25
Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila [email protected] www.csam.montclair.edu/~robila/RSL/ Source: http://nis- www.lanl.gov/~borel/

Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila [email protected]

Embed Size (px)

DESCRIPTION

Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila [email protected] www.csam.montclair.edu/~robila/RSL/. Source: http://nis-www.lanl.gov/~borel/. Increasing Wavelength (in meters). 10 -6 Infrared. 10 -11 Gamma Rays. 10 -8 Ultraviolet. 10 Radio. - PowerPoint PPT Presentation

Citation preview

Page 1: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Remote Sensing

Hyperspectral ImageryApril 1st, 2004

Stefan A. Robila

[email protected]

www.csam.montclair.edu/~robila/RSL/

Source: http://nis-www.lanl.gov/~borel/

Page 2: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Remote Sensing

• a remote sensing technology• “seeing” characteristics not recognized by the human eye

Electromagnetic Spectrum

Increasing Wavelength (in meters)

10 -8

Ultraviolet

Microwaves

10 -2

10 -6

Infrared

10 -11

Gamma Rays

10

Radio

X-Rays

10 -9

Visible

10 -7

Page 3: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Remote Sensing

(example: FieldSpec Hand Held Spectroradiometer) • sensor obtains data (amount of light per wavelength) • computer software displays recorded spectrum • analyze spectral signature

Non-Imaging Instruments

Page 4: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Scanning radiometers• Passive system• Produces digital images

Imaging systems

Page 5: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Scanning radiometersMirror scans across-track (swath)

Imaging systems

Page 6: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Scanning radiometers2-D image formed by platform forward motion

Imaging Systems

Page 7: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair
Page 8: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

CCD arrays• Passive system• Line or block of CCDs instead of scanning mirror• Senses entire swath (or block) simultaneously

CCD

Page 9: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Remote Sensing

Multispectral – Many spectra (bands)

Hyperspectral – Huge numbers of continuous bands

Hyperspectral remote sensing provides a continuous, essentially complete record of spectral responses of materials over the wavelengths considered.

Page 10: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Platforms

First hyperspectral scanners:

1982: AIS (Airborne Imaging Spectrometer)

1987: AVIRIS (Airborne Visible/infrared Imaging Spectrometer)

1995: Hyperspectral Digital Imagery Collection Experiment (HYDICE)

2000: Hyperion (EO-1)

Page 12: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

AVIRIS Specifications•224 individual CCD (charge coupled device) detectors

• Spectral resolution of 10 nanometers

• Spatial resolution of 20 meters (at typical flight altitude)

• Flight platform: NASA ER-2 (modified U-2)

• Flight altitude: from 20,000 to 60,000, but usually flown at 60,000

• Typical swath width is 11 km.

• Dispersion of the spectrum against the detector array is accomplished with a diffraction grating.

• The total interval reaches from 380 to 2500 nanometers (roughly the same as TM band range).

• image, pushbroom-like, succession of lines, each containing 664 pixels.

Page 13: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair
Page 14: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

• shows the volume of data returned by imaging instruments

• illustrates how data from imaging instruments is geo-referenced

• data from different wavelengths can be used to create a “map” (in either true color or false color infrared formats)

Hyperspectral Cube

Page 15: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Remote SensingHyperspectral images can be analyzed in ways that multispectral images cannot

In the Visible-NIR range, water ice and dry ice give characteristic spectral curves, as shown here:

Page 16: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Data Analysis

General Approach:

• Develop Spectral Library

• Construct spectral curve for relatively "pure" materials

• Specific reflectance peaks and absorption troughs are read from these curves.

• Compare to lab spectra (mixture analysis)

• Mixtures of two or even three different materials can be identified as the components of the compound spectral curve.

Page 17: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Data Analysis

Spectral Libraries:

Sets of hundreds of measured spectra for components likely to be encountered in the study area.

Page 18: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Spectral Angle

For two pixel vectors x and y, the spectral angle is computed as:

21

1

221

1

2

11

22

1 coscos/n

ii

/n

i

n

iii

- ,)α(

yx

yx

yx

yxyx,

i

(x,y)

x

y

Band 1Ba

nd 2

The distance measure used for spectral screening.

Page 19: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Data Analysis

Pure Pixel Analysis

• Find relatively “pure” pixels

• Pixel Purity Index (PPI)

• “Pure” spectra are spectral endmembers

Endmembers

• Spectral characteristics of an image that represent classes of interest

• Usually assigned based on lab spectra

• Can be done manually

Page 20: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Data Analysis

Spectral Mixture Analysis (SMA)

• Also called “unmixing”

• Assumes that the reflectance spectrum derived from sensor can be deconvolved into a linear mixture of the spectra of ground components

• Linear / Non-linear

• Linear SMA assumes linear relationship between reflectance and area

Page 21: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Linear Mixture Model•Each pixel vector x can be described as:

where S is the nxm matrix of spectra (s1, .., sm) of the individual materials (also called endmembers), a is an m-dimensional abundance vector and w is the additive noise vector.

•The abundances of the endmembers have the restrictions:

•The ICA performs endmember unmixing; the resulting components correspond to the abundances of the endmembers, the columns in the mixing matrix correspond to the endmembers.

m

iiia

1

wSawsx

m..,iai ,,..10

m

iia

1

1

Page 22: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Future Hyperspectral Sensors

Spaceborne rather than airborne

Success:

• Hyperion, is part of NASA’s EO-1 - launched in December, 2000.

• Co-orbiting with Landsat 7

• 220 channels from 400 to 2500 nm

• Ground resolution 30 meters.

Page 23: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Future Hyperspectral Sensors

Hyperion

Page 24: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Future Hyperspectral Sensors

Off-the shelf (reduce costs)

Success: SOC 700 (Surface Optics)

•Spectral Band: 0.43 –to 0.9 microns •Number of Bands: 120, 240 or 480 (configurable) •Dynamic Range: 12-bit •Line Rate: Up to 100 lines/second (120 bands) •Pixels per line: 640 •Exposure Time: 10 -> 10^7 microsecond

Page 25: Remote Sensing Hyperspectral Imagery April 1 st , 2004 Stefan A. Robila robilas@mail.montclair

Hyperspectral Problems

• Data volume

• Cost

• Difficulty of analysis

• Spectral Libraries

• More complex