24
e-ý ; .. ý . ý ý, iý, t+urllat A1akstirttat AkaQelrilx. UNIVERSITI MALAYSIA SARAWAK ()4; 0O Kola Samarahan P. KHIDMAT MAKLUMAT AKADEMIK UNIMAS 1111111111111111111111111111111 - 1000165885 REMOVAL OF PHOSPHORUS FROM AQUEOUS SOLUTIONS USING SELECTED MATERIALS TIONG PEI JEN A thesis submitted in fulfillment of the requirements for the degree of Master of Science Institute of Biodiversity and Environmental Conservation UNIVERSITI MALAYSIA SARAWAK 2007

REMOVAL OF PHOSPHORUS FROM AQUEOUS SOLUTIONS … of phosphorus from aqueous... · Acknowledgements I would like to sincerely express my utmost gratitude and appreciation to my research

  • Upload
    ngotram

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

e-ý ; .. ý . ý ý,

iý, t+urllat A1akstirttat AkaQelrilx. UNIVERSITI MALAYSIA SARAWAK

()4; 0O Kola Samarahan

P. KHIDMAT MAKLUMAT AKADEMIK UNIMAS

1111111111111111111111111111111 -

1000165885

REMOVAL OF PHOSPHORUS FROM AQUEOUS SOLUTIONS

USING SELECTED MATERIALS

TIONG PEI JEN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

Institute of Biodiversity and Environmental Conservation UNIVERSITI MALAYSIA SARAWAK

2007

Acknowledgements

I would like to sincerely express my utmost gratitude and appreciation to my research

supervisor, Prof. Dr. Lau Seng from Faculty of Resource Science and Technology,

Universiti Malaysia Sarawak, for his sustained interest, constructive criticisms,

guidance and invaluable support throughout my undertaking of this project.

I would also like to thank my parents, my brother and my sisters for their unrelenting

support, understanding, confidence, care and inspiration.

Besides that, my warmest thanks to all my friends, laboratory assistants, and all staff

from Institute of Biodiversity and Environmental Conservation (IBEC), Universiti

Malaysia Sarawak for their kind assistance through the course of my study.

I gratefully acknowledge the scholarship award by Kuok Foundation Berhad during the

course of my study. Last but not least, I would like to convey my heartiest gratitude and

appreciation to anyone who has in one way or another contribute towards the success of

this project.

i

Abstract

In Malaysia, eutrophication induced by excess phosphorus in water sources is one of the

major causes of water pollution. The sources of phosphorus include grey water and the

inefficiently treated effluents from septic tanks. The high concentration of phosphorus in

our grey water is due to the extensive usage of phosphate-based detergents for

laundering and other cleaning purposes. Conventional phosphorus removal methods (e. g.

chemical precipitation, reverse osmosis, ion exchange and electrodialysis) are either

energy and cost intensive or not environmentally sustainable. Biological phosphorus

removal has limited phosphate removal capacity. Thus, an efficient, energy and cost-

saving, as well as environmentally sustainable phosphorus removal process should be

established. In this study, the physical and chemical characteristics of three locally

available materials (limestone, red bricks, and degraded shale) were determined, and

their phosphorus (P) adsorption performance were examined using both batch and

column experiments. Desorption studies were carried out to determine the P adsorption

strength of the materials. The main objective of the study was to determine the efficiency

of three selected materials in removing phosphorus from aqueous solutions, and their

potential to be used as substrate in constructed wetland of an ecological sanitation

(ecosan) system. The physical characteristics determined include specific gravity and

particle density, bulk density and porosity, bed porosity, and pH values. For chemical

characterizations, P content, calcium carbonate, and metal contents (Ca, Mg, Fe and Al)

of the materials were determined. Batch experiments were carried out to ascertain the

adsorption of the various materials for phosphorus under different experimental

conditions (agitation time, pH, grain size, initial phosphorus concentration, mixture of

materials). Column experiments were carried out for the same factors as in batch

11

experiments in order to enable the comparison between results obtained from both

experiments. The phosphate-P adsorbed was determined using colorimetric method by

UV/VIS spectrometer. The results obtained show that among the three materials tested,

red bricks seemed to be the most porous, followed by limestone and degraded shale, with

porosity of 0.32, 0.29, and 0.17, respectively. Red brick was the most acidic (pH 4.26).

Degraded shale was almost neutral (pH 7.51), whereas limestone was the most alkaline

(pH 8.12). Both red bricks and degraded shale were found to fit into the pseudo-second

order kinetic models (R2>0.981). Limestone however, seemed to give the best fit into

pseudo-first order kinetic model. The Freundlich equation was observed to model the

phosphorus adsorption data better than Langmuir equation when considering all the

adsorbents investigated. Overall results from batch experiments show that when 10 mg

P/L of phosphate solution was applied to materials with 4-10 mm grain size, both red

bricks and limestone exhibit relatively high phosphorus adsorption percentage (>80%).

Meanwhile, degraded shale had very low phosphorus adsorption performance (<10%).

The mixture of materials exhibited lower phosphorus removal efficiencies than unmixed

materials except for degraded shale. Limestone used was found to accumulate up to

1635.93 mg P/kg material upon saturation while red bricks were found to accumulate

only 191.74 mg P/kg material when saturated. The studies on performance of materials

under repeated cycles show that limestone gave the best result under long run when

compared to red bricks and degraded shale. Low phosphorus desorbability was observed

for limestone and red bricks. Both materials exhibited desorbability of <10% at all pH

tested. Degraded shale was observed to have a high desorbability of about 32 - 50%,

except for pH 3 (about 15%). From the results obtained, it can be concluded that among

the materials tested, limestone has the greatest potential for phosphorus removal in

aqueous solution.

111

PENGASINGAN FOSFOR US DARI LAR UTAN AKUEUS MENGG UNAKAN

BAHAN TERPILIH

Abstrak

Di Malaysia, eutrofikasi yang disebabkan oleh kehadiran fosforus yang berlebihan di

sumber air merupakan salah satu faktor utama berlakunya pencemaran air. Sumber

fosforus tersebut adalah dart air buangan domestik dan air kumbahan tangki septik

yang tidak dirawat dengan sempurna. Kandungan fosforus yang tinggi dalam air

kumbahan domestik kita berpunca daripada penggunaan detergen berfosfat secara

berleluasa untuk pelbagai aktiviti pencucian. Cara konvensyen untuk pengeluaran

fosforus (contohnya: pemendakan kimia, osmosis pembalikan, penukaran ion, dan

elektrodialisis) sama ada memakan kos dan bekalan tenaga yang tinggi, atau tidak

mesra alam. Pengasingan fosforus dengan cara biologi pula didapati menipunyai

kapasiti pengeluaran fosforus yang terhad. Oleh itu, satu proses pengasingan fosforus

yang bukan sahaja menjimatkan kos dan bekalan tenaga tetapi juga mesra alam perlu

dicari. Dalam kajian ini, ciri-ciri fizikal dan kimia bagi tiga jenis bahan (batu kapur,

bata merah, dan batu `degraded shale) ditentukan. Keputusan penjerapa. n fosforus telah

diuji menggunakan eksperimen `batch' dan eksperimen turus. Eksperimen pendejerapan

juga dijalankan untuk menentukan kekuatan penjerapan fosforus bagi bahan kajian.

Tujuan utama kajian ini adalah untuk menentukan efisiensi bahan terpilih untuk

mengasingkan fosforus dart laru, tan akueus, dan potensi mereka untuk dijadikan sebagai

substrat bagi paya buatan dalam sistem `sanitasi ekologi : Ciri-ciri fizikal yang

ditentukan termasuk graviti tentu dan ketumpatan partikel, ketumpatan pukal dan

porositi, porositi dasar, dan nilai pH. Bagi ciri-ciri kimia, kandungan fosforus, kalsium

karbonat, dan unsur (Ca, Mg, Fe, dan Al) dalam bahan kajian tela. h ditentukan.

iv

Eksperimen `batch' telah dijalankan untuk menentukan penjerapan fosforus pada bahan

kajian di bawah keadaan eksperimen yang berbeza (Masa tindak balas, pH, saiz bahan,

kepekatan fosforus dalam larutan, campuran bahan). Eksperimen turus telah dijalankan

untuk mengkaji faktor-faktor yang sama dengan eksperimen `batch' agar perbandingan

dapat dibuat antara keputusan yang diperoleh daripada kedua-dua jenis eksperimen.

Fosforus yang terjerap ditentukan dengan kaedah kolorimetri menggunakan UV/VIS

spektrometer. Keputusan yang diperoleh menunjukkan antara tiga jenis bahan kajian

yang digunakan, bata merah adalah paling poros, diikuti dengan batu kapur dan

akhirnya batu `degraded shale; dengan porositi 0.32, 0.29, dan 0.17 masing-masing.

Bata merah adalah paling berasid (pH 4.26). Batu `degraded shale' adalah hampir

neutral (pH 7.51), manakala batu kapur adalah paling beralkali (pH 8.12). Kedu, a-dua

bata merah dan batu `degraded shale' adalah berpadanan dengan model kinetik pseudo-

second (R9>0.981). Batu kapur pula lebih sesuai untuk dipadankan dengan model kinetik

pseudo-first order: Persamaan Freundlich didapati dapat menggambarkan penjerapan

fosforus dengan lebih baik untuk semua bahan kajian berbandingpersamaan Langmu, ir.

Keputusan keseluruhan dart eksperimen `batch' menunjukkan bahawa apabila larutan

fosforus 10 mg P/L dan bahan kajian dengan saiz 4-10 mm digunakan, kedua-dua bata

merah dan batu kappur memberikan peratus penjerapan fosforus yang agak tinggi (? 80%).

Sementara itu, batu 'degraded shale' memberikan peratus penjerapan fosforus yang

rendah (<10%). Campuran bahan kajian memberikan kecekapan pengasingan fosforus

yang lebih rendah daripada bahan kajian yang tidak dicampur, kecuali batu `degraded

shale'. Batu kapur didapati mencapai takat tepu dengan 1635.93 mg P/kg bahan,

m, anakala bata merah mempunyai takat tepu pada 191.74 mg P/kg bahan. Keputusan

untuk persembahan bahan-bahan kajian dalam kitaran berulang menunjukkan bahawa

batu kapur memperlihatkan pengasingan fosforus yang paling baik untu. k jangka masa

V

panjang berbanding bata merah dan batu `degraded shale' Pendejerapan fosforus yang

rendah diperhatikan untuk kedua-dua batu kapur dan bata merah, di mana kedua-dua

bahan mempamerkan pendejerapan <10% pada sebarang pH yang dikaji. Batu `degraded

shale' diperhatikan mempunyai peratus pendejerapan yang tinggi, ia. itu lebih kurang 32

- 50%, kecuali pada pH 3 (lebih kurang 15%). Kesimpulannya, antara ketiga-tiga bahan

yang dikaji, batu kapur mempunyai potensi yang paling tinggi untuk pengasingan

fosforus dari larutan akueus.

vi

ruSat htlidnlat Milklumat Akaaemºw UNIVERSITI MALAYSIA SARAWAK u41(1() Kota Samarahaa

Table of Contents

Title

Acknowledgements

Abstract

Abstrak

Table of Contents

List of Tables

List of Figures List of Abbreviations

List of Symbols

Page

1

11

IV

vii

X1V

xvii

xxi

xxiii

Chapter 1 INTRODUCTION

1.1 The State of Water Pollution in Malaysia and Worldwide 1

1.2 Main Pollutants in Malaysia and Worldwide 5

1.3 Non Compliance of Discharges from Conventional 7

Treatment System to the Malaysian Water Quality Standard

1.4 Problem Statement and Potential Solution 10

1.5 Objectives of Study 15

1.6 Scope of Study 15

vii

Chapter 2 LITERATURE REVIEW

2.1 Wastewater 17

2.1.1 Composition of Wastewaters 20

2.1.2 Typical Composition of Grey Water 21

2.2 Nutrients in the Wastewater 22

2.2.1 Nitrogen 22

2.2.2 Phosphorus 24

2.2.2.1 Chemical Properties of Phosphorus 28

(a) Aqueous Chemistry 28

(b) Solid Phase/ Adsorption 31

(i) Kinetics of Phosphorus Adsorption 34

(ii) Phosphorus Adsorption Isotherms 37

2.3 Environmental Impacts of Phosphorus Usage

2.3.1 Impacts on Water Body

2.3.2 Impacts from Agriculture

2.3.3 Depletion of Phosphorus Resource

39

39

41

42

2.4 Wastewater Treatment 44

2.4.1 Conventional Treatment System 44

2.4.1.1 Phosphorus Removal Processes in 45

viii

Conventional Treatment System

(a) Biological Phosphorus Removal 45

(b) Chemical Precipitation 46

(i) Phosphate Precipitation with Calcium 47

(ii) Phosphate Precipitation with Aluminium 48

and Iron

2.4.2 Ecological Sanitation System 50

2.4.2.1 Constructed Wetland as Component in an 52

Ecological Sanitation System

(a) Surface Flow Constructed Wetland 54

(b) Subsurface Flow Constructed Wetland 54

2.4.2.2 Phosphorus Removal Mechanisms in 56

Constructed Wetland

(a) Removal of Phosphorus through 59

Adsorption and Precipitation

(b) Phosphorus Uptake by Plants 62

(c) Phosphorus Removal by Microorganisms 63

2.4.2.3 Strength and Weaknesses of Ecological 63

Sanitation System

(a) Strength of Ecological Sanitation System 63

(i) Economical and Affordable for All 63

(ii) Increasing Health and Dignity 64

(iii)Recycling and Reuse of Resources 64

(b) Weaknesses of Ecological Sanitation System 65

2.4.3 Media Materials Studied by Other Researchers 66

ix

Chapter 3 MATERIALS AND METHODS

3.1 Materials 68

3.2 Methodology 69

3.2.1 Experiment 1 (Characterizations of Media Materials) 69

3.2.1.1 Physical Characterizations 69

(a) Specific Gravity and Particle Density 69

(b) Bulk Density and Porosity 71

(c) Bed Porosity 74

(d) pH Values 75

3.2.1.2 Chemical Characterizations 76

(a) Calcium Carbonate Content in Media 76

Materials

(b) Metal (Fe, Ca, Mg, Al) and P Content 77

in Media Materials

3.2.2 Experiment 2 (Evaluation of the Performance of 77

Materials in Phosphorus Adsorption)

3.2.2.1 Batch Adsorption Experiments 78

(a) Studies on Adsorption Kinetics 80

(b) Studies on Adsorption Isotherm 81

(c) Effect of Initial Phosphorus Concentration 82

(d) Effect of pH 82

(e) Effect of Grain Size 83

(f) Effect of Mixture of Materials 84

3.2.3 Experiment 3 (Determination of P Accumulated 85

onto Materials)

3.2.4 Experiment 4 (Desorption Studies) 87

X

3.2.5 Experiment 5 (Column Adsorption Experiments) 88

(a) Studies on Retention Time 89

(b) Effect of Initial Phosphorus Concentration 90

(c) Effect of pH 91

(d) Effect of Grain Size 92

(e) Effect of Mixture of Materials 93

3.2.6 Experiment 6 (Studies on Performance of Materials under 93

Repeated Cycles)

3.3 Analytical Procedures 94

(a) Vanadomolybdophosphoric Acid 95

Colorimetric Method

(b) Ascorbic Acid Method 96

3.4 Statistical Analysis 98

Chapter 4 RESULTS AND DISCUSSION

4.1 Characteristics of Media Materials 99

4.1.1 Physical Characteristics of Media Materials 99

4.1.2 Chemical Characteristics of Media Materials 101

4.2 Batch Adsorption Experiments 103

4.2.1 Adsorption Kinetics 103

4.2.2 Adsorption Isotherms 111

4.2.3 Effect of Initial Phosphorus Concentration 115

X1

4.2.4 Effect of pH

4.2.5 Effect of Grain Size

4.2.6 Effect of Mixture of Materials

4.3 Determination of P Accumulated onto Materials

117

120

121

123

4.4 Desorption Studies 126

4.5 Column Adsorption Experiments

4.5.1 Effect of Retention Time

4.5.2 Effect of Initial Phosphorus Concentration

4.5.3 Effect of pH

4.5.4 Effect of Grain Size

4.5.5 Effect of Mixture of Materials

128

128

130

131

133

134

4.6 Studies on Performance of Materials under 135

Repeated Cycles

Chapter 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusions

5.2 Recommendations for Further Research

138

140

xii

REFERENCES

APPENDICES

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

141

165

168

174

178

179

X111

List of Tables

Table 1.1 National Water Quality Standard for Malaysia.

Page

8-10

Table 2.1 Average daily production and nutrient content of urine and 18 faeces.

Table 2.2 Typical composition of grey water. 21

Table 2.3 Percentage of nutrients emission from grey water to the 22

environment.

Table 2.4 Typical Phosphorus Concentrations in Raw Domestic 24 Wastewater.

Table 2.5 Forms of phosphates depending on pH. 29

Table 2.6 Approximate nutrient composition of average sanitary 46

wastewater (mg/L) based on 120 gal per capita per day

(gpcd) (450 L/person. d).

Table 2.7 The possible calcium-phosphate minerals that might form 60

and their Ca/P molar ratio.

Table 4.1 Physical characteristics of different materials tested for 99

P-adsorption properties.

Table 4.2 Chemical characteristics of different materials tested for 101

P-adsorption properties.

Table 4.3 Values of adsorption rate constants, calculated qe and coefficient 107

of determination (R2) obtained from different kinetic models.

xiv

Table 4.4 Langmuir and Freundlich models regression constants. 112

Table 4.5 Desorbability of the adsorbed phosphate-P on selected 127

materials in DI water with different pH.

Table 4.6 Performance of mixture of materials for phosphorus adsorption. 134

Table Al Phosphorus adsorption with different agitation time. 165

Table A2 Phosphorus adsorption with different initial phosphorus 166

concentration.

Table A3 Phosphorus adsorption with different pH. 166

Table A4 Phosphorus adsorption with different grain size. 167

Table A5 Phosphorus adsorption by mixture of materials under 167

different pH.

Table Cl The calculated values of dimensionless separation factor (r) 177

called equilibrium parameter using Langmuir constant (b).

Table D 1 Phosphorus accumulated on limestone and red bricks under 178

repeated cycles of batch experiments using initial phosphorus

concentration of 200 mg/L.

Table El Phosphorus adsorption with different retention time. 179

Table E2 Phosphorus adsorption with different initial phosphorus 180

concentration.

Table E3 Phosphorus adsorption with different pH.

Table E4 Phosphorus adsorption with different grain size.

180

181

xv

Table E5 Phosphorus adsorption performance under repeated cycles. 182

xvi

List of Figures

Figure 2.1 Combined Wastewater.

Figure 2.2 Several Forms of Phosphate.

Page

19

25

Figure 2.3 Linear flows in a conventional sanitation system. 44

Figure 2.4 Circular flows in an Ecosan system. 51

Figure 2.5 Effect of pH on phosphate precipitation with different metal ions. 60

Figure 2.6 Effect of redox potential on phosphate precipitation with 61

different metal ions.

Figure 3.1 Conical flasks with materials in phosphate solution. 79

Figure 3.2 Experimental setup for batch experiments. 79

Figure 3.3 Perkin-Elmer Lambda 25 UV/VIS Spectrometer. 80

Figure 3.4 Experimental setup for column experiments. 89

Figure 4.1 Phosphorus adsorption kinetic data for selected materials. 103

Figure 4.2 Application of the intraparticle diffusion model to the 110

measured kinetic data for the studied materials.

Figure 4.3 P adsorption with respect to initial phosphorus concentration 116

(a) mg P adsorbed/ kg material in 4 different P concentrations (b) percentage P removal in solutions of different initial

P concentration.

xvii

Figure 4.4 Adsorption of P with respect to pH.

Figure 4.5 P adsorption with respect to grain size.

117

120

Figure 4.6 Adsorption of P with respect to mixture of materials. 121

Figure 4.7 Accumulated P (mg/kg) adsorbed by materials under

repeated cycles.

123

Figure 4.8 Limestone before phosphorus adsorption. 125

Figure 4.9 Limestone after phosphorus adsorption under repeated cycles. 125

Figure 4.10 Adsorption of P with respect to retention time. 129

Figure 4.11 Adsorption of P with respect to initial phosphorus concentration. 130

Figure 4.12 Adsorption of P with respect to pH.

Figure 4.13 Adsorption of P with respect to grain size.

131

133

Figure 4.14 Adsorption of P under repeated cycles. 136

Figure B1 Linearized form of pseudo-first order adsorption kinetics of 168

red bricks for phosphate-P. qe = P adsorbed by red bricks

at equilibrium; qt = P adsorbed by red bricks at time t

Figure B2 Linearized form of pseudo-second order adsorption kinetics of 168

red bricks for phosphate-P. t = time t; [Pit = P adsorbed by

red bricks at time t

Figure B3 Linearized form of Elovich adsorption kinetics of red bricks for 169

phosphate-P. q = amount of P adsorbed; t = adsorption time

xviii

Figure B4 Linearized form of power function adsorption kinetics of red 169

bricks for phosphate-P. t = time t; [P] = P adsorbed by red

bricks at time t

Figure B5 Linearized form of pseudo-first order adsorption kinetics of 170

limestone for phosphate-P. qe = P adsorbed by limestone at

equilibrium; qt = P adsorbed by limestone at time t

Figure B6 Linearized form of pseudo-second order adsorption kinetics of 170

limestone for phosphate-P. t = time t; [P]t = P adsorbed by

limestone at time t

Figure B7 Linearized form of Elovich adsorption kinetics of limestone for 171

phosphate-P. q = amount of P adsorbed; t = adsorption time

Figure B8 Linearized form of power function adsorption kinetics of 171

limestone for phosphate-P. t = time t; [P] = P adsorbed

by limestone at time t

Figure B9 Linearized form of pseudo-first order adsorption kinetics of 172

degraded shale for phosphate-P. qe = P adsorbed by degraded

shale at equilibrium; qt = P adsorbed by degraded shale at time t

Figure B10 Linearized form of pseudo-second order adsorption kinetics of 172

degraded shale for phosphate-P. t = time t; [P]t = P adsorbed

by degraded shale at time t

Figure B11 Linearized form of Elovich adsorption kinetics of degraded shale 173

for phosphate-P. q = amount of P adsorbed; t = adsorption time

Figure B12 Linearized form of power function adsorption kinetics of 173

degraded shale for phosphate-P. t = time t; [P] = P adsorbed

by degraded shale at time t

xix

Figure C1 Adsorption data for red bricks according to Langmuir (a) 174

and Freundlich (b) isotherms. qe = P adsorbed by red bricks;

C. = equilibrium P concentration in the solution

Figure C2 Adsorption data for limestone according to Langmuir (a) 175

and Freundlich (b) isotherms. qe = P adsorbed by limestone;

Ce = equilibrium P concentration in the solution

Figure C3 Adsorption data for degraded shale according to Langmuir (a) 176

and Freundlich (b) isotherms. qe = P adsorbed by degraded shale; Ce = equilibrium P concentration in the solution

xx

List of Abbreviations

ADP adenosine diphosphate

AES atomic emission spectroscopy/spectrometry

AGI acute gastrointestinal illness

AMP adenosine monophosphate APHA American Public Health Association

ATP adenosine triphosphate

BOD biochemical oxygen demand

COD chemical oxygen demand

CWS constructed wetland systems

DI deionized

DNA deoxyribonucleic acid

DO dissolved oxygen

DOE Department of Environment

Ecosan ecological sanitation

EPA Environmental Protection Agency

FWS free-water-surface

GTZ Gesellschaft für Technische Zusammenarbeit

HSFCW horizontal subsurface flow constructed wetland

ICP inductively coupled plasma

IHP International Hydrological Programme

LECA light-weight expanded clay aggregates

LWA light weight aggregates NREB Natural Resource and Environment Board

PVC polyvinyl chloride

RNA ribonucleic acid

SEPA State Environmental Protection Administration

SF subsurface flow

SS suspended solids TSS total suspended solids UK United Kingdom

UNESCO United Nations Educational, Scientific and Cultural Organization

U. S United States

xxi

USEPA United States Environmental Protection Agency

UV ultra violet

VIS visible

WHO World Health Organization

xxii

List of Symbols

< less than

> more than

< less than or equal to

2-D two dimensional

3-D three dimensional

µg microgram

°C degree Celsius or Centigrade

cm centimetre

cm3 centimetre cube

conc. concentration

d day

Eq equation

ft feet

g gram

gal gallon

ha hectare

hr hour

in. inch

kg kilogram

km kilometre

L litre

lb pound

m metre

M Molar

m2 metre square

mg milligram

min minute

mL millilitre

mm millimetre

pe redox potential

ppd person per day

ppm part per million

xxiii