20
Folie 1 Silicon 2010, N. Novgorod >09.07.2010 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1 , S.A. Lynch 2 , P.T. Greenland 2 , K. Litvinenko 3 , R. Eichholz 1 , V.N. Shastin 4 , B. Redlich 5 , A.F.G. van der Meer 5 , N.V. Abrosimov 6 , H. Riemann 6 , H.-J. Pohl 7 , G. Aeppli 2 , B.N. Murdin 3 , C.R. Pidgeon 8 , and H.-W. Hübers 1,9 1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2) London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, England 3) Advanced Technology Institute, University of Surrey, Guildford, England 4) Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia 5) FOM-Institute for Plasma Physics, Nieuwegein, The Netherlands 6) Leibniz Institute of Crystal Growth, Berlin, Germany 7) VITCON Projectconsult GmbH, Jena, Germany 8) Department of Physics, Heriot-Watt University Riccarton, Edinburgh, Scotland 9) Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany

Relaxation of intracenter excitations in monoisotopic 28 Si:P

  • Upload
    hana

  • View
    17

  • Download
    2

Embed Size (px)

DESCRIPTION

Relaxation of intracenter excitations in monoisotopic 28 Si:P. - PowerPoint PPT Presentation

Citation preview

Page 1: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 1Silicon 2010, N. Novgorod >09.07.2010

Relaxation of intracenter excitations in monoisotopic 28Si:P S.G. Pavlov1, S.A. Lynch2, P.T. Greenland2, K. Litvinenko3, R. Eichholz1, V.N.

Shastin4, B. Redlich5, A.F.G. van der Meer5, N.V. Abrosimov6, H. Riemann6, H.-J. Pohl7, G. Aeppli2, B.N. Murdin3, C.R. Pidgeon8, and H.-W. Hübers1,9

1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2) London Centre for Nanotechnology and Department of Physics and Astronomy, University

College London, England3) Advanced Technology Institute, University of Surrey, Guildford, England

4) Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia

5) FOM-Institute for Plasma Physics, Nieuwegein, The Netherlands6) Leibniz Institute of Crystal Growth, Berlin, Germany

7) VITCON Projectconsult GmbH, Jena, Germany8) Department of Physics, Heriot-Watt University Riccarton, Edinburgh, Scotland9) Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany

Page 2: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 2Silicon 2010, N. Novgorod >09.07.2010

Intracenter electronic relaxation in silicon: basics

Recombination of electrons and donors in n-type germanium G. Ascarelli and S. Rodriguez Phys. Rev. 124, 1321, 1961

Cascade capture of electrons in solids M. Lax, Phys. Rev. 119, 1502,.1960

Evidence of noncascade intracenter electron relaxation in shallow donor centers in silicon, S.G. Pavlov, H.-W. Hübers, P.M. Haas, J.N. Hovenier, T.O. Klaassen, R.Kh. Zhukavin, V.N. Shastin, D.A. Carder and B. Redlich, Phys. Rev. B. 78, 165201, 2008.

Релаксация возбужденных состояний доноров с излучением междолинных фононов- В.В. Цыпленков, Е.В. Демидов, К.А. Ковалевский, В.Н.Шастин, ФТП 42, 1032, 2008.

Page 3: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 3Silicon 2010, N. Novgorod >09.07.2010

Relaxation of individual impurity states in silicon: experiments

T*=

dN2

*Tln

t

D

Page 4: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 4Silicon 2010, N. Novgorod >09.07.2010

Relaxation of individual impurity states in natural Si:P: experiments

dN2

*Tln

t

D

Silicon as a model ion trap: Time domain measurements of donor Rydberg states, N.Q. Vinh, P.T. Greenland, K. Litvinenko, B. Redlich, A.F.G. van der Meer, S.A. Lynch, M. Warner, A.M. Stoneham, G. Aeppli, D.J. Paul, C.R. Pidgeon and B.N. Murdin, PNAS 105, 10649, 2008.

Page 5: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 5Silicon 2010, N. Novgorod >09.07.2010

Natural linewidth of impurity transitions in 28Si:P: HR absorption spectroscopy

Shallow impurity absorption spectroscopy in isotopically enriched silicon, M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, J.W. Ager, III, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B. 79, 205210, 2009.

5.3ps / FWHM (cm-1)

Natural linewidth ofatomic transitions

Page 6: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 6Silicon 2010, N. Novgorod >09.07.2010

Avogadro Project

-redefine the kilogram based on the lattice constant and density of 28Si

enrichment: 99.99459%

[P] ~ 51011 cm-3 41015 cm-3

[B] ~ 51013 cm-3

dislocation free

Isotopically enriched 28Si:P.

Page 7: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 7Silicon 2010, N. Novgorod >09.07.2010

Relaxation of individual impurity states in silicon: variation of experimental results

dN2

*Tln

t

D

Page 8: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 8Silicon 2010, N. Novgorod >09.07.2010

dN2

*Tln

t

D

Relaxation of individual impurity states in silicon: variation of experimental results

-200 0 200 400 600 800 1000

0.01

0.1

1

Data: PPNP2005_SModel: ExpAssoc, Pts. 117-950 Chi^2/DoF = 0.00026R^2 = 0.98948y0 0.51033 ±0.00244A1 -45.21015 ±1748.32235t1 35.88791 ±17.95444A2 44.78098 ±1748.32374t2 34.97208 ±17.63192

PP_NP2.005 scan, ~36.35µm, 18dB (FEL) data points are upshifted (above 0)

Data: PPNP2005_SModel: ExpDec1 Pts 260-420Chi^2/DoF = 0.00012R^2 = 0.99359y0 0.08619 ±0.00511A1 1.60105 ±0.03706t1 47.71697 ±1.17407

Pro

be

tra

nsm

issi

on

(a

rb.u

n.)

Delay (ps)

3.12.2008 Pupm-probe, FEL1, 25MHz, T~4K,28Si:P 10Pr10.6.1Pe Fz 3.1.2

Page 9: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 9Silicon 2010, N. Novgorod >09.07.2010

Reason of negative contribution in pump-probe

-200 0 200 400 600 800 1000

0.01

0.1

1

Data: PPNP2005_SModel: ExpAssoc, Pts. 117-950 Chi^2/DoF = 0.00026R^2 = 0.98948y0 0.51033 ±0.00244A1 -45.21015 ±1748.32235t1 35.88791 ±17.95444A2 44.78098 ±1748.32374t2 34.97208 ±17.63192

PP_NP2.005 scan, ~36.35µm, 18dB (FEL) data points are upshifted (above 0)

Data: PPNP2005_SModel: ExpDec1 Pts 260-420Chi^2/DoF = 0.00012R^2 = 0.99359y0 0.08619 ±0.00511A1 1.60105 ±0.03706t1 47.71697 ±1.17407

Pro

be

tra

nsm

issi

on

(a

rb.u

n.)

Delay (ps)

3.12.2008 Pupm-probe, FEL1, 25MHz, T~4K,28Si:P 10Pr10.6.1Pe Fz 3.1.2

7800 8000 8200 8400 8600

0.0

0.2

0.4

0.6

0.8

1.0 FEL1 : area 85.451 FEL2 : area 49.481 Si:P V230 : 44.296

Y A

xis

Titl

e

frequency (GHz)

FEL1 (6ps) = 54.4 GHzFEL2 (10ps) = 31.5 GHzSi:P (FTS) = 28.2 GHz

Page 10: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 10Silicon 2010, N. Novgorod >09.07.2010

-100 0 100 200 300 400

0.070.080.090.100.110.120.130.140.150.160.170.180.190.200.210.220.230.240.250.260.27

36.15 36.20 36.25 36.30 36.35 36.40

-0.05

0.00

0.05

0.10

PP_NP2.0XX scans, 23dB (FEL1) =36.35µm =36.33µm =36.25µm =36.40µm =36.15µm

Pro

be

tra

nsm

issi

on

(a

rb.u

n.)

Delay (ps)

3.12.2008 Pupm-probe, FEL1, 25MHz, T~4K,28Si:P 10Pr10.6.1Pe Fz 3.1.2

Tra

nsm

issi

on p

eak

(arb

.un.

)

wavelength (µm)

Reason of negative contribution in pump-probe

Page 11: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 11Silicon 2010, N. Novgorod >09.07.2010

FEL probe

FELIX pump laser

+

-

-

Absorption on 2p0c.b. transitions delivers negative contribution in probe transmission through sample

Different contributions in pump-probe

Page 12: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 12Silicon 2010, N. Novgorod >09.07.2010

35.8 36.0 36.2 36.4 36.6 36.8 37.00.5

1.0

1.5

2.0

2.5

FWHM=0.25µm (0.69%)

Pro

be

tra

nsm

issi

on

FEL1 wavelegth (µm)

1.12.2008, FEL1, 25MHz, ~4K, dispersion~0.25µm

28Si:P 10Pr10.6.Pe Fz3.1.2, 7x7x1 mm3, 3.6x1015 cm-3

normalized Probe transmission, 10dB FEL att Transmission spectrum of Si:P V230

Matching FEL and impurity linewidths

Page 13: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 13Silicon 2010, N. Novgorod >09.07.2010

-200 0 200 400 600 800 1000-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Time delay, ps

original data5K 20dB 36.3m

Reduction of negative contribution in pump-probe

Page 14: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 14Silicon 2010, N. Novgorod >09.07.2010

Pumped-probed state

FELIX pump laser

FEL probe

ND(t)=N1s(A1)(t)+N2p0(t)+N1s(E)+N1s(T2)

01

10

21

21

2110

1021D0p2 w

)twexp(

w

)twexp(

ww

ww1)t(N

if two-step decay dominates:

small relative absorbance:

c.b.

two-exp decay fit must be used

where decay rates between states are:w21: 2p0 1s(E,T2)

w10: 1s(E,T2) 1s(A1)

+

Two-exponential decay as step-like decay of the 2p0 state

Page 15: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 15Silicon 2010, N. Novgorod >09.07.2010

5 10 15 20 25 30 351E-3

0.01

0.1

1

Am

plit

ud

e A

1/A

2/A

0 (a

rb. u

.)

Power attenuation (dB)

28 Si two exp fit two exp fit one exp fit

Two-exponential decay: 28Si:P (amplitude)

Page 16: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 16Silicon 2010, N. Novgorod >09.07.2010

5 10 15 20 25 30 350

50

100

150

200

250

300

350

400

t0

t2

t1

Tim

e (

ps)

Power attenuation (dB)

28Si two exp fit two exp fit one exp fit

Two-exponential decay: 28Si:P (decay constants)

Page 17: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 17Silicon 2010, N. Novgorod >09.07.2010

5 10 15 20 25 300.01

0.1

Am

plit

ud

e (

arb

. u.)

Power attenuation (dB)

A1 A2 A0

Two-exponential decay: Si:P (amplitude)

Page 18: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 18Silicon 2010, N. Novgorod >09.07.2010

5 10 15 20 25 30

405060708090

100110120130140150160170180190200210220

Tim

e (

ps)

Power attenuation (dB)

t1 t2 t0

Two-exponential decay: Si:P (decay constant)

Page 19: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 19Silicon 2010, N. Novgorod >09.07.2010

Optically pumped donor intracenter silicon lasers

Phys. Rev. Lett. 84, 5220 (2000)Appl. Phys. Lett. 80, 4717 (2002)J. Appl. Phys. 92, 5632 (2002)Appl. Phys. Lett. 84, 3600 (2004)

Page 20: Relaxation of intracenter excitations in monoisotopic  28 Si:P

Folie 20Silicon 2010, N. Novgorod >09.07.2010

Conclusions:

- Decay of the 2p0 state in Si:P is very likely two-step process- Decay time on the first step (2p01s(E), 1s(T2)) is about 200 ps for 28Si:P and about 150 ps for Si:P- Decay time on the first step (1s(E), 1s(T2) 1s(A1) ) is about 50 ps for 28Si:P and about 50 ps for Si:P

- experiments: different doping (done, not yet analyzed)- two-color time-resolved experiments- modeling of relaxation