and P. carunculatus.

3b. Vuilleumier (1970) proposed that Phalcoboenus be merged into Polyborus (= Caracara), but subsequent authors have not followed this. Genetic (Griffiths et al. 2004) and morphological (Griffiths 1994)<check> data indicate that Phalcoboenus and Caracara are not sister genera.

4. Called "Darwin's Caracara" in Ferguson-Lees & Christie (2001).

Page 44: Remsen/SACCBaseline05.docx · Web vie

5. Called "Forster's Caracara" in Ferguson-Lees & Christie (2001).

6. The name formerly (e.g., Meyer de Schauensee 1970, Stresemann & Amadon 1979) used for Caracara was Polyborus, following Amadon (1954), but see Wetmore (1965) and Banks & Dove (1992) for the use of Caracara instead of Polyborus, as in Hellmayr & Conover (1949).<check Peters 1931>

7. Caracara cheriway and C. plancus were formerly considered conspecific (e.g., Hellmayr & Conover 1949, Phelps & Phelps 1958a), sometimes also including C. lutosus of Guadalupe Island (e.g., Vuilleumier 1970, Meyer de Schauensee 1970, Stresemann and Amadon 1979), but the ranges of cheriway and plancus are nearly parapatric with no sign of intergradation, contrary to earlier interpretations (see Dove & Banks 1999); they constitute a superspecies. The three forms had previously been considered separate species by Pinto (1938) and Friedmann (1950).

7a. Caracara cheriway and C. plancus were called "Northern Crested-Caracara" and "Southern Crested-Caracara" respectively in Mazar Barnett & Pearman (2001) and Ridgely & Greenfield (2001).

7b. Vuilleumier (1970) proposed that Milvago be merged into Polyborus (= Caracara), but genetic data (e.g., Griffiths et al. 2004) indicate that they are not particularly closed related. Fuchs et al. (2012) found that Milvago itself is not monophyletic, with chimachima sister to Daptrius and chimango sister to Phalcoboenus; they recommended transfer of chimango to Phalcoboenus. This was followed by Del Hoyo & Collar (2014). SACC proposal did not pass to transfer Milvago chimango to Phalcoboenus. Fuchs et al. (2014) merged Milvago, Ibycter, and Phalcoboenus into Daptrius. Proposal badly needed.

8. Fuchs et al. (2011) found strong support for the monophyly of Micrastur and for its division into two groups consistent with traditional linear sequences: (1) M. buckleyi, M. mirandollei, M. semitorquatus, and (2) the other four species.

8a. Micrastur plumbeus has been treated as a subspecies of M. gilvicollis (e.g., Meyer de Schauensee 1966, Stresemann & Amadon 1979); Sibley & Monroe (1990) considered them to form a superspecies; see Amadon (1964) for rationale treating them as sister taxa. Genetic data (Fuchs et al. 2011), however, are unable to resolve sister relationships among this, M. mintoni, M. ruficollis, and M. gilvicollis.

9. Schwartz (1972a) confirmed that Micrastur gilvicollis is a valid species, separate from M. ruficollis; although treated as separate species by Pinto (1938, 1947), Hellmayr & Conover (1949), Friedmann (1950), and Phelps &

Page 45: Remsen/SACCBaseline05.docx · Web vie

Phelps (1958a), they were treated as conspecific by Amadon (1964), Meyer de Schauensee (1970), and Blake (1977).

10. Described since Meyer de Schauensee (1970): Whittaker (2002). SACC proposal passed to recognize newly described Micrastur mintoni as a species. Genetic data (Fuchs et al. 2011) are consistent with treatment as a species.

10a. Micrastur gilvicollis and M. mintoni were considered to form a superspecies by Whittaker (2002).

10b. Micrastur buckleyi was formerly (e.g., Hellmayr & Conover 1949, Friedmann 1950) considered a variant or subspecies of M. semitorquatus, but see Traylor (1948) and Amadon (1964). Fuchs et al. (2011) further showed that it is the sister to M. mirandollei + M. semitorquatus. [incorp. Peters 1931]

10c. Recent record from São Pedro and São Paulo Archipelago off Brazil with published photographs (Bencke et al. 2005). SACC proposal passed to add to main list. Photographed in Trinidad in 2003 (Kenefick & Hayes 2006). Previous sight record from French Guiana (Tostain et al. 1992); now also photograph published from there (Renaudier et al. 2010).

10d. The sequence of species in Falco is consistent with the topology of the tree in Fuchs et al. (2014) but not the linear sequence in their proposed classification.

11. [relationships to other falcons]. Although morphological data (Griffiths 1994) suggested that Spiziapteryx was most closely related to falcons (Falco etc.), genetic data (Griffiths 1999, Griffiths et al. 2004) indicate that it is closest to the caracaras.

11a. Spiziapteryx is feminine, so the correct spelling of the species name is circumcincta (David & Gosselin 2002b).

11b. Falco sparverius was formerly (e.g., Pinto 1938) placed in the monotypic genus Cerchneis, but see <REF>.

11c. On the basis of reciprocal monophyly and comparative genetic distances, Fuchs et al. (2014) treated the Old World subspecies aesalon as a separate species from New World columbarius.

11d. The species name formerly (e.g., Chapman 1926, Peters 1931, Friedmann 1950) used for Falco rufigularis was albigularis, but see Eisenmann (1966) for use of rufigularis.

12. Stresemann & Amadon (1979) proposed that Falco deiroleucus and F. peregrinus might form a superspecies; plumage and vocal similarities,

Page 46: Remsen/SACCBaseline05.docx · Web vie

however, suggest that F. rufigularis and F. deiroleucus are sister species (Thiollay 1994).

12a. Falco femoralis was formerly (e.g., Pinto 1938, Hellmayr & Conover 1949) known as F. fuscocaerulescens, but see Peters & Griswold (1943) and Blake (1977).

12b. Falco peregrinus includes "Falco kreyenborgi", formerly considered a distinct species (e.g., Meyer de Schauensee 1970, Blake 1977, Stresemann & Amadon 1979); here treated as a color phase of F. peregrinus, following Ellis & Grant (1983); it was considered to be a color phase of F. peregrinus cassini by Peters <?1931> and Hellmayr & Conover (1949). <incorp. Amadon & Stresemann 1963> See Hybrids and Dubious Taxa.

__________________________________________________

PSITTACIFORMES 1, 1aPSITTACULIDAE (OLD WORLD PARROTS)

PsittaculinaePsittacula krameri Rose-ringed Parakeet (IN) 1aa

PSITTACIDAE (NEW WORLD AND AFRICAN PARROTS)Arinae

Touit batavicus Lilac-tailed Parrotlet 21e, 25b, 25cTouit huetii Scarlet-shouldered ParrotletTouit dilectissimus Blue-fronted Parrotlet 25b, 26, 26aTouit purpuratus Sapphire-rumped Parrotlet 25bTouit melanonotus Brown-backed Parrotlet 25b, 25dTouit surdus Golden-tailed Parrotlet 25bTouit stictopterus Spot-winged Parrotlet 25b 25ddPsilopsiagon aymara Gray-hooded Parakeet 21cPsilopsiagon aurifrons Mountain Parakeet 22, 22aBolborhynchus lineola Barred Parakeet 21eBolborhynchus ferrugineifrons Rufous-fronted Parakeet 22bBolborhynchus orbygnesius Andean Parakeet 22b, 22c, 22ccNannopsittaca panychlora Tepui Parrotlet 21e, 24gNannopsittaca dachilleae Amazonian Parrotlet 24g, 25Myiopsitta monachus Monk Parakeet 21b, 21dBrotogeris sanctithomae Tui Parakeet 21dBrotogeris tirica Plain Parakeet 21d, 23cBrotogeris versicolurus Canary-winged Parakeet 23c, 24, 24a,

24aa

Page 47: Remsen/SACCBaseline05.docx · Web vie

Brotogeris chiriri Yellow-chevroned Parakeet 23c, 24Brotogeris pyrrhoptera Gray-cheeked Parakeet 24dBrotogeris jugularis Orange-chinned Parakeet 24bBrotogeris cyanoptera Cobalt-winged Parakeet 24b, 24c, 24dBrotogeris chrysoptera Golden-winged Parakeet 24b, 24e, 24fPionopsitta pileata Pileated Parrot 28, 28aaTriclaria malachitacea Blue-bellied ParrotHapalopsittaca amazonina Rusty-faced Parrot 32Hapalopsittaca fuertesi Indigo-winged Parrot 32Hapalopsittaca pyrrhops Red-faced Parrot 32Hapalopsittaca melanotis Black-winged Parrot 31a, 31bPyrilia haematotis Brown-hooded Parrot 28, Pyrilia pulchra Rose-faced Parrot 28, 31Pyrilia pyrilia Saffron-headed Parrot 28Pyrilia barrabandi Orange-cheeked Parrot 28Pyrilia caica Caica Parrot 28Pyrilia aurantiocephala Bald Parrot 28, 30 Pyrilia vulturina Vulturine Parrot 28, 29, 30Pionus fuscus Dusky ParrotPionus sordidus Red-billed Parrot 32a, 32bPionus maximiliani Scaly-headed Parrot 32fPionus tumultuosus Speckle-faced Parrot 33Pionus menstruus Blue-headed Parrot 32a, 32aa, 32c, 32d, 32ePionus chalcopterus Bronze-winged ParrotGraydidascalus brachyurus Short-tailed Parrot 32dAlipiopsitta xanthops Yellow-faced Parrot 36bAmazona festiva Festive Parrot 36Amazona vinacea Vinaceous-breasted Parrot 34a, 39Amazona tucumana Tucuman Parrot 32d, 34, 34a, 34bAmazona pretrei Red-spectacled Parrot 34aAmazona autumnalis Red-lored Parrot 34cAmazona dufresniana Blue-cheeked Parrot 35Amazona rhodocorytha Red-browed Parrot 35Amazona ochrocephala Yellow-crowned Parrot 37a, 37bAmazona barbadensis Yellow-shouldered ParrotAmazona aestiva Turquoise-fronted Parrot 36c, 37, 37aAmazona farinosa Mealy Parrot 38bAmazona kawalli Kawall's Parrot 38, 38aAmazona brasiliensis Red-tailed Parrot 35Amazona amazonica Orange-winged Parrot 35

Page 48: Remsen/SACCBaseline05.docx · Web vie

Amazona mercenarius Scaly-naped Parrot 35aForpus passerinus Green-rumped Parrotlet 22d, 22f, 22hForpus xanthopterygius Blue-winged Parrotlet 22d, 22g, 23Forpus conspicillatus Spectacled ParrotletForpus modestus Dusky-billed Parrotlet 23aForpus coelestis Pacific Parrotlet 23bForpus xanthops Yellow-faced Parrotlet 23bPionites melanocephalus Black-headed Parrot 27, 27b, 41Pionites leucogaster White-bellied Parrot 27, 27b, 27cDeroptyus accipitrinus Red-fan Parrot 32c, 40Pyrrhura cruentata Ochre-marked Parakeet 5b, 10aPyrrhura devillei Blaze-winged Parakeet 11Pyrrhura frontalis Maroon-bellied Parakeet 11, 11a, 11b, 11c,

11d, 11ePyrrhura lepida Pearly Parakeet 12a, 12bPyrrhura perlata Crimson-bellied Parakeet 12a, 12bPyrrhura molinae Green-cheeked Parakeet 12c, 12dPyrrhura pfrimeri Pfrimer's Parakeet 14, 14a, 14aaPyrrhura griseipectus Gray-breasted Parakeet 14, 14a, 14bPyrrhura leucotis Maroon-faced Parakeet 14, 14aPyrrhura picta Painted Parakeet 14a, 15Pyrrhura amazonum Santarem Parakeet 15Pyrrhura lucianii Bonaparte's Parakeet 15Pyrrhura roseifrons Rose-fronted Parakeet 15Pyrrhura viridicata Santa Marta ParakeetPyrrhura egregia Fiery-shouldered ParakeetPyrrhura melanura Maroon-tailed Parakeet 14a, 16, 16a, 17Pyrrhura orcesi El Oro Parakeet 17, 18Pyrrhura rupicola Black-capped Parakeet 19Pyrrhura albipectus White-necked Parakeet 20, 20aPyrrhura calliptera Brown-breasted Parakeet 21Pyrrhura hoematotis Red-eared ParakeetPyrrhura rhodocephala Rose-headed ParakeetEnicognathus ferrugineus Austral Parakeet 5b, 21aEnicognathus leptorhynchus Slender-billed Parakeet 21aaCyanoliseus patagonus Burrowing Parakeet 21aa, 21aaaAnodorhynchus hyacinthinus Hyacinth MacawAnodorhynchus glaucus Glaucous Macaw 1b, 1cAnodorhynchus leari Indigo Macaw 1bEupsittula aurea Peach-fronted Parakeet 9c, 6c

Page 49: Remsen/SACCBaseline05.docx · Web vie

Eupsittula pertinax Brown-throated Parakeet 9e, 6cEupsittula cactorum Cactus Parakeet 9eAratinga weddellii Dusky-headed Parakeet 6cAratinga nenday Nanday Parakeet 5b, 9f, 9ffAratinga solstitialis Sun Parakeet 9a, 10, 6cAratinga maculata Sulphur-breasted Parakeet 10Aratinga jandaya Jandaya Parakeet 9a, 6cAratinga auricapillus Golden-capped Parakeet 9a, 9b, 6cCyanopsitta spixii Spix's Macaw 1dOrthopsittaca manilatus Red-bellied Macaw 3, 3aPrimolius maracana Blue-winged Macaw 4, 4a, 4bPrimolius couloni Blue-headed Macaw 4, 4a, 4bPrimolius auricollis Yellow-collared Macaw 4, 4a, 4bAra ararauna Blue-and-yellow MacawAra glaucogularis Blue-throated Macaw 2Ara militaris Military Macaw 2bAra ambiguus Great Green Macaw 2a, 2bAra macao Scarlet MacawAra chloropterus Red-and-green Macaw 2a, 2cAra rubrogenys Red-fronted MacawAra severus Chestnut-fronted Macaw 2aLeptosittaca branickii Golden-plumed Parakeet 5b, 9gOgnorhynchus icterotis Yellow-eared ParrotGuaruba guarouba Golden Parakeet 5b, 6, 6c, 6ccThectocercus acuticaudatus Blue-crowned Parakeet 5b, 5bb, 6a,

6b, 6dDiopsittaca nobilis Red-shouldered Macaw 5Psittacara wagleri Scarlet-fronted Parakeet 7, 7a, 7bPsittacara mitratus Mitred Parakeet 7a, 7b, 8, 8aPsittacara erythrogenys Red-masked Parakeet 8bPsittacara leucophthalmus White-eyed Parakeet 8c, 9b, 6d

__________________________________________________

1. The monophyly of the Psittaciformes has never been seriously questioned and has been supported by genetic data (e.g., de Kloet & de Kloet 2005, Wright et al. 2008) and recent morphological data (Livezey & Zusi 2007). The relationship of the Psittaciformes to other orders, however, is uncertain (e.g., Cracraft et al. 2004, Fain & Houde 2004, Ericson et al. 2006). Recent comprehensive genetic analyses (Hackett et al. 2008) indicate that the closest relative is most likely the Passeriformes or the Falconiformes, as

Page 50: Remsen/SACCBaseline05.docx · Web vie

also recently found by Suh (2011). SACC proposal passed to change linear sequence of orders. <incorp. Smith 1975, Forshaw>. Within the order, different authors rank various groups as families, subfamilies, or tribes (e.g., see Collar 1998); so far, all data point towards the New World parrots as forming a monophyletic group (e.g., de Kloet & de Kloet 2005, Wright et al. 2008). Joseph et al. (2012) and Cracraft (2013) recognized several families within the Psittaciformes and subfamilies within those families; they placed the New World parrots in the Psittacidae and subfamily Arinae (and the Old World group containing the introduced Psittacula krameri in the Psittaculidae and subfamily Psittaculinae. SACC proposal passed to revise higher-level classification with the parrots.

1a. Within the New World parrots, Tavares et al. (2006) and Wright et al. (2008) found very strong support for the monophyly of a group that includes the genera in the linear sequence below from Anodorhynchus through Enicognathus but also including Pionites and Deroptyus (Ognorhynchus not sampled). Tavares et al. (2006) also found moderately strong support for inclusion of Forpus in this group, but Wright et al. (2008) did not. Tavares et al. (2006) also found very strong support for the monophyly of a group that includes the genera in the linear sequence below from Pionopsitta through Triclaria, excluding Pionites and Deroptyus; Hapalopsittaca was not sampled, but see Ribas et al. (2005) and Wright et al. (2008) for its inclusion in this group. Kirchman et al. (2012) and Schirtzinger et al. (2012) found that a group consisting of Touit, Bolborhynchus, and Psilopsiagon was sister to all other New World parrots, as well as many other differences that would affect the traditional linear sequence of genera. SACC proposal passed to modify linear sequence of genera.

1aa. Established as a breeding bird locally in Caracas, Venezuela, since the early 1980s (Nebot 1999, Hilty 2003, R. Restall, pers. comm.). Also reported to be established on Curaçao (Voous 1985).

1b. Sibley & Monroe (1990) considered Anodorhynchus leari and A. glaucus to form a superspecies. Alvarenga (2007) proposed that they be treated as conspecific.

1c. Anodorhynchus glaucus may be extinct (BirdLife International 2000).

1d. Cyanopsitta spixii was formerly (e.g., Peters 1937) included in the genus Ara, but see [REF]. The genetic data of Tavares et al. (2006) indicate that Cyanopsitta requires recognition as a separate genus from Ara if Primolius and Orthopsittaca are also recognized as genera, and that it is sister to these three genera (Kirchman et al. 2012, Schirtzinger et al. 2012).

2. Ara glaucogularis was formerly (e.g., Meyer de Schauensee 1970) considered an invalid taxon of some sort, e.g., as a color variant of A. ararauna (REF).

Page 51: Remsen/SACCBaseline05.docx · Web vie

For recognition of A. glaucogularis as a valid species, see Ingels et al. (1981). This species was formerly (e.g., Cory 1918, Peters 1937) known as "Ara caninde", but that name probably referable to A. ararauna.

2a. Ara is masculine, so the correct spellings of the species names are ambiguus, chloropterus, and severus; ararauna, however, is invariable (David & Gosselin 2002b).

2b. Sibley & Monroe (1990) considered Ara militaris and A. ambigua to form a superspecies; Fjeldså et al. (1987) suggested that they might be considered conspecific.

2c. Called "Green-winged Macaw" in <REFS> and Haverschmidt & Mees (1994).

3. Orthopsittaca was formerly (e.g., Peters 1937, Meyer de Schauensee 1970) included in Ara, but see Sick (1990) for a return (e.g., Cory 1918, Pinto 1937) to the recognition of this monotypic genus; followed by Collar (1997), Ridgely & Greenfield (2001), and Dickinson (2003). Genetic data (Kirchman et al. 2012, Schirtzinger et al. 2012) indicate that Orthopsittaca is the sister to Primolius + Ara. SACC proposal passed to modify linear sequence of genera.

3a. Orthopsittaca is masculine (Dickinson & Remsen 2013, N. David pers. comm.), and thus a change in the variable ending of the species name is required.

4. Primolius/Propyrrhura was formerly (e.g., Peters 1937, Meyer de Schauensee 1970) included in Ara, but see Sick (1990) for a return (e.g., Cory 1918, Pinto 1937) to the recognition of this genus; this was followed by Collar (1997) and Dickinson (2003). Recent genetic data (Tavares et al. 2004) strongly support recognition of Primolius/Propyrrhura to avoid making Ara polyphyletic.

4a. Sibley & Monroe (1990) and Collar (1997) considered the three species of Primolius to form a superspecies. Primolius couloni and P. maracana have been considered conspecific by some authors (REF).

4b. Penhallurick (2001) proposed that the name Primolius has priority over Propyrrhura. SACC proposal passed to use Primolius.

5. Diopsittaca was formerly (e.g., Peters 1937, Meyer de Schauensee 1970) included in Ara, but see Sick (1990) for a return (e.g., Cory 1918, Pinto 1937) to the recognition of this genus; followed by Collar (1997) and Dickinson (2003). Recent genetic data (Tavares et al. 2004) strongly support recognition of Diopsittaca to avoid making Ara paraphyletic, and that the sister genus to Diopsittaca was Guaruba (see also Tavares et al. 2006, Wright et al. 2008, Kirchman et al. 2012).

Page 52: Remsen/SACCBaseline05.docx · Web vie

5a. The eastern subspecies cumanensis (= "hahni") was formerly (e.g., Cory 1918) considered a separate species from Diopsittaca nobilis.

5b. Species in the genera Guaruba, Thectocercus, Psittacara, Aratinga, Eupsittula, Leptosittaca, Ognorhynchus, , Pyrrhura, and Enicognathus are often called "conures" (e.g., Fjeldså & Krabbe 1990, REFS).

5bb. The genus Aratinga as broadly defined by Peters (1937) consists of four independent lineages (Ribas et al. (2004), Tavares et al. 2006, Kirchman et al. (2012), Schirtzinger et al. (2012), Urantówka et al. 2012) that correspond closely to the generic limits outlined by Ridgway (1916); see Remsen et al. (2013). SACC proposal passed to separating Aratinga into four genera. SACC proposal passed to modify linear sequence of genera.

6. Guaruba was formerly (e.g., Peters 1937, Meyer de Schauensee 1970) included in Aratinga, but see Sick (1990), and also Tavares et al. (2004, 2006), Wright et al. (2008), and Kirchman et al. (2012), whose genetic data indicated that the sister genus to Guaruba is Diopsittaca, thus forcing a return to earlier classifications (e.g., Cory 1918, Pinto 1937) that treated it in a monotypic genus.

6a. Thectocercus acuticaudatus was originally (e.g., Ridgway & Friedmann 1916, Cory 1918) treated in a separate genus, Thectocercus, but Peters (1937) merged this into Aratinga. Urantówka et al. (2012) and Remsen et al. (2013) presented evidence that Thectocercus should be resurrected for acuticaudatus. SACC proposal passed to recognize Thectocercus.

6b. The northern haemorrhous subspecies group was formerly (e.g., Ridgway & Friedmann 1916, Cory 1918) considered a separate species from Thectocercus acuticaudatus, but they were treated as conspecific by Peters (1937).

6c. Guaruba guarouba, Aratinga auricapillus, A. jandaya, A. solstitialis, A. weddellii, A. aurea, and A. pertinax, along with Middle American A. canicularis and A. astec and West Indian A. nana, were formerly (e.g., Cory 1918) placed in a separate genus, Eupsittula Bonaparte, 1853 (type species = A. canicularis), but these were merged into Aratinga by Peters (1937). See also Note 9c.

6cc. Frequently spelled Guarouba because of dual original spellings. See David et al. (2009) for use of Guaruba over Guarouba.

6d. Thectocercus acuticaudata and “Aratinga” leucophthalmus were treated in a separate genus, Psittacara Vigors, 1825 (type = leucophthalma), by Pinto (1937), but were included in Aratinga by Peters (1937). Silveira et al. (2005) suspected that Aratinga was not monophyletic and that Peters’ merger of

Page 53: Remsen/SACCBaseline05.docx · Web vie

several genera into Aratinga was not correct. Kirchman et al. (2012) found that “A.” leucophthalmus was sister to a group of “Aratinga” (wagleri, mitrata, and several extralimital species) that were not closely related to true Aratinga (type species = solstitialis; see Note 9a); this corresponds to one of the groups outlined by Silveira et al. (2005). This species group is sister to Leptosittaca + (Guaruba + Diopsittaca); see Remsen et al. (2013). SACC proposal passed to resurrect Psittacara.

7. The southern subspecies frontatus was formerly (e.g., Cory 1918) considered a separate species from Psittacara wagleri, but they were treated as conspecific by Peters (1937). Ridgely & Greenfield (2001) noted that frontatus (with minor) of Ecuador and Peru might deserve recognition as a separate species. Del Hoyo & Collar (2014) treated frontatus as a separate species (“Cordilleran Parakeet”) based on differences in plumage and habitat.

7a. Collar (1997) suggested that Psittacara wagleri and P. mitratus might be conspecific, but see Kirchman et al. (2012).

7b. Arndt (2006) described a new species, Aratinga (=Psittacara) hockingi; specimens in museums of this taxon had been identified as A. mitrata (= Psittacara mitratus), but the new species may be more closely related to A. wagleri. SACC proposal to recognize hockingi did not pass. Not recognized by Schulenberg et al. (2007) or Remsen et al. (2013).

8. Fjeldså & Krabbe (1990) and Sibley & Monroe (1990) suggested that the subspecies alticola of Peru might deserve species rank from Psittacara mitratus. Arndt (2006) provided further rationale for treatment of alticola as a separate species. SACC proposal to recognize alticola as a separate species did not pass. Not recognized by Schulenberg et al. (2007) or Remsen et al. (2013).

8a. Doug Pratt (pers. comm.) pointed out that in North American English, "mitre" is normally "miter”, which would make the name of this species "Mitered Parakeet”, which would also reduce chronic mispronunciation. Proposal needed.

8b. Psittacara erythrogenys was formerly (e.g., Cory 1918) known as P. rubrolarvata, but see Peters (1937).

8c. Sibley & Monroe (1990) considered Psittacara leucophthalmus to form a superspecies with Central American P. finschi; they have been considered conspecific by many authors (e.g., Meyer de Schauensee 1970).

9a. Aratinga jandaya and A. auricapillus have been treated (e.g., Meyer de Schauensee 1966, 1970, Joseph 1992, Sick 1997) as subspecies of A.

Page 54: Remsen/SACCBaseline05.docx · Web vie

solstitialis, but see Silveira et al. (2005); they form a superspecies (Sibley & Monroe 1990, Collar 1997) and are sister taxa (Ribas & Miyaki 2004). Kirchman et al. (2012) found that “Nandayus” nenday was sister to A. auricapillus + A. solstitialis; see also Schirtzinger et al. (2012). SACC proposal passed to redefine limits of genera and species sequence.

9b. When Psittacara leucophthalmus is placed in Aratinga, which is feminine, the correct spelling of the species name is leucophthalma, not leucophthalmus as was often given; auricapillus, however, is invariable (David & Gosselin 2002a, b).

9c. Sibley & Monroe (1990) and Collar (1997) considered Eupsittula aurea to form a superspecies with Middle American E. canicularis. Kirchman et al. (2012) found that E. pertinax was sister to E. aurea + E. nana. See also Notes 6c and 9f. SACC proposal passed to resurrect of Eupsittula Bonaparte, 1853 (type species = canicularis), as used by Ridgway & Friedmann (1916) for canicularis, nana, aurea, and pertinax; see also Silveira et al. (2005).

9e. Sibley & Monroe (1990) and Collar (1997) considered Eupsittula pertinax and E. cactorum to form a superspecies; Collar (1997) suggested that they might be conspecific.

9f. Aratinga nenday has traditionally been placed in the monotypic genus Nandayus, although it was typically considered very closely related to Aratinga (e.g., Collar 1997). Nandayus was included in Aratinga by Peters (1937). Genetic data (Ribas & Miyaki 2004) indicate that Nandayus is embedded in Aratinga, as predicted by Silveira et al. (2005), and is sister to the group solstitialis + (jandaya + auricapilla). SACC proposal passed for merger of Nandayus into Aratinga. See also Note 9a.

9ff. Aratinga nenday was formerly known as “Black-hooded Parakeet” (Meyer de Schauensee 1966, 1970). SACC proposal to restore “Black-hooded” did not pass.

9g. Leptosittaca was included in Aratinga by (REF), but genetic data (Wright et al. 2008) indicate that it is part of a group that includes Guaruba and Diopsittaca. SACC proposal passed to change linear sequence.

10. Described since Meyer de Schauensee (1970): Silveira et al. (2005). SACC proposal passed to recognize Aratinga pintoi as a separate species from A. solstitialis. However, Nemésio and Rasmussen (2009) presented evidence that this taxon had been previously described as A. maculata. SACC proposal passed to recognize maculata as the valid name.

10a. Formerly (e.g., Meyer de Schauensee 1970) called "Ochre-marked Parakeet" but now widely listed as “Blue-throated” (e.g., Sibley & Monroe 1990, Collar

Page 55: Remsen/SACCBaseline05.docx · Web vie

1997, Juniper & Parr 1998, Clements 2000, Forshaw 2010), which is a misleading, inaccurate name. SACC proposal passed to restore “Ochre-marked.”

11. Sibley & Monroe (1990) and Collar (1997) considered Pyrrhura devillei and P. frontalis to form a superspecies; Hayes (1995) and Collar (1997) suggested they may be conspecific.

11b. Pyrrhura frontalis was formerly (e.g., Cory 1918) known as P. vittata.

11c. "Pyrrhura borellii”, formerly (e.g., Cory 1918) treated as a species, considered by Peters (1937) to be a synonym of P. f. chiripepe. See Hybrids and Dubious Taxa.

11d. Maroon-bellied Parakeet was formerly (e.g., Meyer de Schauensee 1970) called "Reddish-bellied Parakeet", and this was also used by Mazar Barnett & Pearman (2001). Proposal needed?

12a. Pyrrhura perlata and P. lepida form a superspecies (Haffer 1987, Collar 1997).

12b. Nomenclature of Pyrrhura perlata and P. lepida is confusing and complex. Arndt (1983) showed that the original types of perlata were actually referable to the name rhodogaster; thus, rhodogaster, long used as a species name (e.g., Peters 1937, Meyer de Schauensee 1970), becomes a junior synonym of perlata; the transfer of rhodogaster to the synonymy of perlata thus left the former in need of a name, the next oldest of which is lepida. Adding further confusion, Collar (1997) retained the English name "Pearly Parakeet" for lepida.

12c. "Pyrrhura hypoxantha," formerly considered a valid (e.g., Cory 1918, Meyer de Schauensee 1970) or questionable (Peters 1937) species, is now considered to represent xanthistic individuals of P. molinae (Arndt 1991, Collar 1997). See Hybrids and Dubious Taxa.

13. [Pyrrhura superspecies note 1] [Note -- Stotz will rewrite Notes 14-14a now that complex Proposal 306 has reached quorum]:

14. [note needed on possible splits]. Olmos et al. (1997). The subspecies emma and griseipectus were formerly (e.g., Cory 1918) considered separate species from Pyrrhura leucotis, but they were treated as conspecific by Peters (1937) and Pinto (1937). The subspecies pfrimeri was also formerly (e.g., Pinto 1937) treated as a separate species, but was considered conspecific with P. leucotis by Peters (1937). <inc. Joseph 2002, followed by Dickinson 2003.> SACC proposal passed to treat pfrimeri and griseipectus as separate species from P. leucotis. Subsequently, SACC proposal to lump griseipectus into P.

Page 56: Remsen/SACCBaseline05.docx · Web vie

leucotis passed. SACC proposal passed to transfer subspecies emma from P. leucotis to P. picta. SACC proposal passed to re-elevate P. griseipectus to species rank. <incorp. Olmos et al. 2005>. Del Hoyo & Collar (2014) treated emma as a separate species (“Venezuelan Parakeet”) based on plumage differences.

14a. Sibley & Monroe (1990) considered Pyrrhura leucotis [including pfrimeri and griseipectus] and P. picta to form a superspecies; Haffer (1987) also included P. melanura in that superspecies. <incorp. Ribas et al. 2006>

14aa. Called “Goias Parakeet” by del Hoyo & Collar (2014).

14b. Teixeira (1991) proposed that the name for Pyrrhura griseipectus should be Pyrrhura anaca (Gmelin, 1788). Proposal badly needed.

15. [note needed, and probably a proposal, on possible splits in picta; Joseph REF]. The Colombian subspecies subandina was formerly (e.g., Cory 1918) considered a separate species from Pyrrhura picta, but Peters (1937) considered them conspecific. Arndt (2008) treated the forms subandina, eisenmanni, caeruleiceps, and peruviana as a species, and described a new species, Pyrrhura parvifrons, from eastern Peru. SACC proposal to recognize parvifrons did not pass. <summarize. Ribas et al. 2006> SACC proposal passed to separate amazonum (with snethlageae as a subspecies of amazonum) from picta. SACC proposal passed to separate roseifrons (including peruviana as a subspecies of roseifrons) from picta. SACC proposal passed to separate lucianii (including peruviana as a subspecies of roseifrons) from picta. SACC proposals to rank the subspecies eisenmanni, caeruleiceps, and subandina as separate species did not pass. Del Hoyo & Collar (2014) treated subandina (“Sinu Parakeet”), caeruleiceps (“Perija Parakeet”), peruviana (“White-breasted Parakeet”), parvifrons (“Garlepp’s Parakeet”) and snethlageae (“Madeira Parakeet”) as separate species based on minor plumage differences.

15b. Proposals needed on English names, here given tentatively, of P. amazonum, P. lucianii, and P. roseifrons. The names for the first two are those used by Cory (1918) and need evaluation. "Santarem" derives from the type locality of amazonum and thus seems appropriate. "Bonaparte's" evidently derives from lucianii, presumably named for Jules Laurent Lucien, aka Prince Bonaparte; Bonaparte was also the author of the genus name Pyrrhura. "Rose-fronted" is merely the translation of the species epithet.

16. Ridgely & Greenfield (2001) suggested that the subspecies pacifica of northwestern South America may deserve recognition as a separate species from Pyrrhura melanura. SACC proposal to elevate pacifica to species rank did not pass. Del Hoyo & Collar (2014) treated pacifica as a separate species (“Choco Parakeet”) based on color differences.

Page 57: Remsen/SACCBaseline05.docx · Web vie

16a. The subspecies berlepschi was formerly (e.g., Meyer de Schauensee 1970) considered a separate species ("Berlepsch's Parakeet") from Pyrrhura melanura, but most recent classifications have considered them conspecific following <REF>). The Colombian subspecies souancei was formerly (e.g., Cory 1918) considered a separate species from Pyrrhura melanura, but Peters (1937) considered them conspecific. Fjeldså & Krabbe (1990) suggested that the montane subspecies chapmani might deserve recognition as a separate species.

17. Sibley & Monroe (1990) and Collar (1997) considered Pyrrhura melanura and P. orcesi to form a superspecies, based on Ridgely & Robbins (1988). <incorp. Ribas et al. 2006>

18. Described since Meyer de Schauensee (1970): Ridgely & Robbins (1988).

19. Formerly (e.g., Meyer de Schauensee 1970) called "Rock Parakeet", but see [REFS].

20. Pyrrhura albipectus might be conspecific with P. melanura (Robbins et al. (1987).

20a. White-necked Parakeet was formerly (e.g., Meyer de Schauensee 1970) called "White-breasted Parakeet". <trace change - S&M 1990 used White-necked>. proposal?

21. Brown-breasted Parakeet was formerly (e.g., Meyer de Schauensee 1970) called "Flame-winged Parakeet". <trace change -S&M 1990 used Brown-breasted>. proposal?

21a. Enicognathus ferrugineus was formerly (e.g., Cory 1918, Peters 1937) placed in the monotypic genus Microsittace, but see <?> Peters & Blake (1948).

21aa. "Cyanoliseus byroni”, treated as a species by Cory (1918) and as a subspecies of Cyanoliseus patagonus by Peters (1937), is now considered a synonym of Enicognathus leptorhynchus (Olson 1995b, Collar 1997). See Hybrids and Dubious Taxa.

21aaa. Also known (e.g., Meyer de Schauensee 1966, 1970, Johnson & Goodall 1967, Fjeldså & Krabbe 1990, Jaramillo 2003 etc.) as “Burrowing Parrot”. Cory (1918) referred to it as a Parakeet (“Paroquet”), which is consistent with its relatives as well as pointed-tailed parrots of similar size in general (versus “parrot” for square-tailed parrots of roughly the same size). However, Meyer de Schauensee (1966) used “Parrot”, and this was followed in much subsequent literature. Sibley & Monroe (1990) restored “Parakeet”, and this

Page 58: Remsen/SACCBaseline05.docx · Web vie

was followed by Collar (1997) and Dickinson (2003). In aviculture, often called “Patagonian Conure”.

21b. Collar (1997) treated Andean luchsi as a separate species from Myiopsitta monachus based on differences in plumage and nest site; this taxon was formerly (e.g., Cory 1918) treated as a separate species, but Peters (1937) considered them conspecific. SACC proposal to treat luchsi as a separate species did not pass because of insufficient published data. Russello et al. (2008) found that luchsi was genetically isolated from lowland populations. SACC proposal to treat luchsi as a separate species did not pass. Del Hoyo & Collar (2014) treated luchsi as a separate species (“Cliff Parakeet”).

21c. Psilopsiagon aymara was formerly placed in the monotypic genus Amoropsittaca (e.g., Cory 1918, Peters 1937), but was then (e.g., Meyer de Schauensee 1970) placed in Bolborhynchus; more recently, it has been placed in Psilopsiagon (Collar 1997, Dickinson 2003).

21d. Tavares et al. (2006) and Wright et al. (2008) found strong support for a sister relationship between Myiopsitta and Brotogeris. SACC proposal passed to change linear sequence. Kirchman et al. (2012) and Schirtzinger et al. (2012) also found support for this relationship. Genetic data support the monophyly of Brotogeris (Ribas et al. 2009). Within Brotogeris, genetic data (Ribas et al. 2009) found strong support for two major groups, one consisting of B. tirica, B. versicolurus, B. chiriri, and B. sanctithomae, and the other consisting of B. pyrrhoptera, B. jugularis, B. cyanoptera, and B. chrysoptera. SACC proposal passed to change linear sequence in the genus.

21e. Tavares et al. (2006) and Kirchman et al. (2012) found strong support for a sister relationship between Bolborhynchus lineola and Nannopsittaca, whereas Wright et al. (2008) found strong support for a sister relationship between Touit and Nannopsittaca (Bolborhynchus not sampled). SACC proposal passed to change linear sequence. Schirtzinger et al. (2012) found that Psilopsiagon was a member in this group, sister to Bolborhynchus + Nannopsittaca.

22. Psilopsiagon aurifrons was formerly treated as the only species in the genus (e.g., Peters 1937), but was then (e.g., Meyer de Schauensee 1970) placed in Bolborhynchus; more recently, it has been returned to Psilopsiagon (Collar 1997, Dickinson 2003).

22a. The southern subspecies rubrirostris was formerly (e.g., Cory 1918) considered a separate species from Psilopsiagon aurifrons, but Peters (1937) considered them conspecific.

Page 59: Remsen/SACCBaseline05.docx · Web vie

22b. Fjeldså & Krabbe (1990) and Collar (1997) considered Bolborhynchus orbygnesius and B. ferrugineifrons to form a superspecies.

22c. Bolborhynchus orbygnesius was formerly (e.g., Peters 1937) considered a subspecies of Psilopsiagon aurifrons.

22cc. "Bolborhynchus andicolus”, described from Peru, was treated as a valid species by Cory (1918) and Peters (1937); it was later found to be a synonym of B. orbygnesius (Berlioz & Dorst 1956, Collar 1997). See Hybrids and Dubious Taxa.

22d. Sibley & Monroe (1990) and Collar (1997) considered Forpus passerinus and F. xanthopterygius to form a superspecies; once considered conspecific (e.g., Peters 1937), Gyldenstolpe (1945) provided rationale for treating them as separate species based on near-sympatry and plumage color differences, and this treatment has been followed by most subsequent authors. Genetic data (Smith et al. 2013) confirms that they are sister taxa.

22f. The genus Forpus was formerly (e.g., Cory 1918) placed in the genus Psittacula, but see Peters (1937). Forpus represents a distinct lineage within the New World parrots that is not particularly closely related to any other genus (Schirtzinger et al. 2012). Smith et al. (2013) found that F. modestus is sister to all other species in the genus. Proposal pending to change linear sequence of species.

22g. The northern subspecies spengeli was formerly (e.g., Cory 1918) considered a separate species from Forpus xanthopterygius, but they were treated as conspecific by Peters (1937). Smith et al. (2013) showed that spengeli belongs in Forpus passerinus. Del Hoyo & Collar (2014) treated spengeli as a separate species (“Turquoise-winged Parrotlet”) based on plumage differences. Bocalini & Silveira (2015) treated spengeli as a species based on PSC rationale and on comparisons only to F. xanthopterygius.

22h. Bertgagnolio & Racheli (2010) described a new species of Forpus (as “Forpus flavicollis”) based on an internet photo of a flock of caged parrotlets; although no type specimen was declared, the description is evidently meets ICZN criteria for availability but not necessarily for validity (Notton 2011). SACC proposal to recognize Forpus flavicollis did not pass. Donegan et al. (2011) considered it to be a synonym of F. conspicillatus.

23. Whitney & Pacheco (1999) proposed that the valid name for this taxon is Forpus xanthopterygius, as in Gyldenstolpe (1945)<which one?>, and not Forpus crassirostris as in Pinto (1945), Collar (1997), and elsewhere, or Psittacula vivida (= Forpus vividus) as in Cory (1919). SACC proposal passed to retain xanthopterygius. Smith et al. (2013) found evidence that the

Page 60: Remsen/SACCBaseline05.docx · Web vie

subspecies crassirostris is best treated as a separate species. Proposal needed.

23a. The species name formerly (e.g., Cory 1918, Pinto 1937) used for Forpus sclateri was modestus. Pacheco & Whitney (2006) proposed that modestus is indeed the valid name for this taxon. SACC proposal passed to change to modestus.

23b. Sibley & Monroe (1990) considered Forpus coelestis and F. xanthops to form a superspecies; they were considered conspecific by Peters (1937), but most classifications have followed Meyer de Schauensee (1966) <check> in treating them as separate species. Genetic data (Smith et al. 2013) confirms that they are sister taxa.

23c. Brotogeris tirica, B. versicolurus, and B. chiriri were formerly (e.g., Cory 1918, Pinto 1937) treated in a separate genus, Tirica, but Peters (1937) merged this into Brotogeris. Genetic data (Ribas et al. 2009) indicate that they are closely related, but B. sanctithomae also likely falls in this group.

24. Brotogeris chiriri was formerly (e.g., Meyer de Schauensee 1970) considered a subspecies of B. versicolurus, but see Pinto & Camargo (1957), REFS; they constitute a superspecies (Sibley & Monroe 1990). Genetic data (Ribas et al. 2009) confirm that they are sister taxa.

24a. The species name formerly (e.g., Cory 1918, Pinto 1937) used for Brotogeris versicolurus was virescens, but see Peters (1937).

24aa. AOU (1998) used the English name "White-winged Parakeet" for Brotogeris versicolurus after B. chiriri was treated as a separate species, but Dickinson (2003), following Collar (1997) and Sibley & Monroe (1990), did not and retained "Canary-winged Parakeet" for B. versicolurus. SACC proposal to change to "White-winged Parakeet" did not pass. New SACC proposal to change to "White-winged Parakeet" did not pass. Del Hoyo & Collar (2014) used "White-winged Parakeet".

24b. Haffer (1987) considered Brotogeris cyanoptera, and B. chrysoptera to form a superspecies; Sibley & Monroe (1990) also included B. jugularis in that superspecies. Collar (1997) was hesitant about the inclusion of B. jugularis, although Peters (1937) wondered whether cyanoptera should be treated as a subspecies of jugularis. Genetic data (Ribas et al. 2009) indicate that cyanoptera and chrysoptera are sister taxa, which in turn are sister to jugularis + pyrrhoptera.

24c. The subspecies gustavi was formerly (e.g., Cory 1918, Peters 1937) considered a separate species from Brotogeris cyanoptera, but Traylor (1958) indicated that they probably intergrade in the Huallaga valley.

Page 61: Remsen/SACCBaseline05.docx · Web vie

24d. The species name formerly (e.g., Cory 1918, Pinto 1937) used for Brotogeris cyanoptera was devillei, but see Peters (1937).

24e. Brotogeris is feminine, so the correct spellings of the species names are chrysoptera and pyrrhoptera; versicolurus, however, is invariable (David & Gosselin 2002b).

24f. The eastern subspecies tuipara and the western subspecies chrysosema were formerly (e.g., Cory 1918, Pinto 1937) considered a separate species from Brotogeris chrysoptera, but Peters (1937) treated them as conspecific.

24g. Collar (1997) considered Nannopsittaca panychlora and N. dachilleae to form a superspecies.

25. Described since Meyer de Schauensee (1970): O'Neill et al. (1991).

25b. Touit is masculine, so the correct spellings of the species names are batavicus, dilectissimus, purpuratus, melanonotus, surdus, and stictopterus (David & Gosselin 2002b).

25c. The genus Touit was formerly (e.g., Cory 1919, Pinto 1937) known as Urochroma, but see Peters (1937).

25d. The species name formerly (e.g., Cory 1918, Pinto 1937) used for Touit melanonotus was wiedi, but see Peters (1937).

25dd. "Touit emmae”, known from "Bogotá”, treated as a valid species by Cory (1918) and Peters (1937), represents the female plumage of T. stictopterus (Dugand 1945, Meyer de Schauensee 1966, Collar 1997). See Hybrids and Dubious Taxa.

26. Touit dilectissimus forms a superspecies with Central American T. costaricensis (AOU 1983, Sibley & Monroe 1990); they were treated as conspecific by Peters (1937) and Meyer de Schauensee (1966), but see Wetmore (1968).

26a. Called "Red-winged Parakeet" in Meyer de Schauensee (1970), but that name typically applied only when dilectissimus and costaricensis are considered conspecific (e.g., Meyer de Schauensee 1966).

27. Pionites melanocephalus and P. leucogaster form a superspecies (Haffer 1974, 1977, 1987, Sibley & Monroe 1990, Collar 1997).

Page 62: Remsen/SACCBaseline05.docx · Web vie

27b. Pionites is masculine, so the correct spelling of the species name is melanocephalus; leucogaster, however, is invariable (David & Gosselin 2002b).

27c. The western subspecies xanthomerius was formerly (e.g., Cory 1918) considered a separate species from Pionites leucogaster, but Peters (1937) treated them as conspecific. Del Hoyo & Collar (2014) treated xanthomerius as a separate species (“Black-legged Parrot”) based on plumage differences. Del Hoyo & Collar (2014) also treated the subspecies xanthurus as a separate species (“Yellow-tailed Parrot”) based on plumage differences and called Pionites leucogaster “Green-thighed Parrot.”

28. All species of Pionopsitta/Pyrilia except Pionopsitta pileata were considered to form a superspecies by Haffer (1970, 1974); Sibley & Monroe (1990) considered only P. haematotis and P. pulchra to form a superspecies. Pyrilia haematotis, P. pulchra, P. barrabandi, P. pyrilia, and P. caica were formerly (e.g., Cory 1918, Pinto 1937) placed in a separate genus, Eucinetus, and P. pyrilia was placed in the monotypic genus Pyrilia. Cracraft & Prum's (1988) analysis of plumage characters suggested that pileata was basal to all other Pionopsitta (then considered to include Gypopsitta), and the following sister relationships: (a) haematotis + pulchra, (b) vulturina + barrabandi, (c) pyrilia + [vulturina + barrabandi], and (d) caica basal to (pyrilia + [vulturina + barrabandi]). Ribas et al. (2005) found that Pionopsitta+Gypopsitta (=Pyrilia) is not monophyletic, with pileata sister to the others, and they placed all but pileata in Gypopsitta, the sister genus of which is Hapalopsittaca (Kirchman et al. 2012, Schirtzinger et al. 2012; see also Note 31a). Tavares et al. (2006) also found that traditional Pionopsitta was paraphyletic, and that P. pileata was sister to a group that included Triclaria, Pyrilia, and others. SACC proposal passed to split Gypopsitta from Pionopsitta. SACC proposal passed on use of Pyrilia over Gypopsitta; also followed by Banks et al. (2008). Ribas et al. (2005) also found a different set of relationships within the Pyrilia group than those proposed by Cracraft & Prum (1988). SACC proposal passed to change linear sequence within Pyrilia.

28a. Cracraft & Prum (1988) and Ribas et al. (2005) treated the subspecies coccinicollaris of Panama and nw. Colombia as a separate species from nominate Pyrilia haematotis of Middle America. SACC proposal to elevate coccinicollaris to species rank did not pass.

28aa. Formerly known as “Red-capped Parrot”, but that is the long-standing name for Australian Purpureicephalus spurius.

29. Pyrilia vulturina was formerly (e.g., Peters 1937, Pinto 1937, Phelps & Phelps 1958a, Meyer de Schauensee 1970) treated as the only member of a monotypic genus Gypopsitta because of featherless head, but see Haffer

Page 63: Remsen/SACCBaseline05.docx · Web vie

(1974), REFS, and Collar (1997), and subsequent phylogenetic analyses of Cracraft & Prum (1988) and Ribas et al. (2005).

30. Newly described: Gaban-Lima et al. (2002). This taxon was previously considered an immature plumage of P. vulturina, but see Gaban-Lima et al. (2002). SACC proposal passed to recognize aurantiocephala as a valid new species. "Bald Parrot" temporarily adopted for English name; SACC proposal passed to formalize this name.

31. Pyrilia pulchra was formerly (e.g., Peters 1937, Meyer de Schauensee 1970) considered a subspecies of P. haematotis, but see [REFS?] Collar (1997). Proposal needed.

31a. Hapalopsittaca melanotis was formerly (e.g., Cory 1918) placed in the genus Pionopsitta, which at that time contained only P. pileata.

31b. Called "Black-eared Parrot" in Meyer de Schauensee (1966,1970) and elsewhere. Proposal needed.

32. Hapalopsittaca fuertesi and H. pyrrhops were formerly (e.g., Meyer de Schauensee 1970) considered subspecies of H. amazonina, but see Graves & Restrepo (1989) for a return to the species limits used by Cory (1918) and Peters (1937), as suggested by Fjeldså & Krabbe (1990); they constitute a superspecies (Sibley & Monroe 1990).

32a. The eastern subspecies reichenowi was formerly (e.g., Cory 1918) considered a separate species from Pionus menstruus, but Peters (1937) treated them as conspecific.

32aa. Genetic data (Ribas et al. 2007) indicate that P. menstruus and P. sordidus are not sister species as is implied in traditional linear sequences, but rather that P. menstruus groups with P. chalcopterus, extralimital P. senilis, and P. tumultuosus, and that P. maximiliani and P. sordidus are sisters, with P. fuscus sister to that pair. SACC proposal passed to change linear sequence.

32b. The southern subspecies corallinus was formerly (e.g., Cory 1918) considered a separate species from Pionus sordidus, but Peters (1937) treated them as conspecific.

32c. Tavares et al. (2006) found very strong support for inclusion of Pionites and Deroptyus in a monophyletic group that consists of the genera in the linear sequence above from Anodorhynchus through Enicognathus; they also found very strong support for a sister relationship between Pionites and Deroptyus, as did Wright et al. (2008) and Schirtzinger et al. (2012). SACC proposal passed to change linear sequence.

Page 64: Remsen/SACCBaseline05.docx · Web vie

32d. Tavares et al. (2006) and Schirtzinger et al. (2012) also found very strong support for the monophyly of a group that consists of Pionus, Graydidascalus, and Amazona, and Kirchman et al. (2012) confirmed Alipiopsitta as a member of this group.

32e. "Pionus cobaltinus," described from "Colombia" and treated as a valid species by Cory (1918), is now considered a synonym of Pionus menstruus (Peters 1937). See Hybrids and Dubious Taxa.

32f. "Pionus bridgesi," treated as a valid species by Cory (1918), is now known to be a synonym of Pionus maximiliani siy (Peters 1937). See Hybrids and Dubious Taxa.

33. The subspecies seniloides was formerly (e.g., Peters 1937, Meyer de Schauensee 1970) considered a separate species ("White-capped Parrot") from Pionus tumultuosus, but see O'Neill & Parker (1977), who noted that the only differences between the two are the degree of saturation of rosy pigment; this treatment was followed by Collar (1997) and Dickinson (2003), but not by Forshaw (1989), Fjeldså & Krabbe (1990), or Ridgely et al. (2001). There is no evidence of intergradation between the two. SACC proposal to treat seniloides as a species did not pass. Recent genetic data (Ribas et al. 2007) indicate that the genetic distance between them is about the same as other taxa ranked as species in Pionus. Del Hoyo & Collar (2014) treated seniloides as a separate species. English name "Speckle-faced Parrot" for composite species follows suggestion by Fjeldså & Krabbe (1990).

34. Haverschmidt & Mees (1994), Mazar Barnett & Pearman (2001), Ridgely & Greenfield (2001), and del Hoyo & Collar (2014) used the avicultural name "Amazon" for the English names of the species in the genus Amazona (but did not use, for example, "Conure" for species of Aratinga).

34a. Genetic data (Ottens-Wainwright et al. 2004, Russello & Amato 2004) indicate that the traditional linear sequence of species in Amazona does not reflect phylogenetic relationships. SACC proposal passed to change linear sequence.

34aa. Sibley & Monroe (1990) and Collar (1997) considered Amazona tucumana and A. pretrei to form a superspecies; they were considered conspecific by Peters (1937). Reports of sympatry in northeastern Argentina (Hornero 6: 535, 1936, as cited by Meyer de Schauensee 1966) are erroneous. Genetic data (Russello & Amato 2004) support their status as sister species and also suggest that A. vinacea is the sister to that group.

34b. Formerly (e.g., Meyer de Schauensee 1970) called "Alder Parrot”, but "Tucuman Parrot" dates back to Cory (1919).

Page 65: Remsen/SACCBaseline05.docx · Web vie

34c. The Ecuadorian subspecies lilacina and the Brazilian subspecies diadema were formerly (e.g., Cory 1918, Pinto 1937) considered separate species from Amazona autumnalis, but Peters (1937) treated them as conspecific. Ridgely & Greenfield (2001) treated diadema as a separate species but did not provide justification. Del Hoyo & Collar (2014) treated both lilacina (“Lilacine Amazon”) and diadema (“Diademed Amazon”) as separate species and based differences in plumage and bare parts coloration.

35. Amazona dufresniana was formerly (e.g., Peters 1937, Meyer de Schauensee 1966, 1970) considered a subspecies of A. brasiliensis, then called "Blue-cheeked Parrot”, but see (REF). Sibley & Monroe (1990) and Collar (1997) considered these two and A. rhodocorytha to form a superspecies. Amazona rhodocorytha was also formerly (e.g., Meyer de Schauensee 1966, 1970) considered a subspecies of A. brasiliensis, but see Collar (1997), followed by Dickinson (2003). Genetic data (Russello & Amato 2004) support this treatment: Amazona rhodocorytha and A. dufresniana are sister species. However, they are not closely related to A. brasiliensis, which is more closely related to A. amazonica than to any other South American Amazona. SACC proposal passed to change linear sequence.

35a. David & Gosselin (2011) showed that the correct spelling of the species name is mercenarius. SACC proposal passed to change name.

36. The northern subspecies bodini was formerly (e.g., Cory 1918) considered a separate species from, and only distantly related to, Amazona festiva, but Peters (1937) treated them as conspecific. Del Hoyo & Collar (2014) treated bodini as a separate species (“Northern Festive Amazon”) from nominate festiva (“Southern Festive Amazon”).

36b. Placement of Amazona xanthops in Amazona has been questioned in virtually every study of the genus (e.g., Ribeiro 1920, Sick 1984, Birt et al. 1992, Duarte and Caparroz 1995, Miyaki et al. 1998, Caparroz and Duarte 2004). Miranda-Ribeiro (1920) named a new genus for it: Salvatoria. Recent genetic data (Russello & Amato 2004, Tavares et al. 2006, Kirchman et al. 2012) indicate that its inclusion in Amazona makes that genus paraphyletic with respect to Pionus and Graydidascalus, and found strong support for a sister relationship between xanthops and Graydidascalus. SACC proposal passed to remove from Amazona and revive monotypic genus Salvatoria. Caparroz & Pacheco (2006) noted that Salvatoria is preoccupied by an annelid genus, and they proposed a new name, Alipiopsitta, for Salvatoria Miranda-Ribeiro, 1920. SACC proposal passed to change to Alipiopsitta.

36c. The subspecies xanthopteryx was considered a separate species from Amazona aestiva by (REF).

Page 66: Remsen/SACCBaseline05.docx · Web vie

37. Formerly (e.g., Meyer de Schauensee 1970) called "Turquoise-fronted Parrot" but changed for no apparent reason to “Blue-fronted” in many recent treatments (e.g. Sibley & Monroe 1990, Collar 1997, Juniper and Parr 1998, Clements 2000, Forshaw 2010). SACC proposal passed to restore “Turquoise-fronted.”

37a. Formerly (e.g., Peters 1937, Meyer de Schauensee 1970), Amazona ochrocephala was generally treated as including taxa north to Mexico. Following Monroe & Howell (1966), most authors treated Middle American A. oratrix and A. auropalliata as separate species; however, Forshaw (1989), Losada & Howell (1996), and Collar (1997) have raised doubts about ranking these taxa as species. Recent genetic data (Eberhard & Bermingham 2004, Russello & Amato 2004, Urantówka et al. 2014) indicate that ranking of oratrix or auropalliata as species makes A. ochrocephala paraphyletic, and that A. ochrocephala is also paraphyletic with respect to A. aestiva and A. barbadensis, at least at mtDNA loci. Proposal badly needed.

37b. The southern subspecies nattereri was formerly (e.g., Cory 1918) considered a separate species from Amazona ochrocephala, but Peters (1937) treated them as conspecific.

38. Described since Meyer de Schauensee (1970): Grantsau & Camargo (1989), Collar (1996). Genetic data (Russello & Amato 2004) are consistent with treatment of Amazona kawalli as a separate species from, but sister species to, A. farinosa, which is sympatric with A. kawalli in southwestern Brazil. See also Martuscelli & Yamashita (1997).

38a. Called "White-faced Amazon" in Collar (1997) and del Hoyo & Collar (2014).

38b. Wenner et al. (2012) proposed that the Middle American subspecies (virenticeps and guatemalae) be treated as a separate species from nominate farinosa (central Panama to South America) based on genetic data. Del Hoyo & Collar (2014) treated guatemalae (with virenticeps) as a separate species (“Northern Mealy Amazon”) from nominate farinosa (“Southern Mealy Amazon”).

39. Called "Vinaceous-breasted Parrot" in Meyer de Schauensee (1970), but many recent treatments switched with no explanation a less accurate “Vinaceous Parrot/Amazon” (e.g. Sibley & Monroe 1990, Collar 1997, Juniper and Parr 1998, Clements 2000, Forshaw 2010). SACC proposal passed to restore “Vinaceous-breasted.”

40. Collar (1997) suggested that the subspecies fuscifrons from south of the Amazon River might deserve recognition as a separate species from Deroptyus accipitrinus.

Page 67: Remsen/SACCBaseline05.docx · Web vie

__________________________________________________

Part 6. Suboscine Passeriformes, A (Sapayoidae to Formicariidae)