32
16 2.2 1 20 1.9 2.8 2 25 2.3 3.5 3 32 1.8 2.9 4.4 4 40 1.8 2.3 3.7 5.5 5 50 1.8 2.0 2.9 4.6 6.9 6 63 1.8 2.0 2.5 3.6 5.8 8.6 7 75 1.9 2.3 2.9 4.3 6.8 10.3 8 90 2.2 2.8 3.5 5.1 8.2 12.3 9 110 2.7 3.4 4.2 6.3 10.0 15.1 10 125 3.1 3.9 4.8 7.1 11.4 17.1 11 140 3.5 4.3 5.4 8.0 12.7 19.2 12 160 4.0 4.9 6.2 9.1 14.6 21.9 13 180 4.4 5.5 6.9 10.2 16.4 24.6 14 200 4.9 6.2 7.7 11.4 18.2 27.4 15 225 5.5 6.9 8.6 12.8 20.5 30.8 16 250 6.2 7.7 9.6 14.2 22.7 34.2 17 280 6.9 8.6 10.7 15.9 25.4 38.3 18 315 7.7 9.7 12.1 17.9 28.6 43.1 19 355 8.7 10.9 13.6 20.1 32.2 48.5 20 400 9.8 12.3 15.3 22.7 36.3 54.7 21 450 11.0 13.8 17.2 25.5 40.9 61.5 22 500 12.3 15.3 19.1 28.4 45.4 68.3 23 560 13.7 17.2 21.4 31.7 50.8 24 630 15.4 19.3 24.1 35.7 57.2 25 710 17.4 21.8 27.2 40.2 64.5 26 800 19.6 24.5 30.6 45.3 27 900 22.0 27.6 34.4 51.0 28 1000 24.5 30.6 38.2 56.7 29 1100 26.9 33.7 42.0 62.4 30 1200 29.4 36.7 45.9 68.0 31 1400 34.4 42.9 53.5 32 1600 39.2 49.0 61.2 33 Dn [mm] 2 1/2 3.2 4 6 10 16 Presiones nominales PN [bar] HDPE PE80 DIN 8074 / ISO 4427 Espesor [mm] 1 2 3 4 5 6 7

Relationships Between Cv Kv and C

Embed Size (px)

DESCRIPTION

Friction loss

Citation preview

Page 1: Relationships Between Cv Kv and C

16 2.2 1

20 1.9 2.8 2

25 2.3 3.5 3

32 1.8 2.9 4.4 4

40 1.8 2.3 3.7 5.5 5

50 1.8 2.0 2.9 4.6 6.9 6

63 1.8 2.0 2.5 3.6 5.8 8.6 7

75 1.9 2.3 2.9 4.3 6.8 10.3 8

90 2.2 2.8 3.5 5.1 8.2 12.3 9

110 2.7 3.4 4.2 6.3 10.0 15.1 10

125 3.1 3.9 4.8 7.1 11.4 17.1 11

140 3.5 4.3 5.4 8.0 12.7 19.2 12

160 4.0 4.9 6.2 9.1 14.6 21.9 13

180 4.4 5.5 6.9 10.2 16.4 24.6 14

200 4.9 6.2 7.7 11.4 18.2 27.4 15

225 5.5 6.9 8.6 12.8 20.5 30.8 16

250 6.2 7.7 9.6 14.2 22.7 34.2 17

280 6.9 8.6 10.7 15.9 25.4 38.3 18

315 7.7 9.7 12.1 17.9 28.6 43.1 19

355 8.7 10.9 13.6 20.1 32.2 48.5 20

400 9.8 12.3 15.3 22.7 36.3 54.7 21

450 11.0 13.8 17.2 25.5 40.9 61.5 22

500 12.3 15.3 19.1 28.4 45.4 68.3 23

560 13.7 17.2 21.4 31.7 50.8 24

630 15.4 19.3 24.1 35.7 57.2 25

710 17.4 21.8 27.2 40.2 64.5 26

800 19.6 24.5 30.6 45.3 27

900 22.0 27.6 34.4 51.0 28

1000 24.5 30.6 38.2 56.7 29

1100 26.9 33.7 42.0 62.4 30

1200 29.4 36.7 45.9 68.0 31

1400 34.4 42.9 53.5 32

1600 39.2 49.0 61.2 33

Dn [mm] 2 1/2 3.2 4 6 10 16Presiones nominales PN [bar]

HDPE PE80 DIN 8074 / ISO 4427Espesor [mm]

1 2 3 4 5 6 7

Page 2: Relationships Between Cv Kv and C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2

3 Pipe Thickness [mm], according ASME B36.10M4

5 ASME B36.10M SCHEDULE / IDENTIFICATION

6 Size 5 10 20 30 40 60 80 100 120 140 160 STD XS XXS

7 1/2 21.3 1.65 2.11 - 2.41 2.77 - 3.73 - 0 - 4.78 2.77 3.73 7.47

8 3/4 26.7 1.65 2.11 - 2.41 2.87 - 3.91 - 0 - 5.56 2.87 3.91 7.829 1 33.4 1.65 2.77 - 2.9 3.38 - 4.55 - 0 - 6.35 3.38 4.55 9.0910 1 1/4 42.2 1.65 2.77 2.97 3.56 4.85 6.35 3.56 4.85 9.7

11 1 1/2 48.3 1.65 2.77 - 3.18 3.68 - 5.08 - 0 - 7.14 3.68 5.08 10.15

12 2 60.3 1.65 2.77 - 3.18 3.91 - 5.54 - 0 - 8.74 3.91 5.54 11.0713 2 1/2 73 2.11 3.05 4.78 5.16 7.01 9.53 5.16 7.01 14.0214 3 88.9 2.11 3.05 - 4.78 5.49 - 7.62 - 0 - 11.13 5.49 7.62 15.2415 3 1/2 101.6 2.11 3.05 4.78 5.74 8.08 5.74 8.08

16 4 114.3 2.11 3.05 - 4.78 6.02 - 8.56 - 11.13 - 13.49 6.02 8.56 17.12

17 5 141.3 2.77 3.4 - - 6.55 - 9.53 - 12.7 - 15.88 6.55 9.53 19.05

18 6 168.3 2.77 3.4 - - 7.11 - 10.97 - 14.27 - 18.26 7.11 10.97 21.95

19 8 219.1 2.77 3.76 6.35 7.04 8.18 10.31 12.7 15.09 18.26 20.62 23.01 8.18 12.7 22.2320 10 273 3.4 4.19 6.35 7.8 9.27 12.7 15.09 18.26 21.44 25.4 28.58 9.27 12.7 25.421 12 323.8 3.96 4.57 6.35 8.38 10.31 14.27 17.48 21.44 25.4 28.58 33.32 9.53 12.7 25.422 14 355.6 3.96 6.35 7.92 9.53 11.13 15.09 19.05 23.83 27.79 31.75 35.71 9.53 12.7 - 23 16 406.4 4.19 6.35 7.92 9.53 12.7 16.66 21.44 26.19 30.96 36.53 40.49 9.53 12.7 - 24 18 457 4.19 6.35 7.92 11.13 14.27 19.05 23.83 29.36 34.93 39.67 45.24 9.53 12.7 - 25 20 508 4.78 6.35 9.53 12.7 15.09 20.62 26.19 32.54 38.1 44.45 50.01 9.53 12.7 - 26 22 559 4.78 6.35 9.53 12.7 - 22.23 28.58 34.93 41.28 47.63 53.98 9.53 12.7 - 27 24 610 5.54 6.35 9.53 14.27 17.48 24.61 30.96 38.89 46.02 52.37 59.54 9.53 12.7 - 28 26 660 - 7.92 12.7 15.88 - - - - - - - 9.53 12.7 - 29 28 711 - 7.92 12.7 - - - - - - - - 9.53 12.7 - 30 30 762 6.35 7.92 12.7 15.88 - - - - - - - 9.53 12.7 - 31 32 813 - 7.92 12.7 15.88 17.48 - - - - - - 9.53 12.7 - 32 34 864 - 7.92 12.7 15.88 17.48 - - - - - - 9.53 12.7 - 33 36 914 - 7.92 12.7 15.88 19.05 - - - - - - 9.53 12.7 - 34 38 965 - - - - - - - - - - - 9.53 12.7 - 35 40 1016 - - - - - - - - - - - 9.53 12.7 -

dext

Page 3: Relationships Between Cv Kv and C

36 42 1067 - - - - - - - - - - - 9.53 12.7 - 44 1118 - - - - - - - - - - - 9.53 12.7 - 46 1168 - - - - - - - - - - - 9.53 12.7 -

39 48 1219 - - - - - - - - - - - 9.53 12.7 -

Page 4: Relationships Between Cv Kv and C

Kv values as function of Cv values

Cv value are usually published in tables of this type

The Cv value is the water flow rate Q [GPM] that will pass through a valve

The reference water specific gravity is defined as SG = 1, for a temperature of 60 ºF.

For derivation, see sheet 1a.- Kv=f(Cv)

when the pressure across it is DP = 1 [psi].

Page 5: Relationships Between Cv Kv and C

Flow rate in m³/h Flow rate in m³/h Flow rate in gpmPressure in "Pascal" Pressure in "bar" Pressure in "psi"

Relationship Relationship Relationship

0.0027353 *Cv 0.864972 *Cv Cv direct from table

Example (SI, m3/h, Pa) Example (SI, m3/h, bar) Example (Imperial unitsValve: fully open Valve: fully open Datadn = 4 in dn = 4 in Valve:

50,000 Pa 0.50 Pa dn =SG = 1 SG = 1

From the table From the table SG =Cv = 1282 Cv = 1282

0.0027353 *Cv 0.864972 *Cv From the table

3.51 1,109 Cv =Q = Q = Q =Kv = 3.51 Kv = 1,109 Cv =

50,000 Pa 1 Pa DP =SG = 1 SG = 1 SG =Q = 784.1 m³/h Q = 784.1 m³/h Q =

Q =

Kvm3h,Pa = Kvm3h,bar =

DP = DP =DP =DP =

Kvm3h,Pa = Kvm3h,bar =

Kvm3h,Pa = Kvm3h,Pa =Kv * (DP/SG)^0.5 Kv * (DP/SG)^0.5

DP = DP =

Q(GPM )=Cv⋅√ ΔP( psi)

SGQ(m ³/h )=Kv(m³/ h ,Pa )⋅√ ΔP(Pa )

SGQ(m ³/h )=Kv(m³/ h ,bar )⋅√ ΔP(bar )

SG

Page 6: Relationships Between Cv Kv and C

Rev. 01.02.2014

Flow rate in gpmPressure in "psi"

Cv direct from table

Example (Imperial units

fully open4 in

50,000 Pa7.25 psi

1

From the table

1282

1,282 -7.25 psi

1 -3,452 gpm

784.11 m³/h

Cv * (DP/SG)^0.5

Q(GPM )=Cv⋅√ ΔP( psi)

SG

Page 7: Relationships Between Cv Kv and C

K values as function of Cv valuesExample

The singular pressure drop coefficient "K" is defined Fluid: waterin the Darcy-Weisbach equation as Q = 784.1

K * (f / L) * hv 3452where "hv" is the velocity pressure dn = 4

hv = [Pa] For a "sure" ball valve, Ref 1

Cv = 1282"v" is the liquid velocity [m/s] SG = 1

Q = 3452

Examples, for a Bray Series 20/21 Butterfly lined valve SG * Q^2/Cv^2Sg = 1Q = 3452Cv = 1282

7.25

Cv value are usually published in tables of this type 50,000

DP =

(r / 2) * v^2

"r" is the liquid density [kg/m³]

DP =

DP =

DP =

Page 8: Relationships Between Cv Kv and C

Pressure drop in SI (m3/h,Pa) Singular pressure drop coefficient "K"

m³/h Flow velocitygpm dn = 4in sch = STD

For a "sure" ball valve, Ref 1 #VALUE! mm

- #VALUE! m - A = (pi()/4)*d^2gpm A = #VALUE! m²

SG * Q^2/Cv^2 Q = 784.1 m³/h - Q = 0.218 m³/sgpm v = Q / A

Q = 0.218 m³/s

psi A = #VALUE! m²

Pa v = #VALUE! m/s

Kv-valueVelocity pressure

hv =

1000 kg/m³

0.0027353 * Cv hv =Cv = 1282 - SG = 1

3.51 1000 kg/m³v = #VALUE!

SG * ( Q / Kv )^2 hv = #VALUE! PaSG = 1Q = 784.1 m³/h Singular pressure drop coefficient

Kv = 3.51 K =

50,000 Pa 50000.0 Pahv = #VALUE! PaK = #VALUE! -

Flow rate in m³/h Flow rate in m³/h Flow rate in gpmPressure in "Pascal" Pressure in "bar" Pressure in "psi"

Relationship Relationship Relationship

di =

di =

r / 2 * v^2

r = SG * rwater

rwater =

Kvm3h,Pa = SG * rwater / 2 * v^2

Kvm3h,Pa = rwater =

DP =

DP / hv

DP = DP =

Kvm3h ,Pa=0 .0027353⋅Cv

Q(m ³/ h)=Kv(m³/ h ,Pa )⋅√ΔP(Pa )

SG

Q(m ³/ h)

Kv(m³/ h ,Pa )=√ΔP(Pa )

SG

[Q(m ³/ h)

Kv(m³/ h ,Pa ) ]2

=ΔP(Pa )

SG

ΔP(Pa )=SG⋅[Q(m ³/ h)

Kv (m³/ h ,Pa ) ]2

Page 9: Relationships Between Cv Kv and C

0 *Cv 0.86 *Cv Cv direct from table

Example (SI, m3/h, Pa) Example (SI, m3/h, bar) Example (Imperial unitsValve: fully open Valve: fully open Datadn = 4 in dn = 4 in Valve:

### Pa 0.50 Pa dn =SG = 1 SG = 1

From the table From the table SG =Cv = ### Cv = ###

0 *Cv 0.86 *Cv From the table

3.51 ### Cv =Q = Q = Q =Kv = 3.51 Kv = ### Cv =

### Pa 1 Pa DP =SG = 1 SG = 1 SG =Q = ### m³/h Q = ### m³/h Q =

Q =

Kvm3h,Pa = Kvm3h,bar =

DP = DP =DP =DP =

Kvm3h,Pa = Kvm3h,bar =

Kvm3h,Pa = Kvm3h,Pa =Kv * (DP/SG)^0.5 Kv * (DP/SG)^0.5

DP = DP =

Q(GPM )=Cv⋅√ ΔP( psi)

SGQ(m ³/h )=Kv(m³/ h ,Pa )⋅√ ΔP(Pa )

SGQ(m ³/h )=Kv(m³/ h ,bar )⋅√ ΔP(bar )

SG

Page 10: Relationships Between Cv Kv and C

Rev. 01.02.2014

Singular pressure drop coefficient calculated as a function of the pipediameter and Kv value.

(For derivation, see sheet "2a.- K=f(Kv,d)"

K coefficient

K =d = #VALUE! m

Kv = 3.51 -K = #VALUE! -

Pressure drop

K * hvK = #VALUE!hv = #VALUE! Pa

#VALUE! Pa

p^2*1620*d^4/kv^2

DP =

DP =

K=π2⋅1620⋅d4

Kv2

Microsoft Editor de ecuaciones 3.0

Page 11: Relationships Between Cv Kv and C

Cv direct from table

Example (Imperial units

fully open4 in

50,000 Pa7.25 psi

1

1282

1,282 -7.25 psi

1 -3,452 gpm

784.11 m³/h

Cv * (DP/SG)^0.5

Q(GPM )=Cv⋅√ ΔP( psi)

SG

Page 12: Relationships Between Cv Kv and C

[2] http://www.valvias.com/discharge-coefficient.php

Coeficiente de descarga "C" en función del coeficiente de flujo "Kv"Discharge coefficient "C" as a function of flow coefficient "Kv"(Valid for liquids)Ecuación de descarga de una válvulaEquation of a discharge though a valve

The discharge coefficient is non dimensional and for a givenvalve model its value is practically constant for any diameter.Usually, the published values are for the totaly open valves.

Fixed cone valves, are discharge valves. For this reason they arecaracterized by means of the discharge coefficient "C" instead ofthe flow coefficient Cv or KvFor this type of valves, the dischaarge coefficient is of the orderof C = 0.75 to C = 0.85

Q =C ⋅ A ⋅√2 ⋅ g ⋅Δh

Page 13: Relationships Between Cv Kv and C

The discharge coefficient is non dimensional and for a givenvalve model its value is practically constant for any diameter.Usually, the published values are for the totaly open valves.

Fixed cone valves, are discharge valves. For this reason they arecaracterized by means of the discharge coefficient "C" instead ofthe flow coefficient Cv or KvFor this type of valves, the dischaarge coefficient is of the orderof C = 0.75 to C = 0.85

Page 14: Relationships Between Cv Kv and C

Application of CV and Kv coeficients, for gases

[3]Critical pressure ratio and choked flow

Q = Kv * 18.9 * (DP * (2 * Pin - DP) / SG * (293/(273+tout)) )^0.5Kv = 1.8DP = 0.5 barPin = 4 bar

If the downstream pressure falls below Sg = 1the critical value, the flow become choked. tout = 20 °C

Q = 65.9 m³/h

For air

k = 1.4

Pcrit/Pin = (2 / (k+1) )^(k/(k-1) )Pcrit/Pin = 0.528Pcrit = 0.528 * Pin

The minimum ratio between the upstreampressure to the downstream pressure required for choked flow of air is(Pup/Pdw)min 1.893

Pcrit

Pin

=( 2k+1 )

kk−1

Q=Kv⋅18 . 9⋅√ ΔP⋅(2⋅P in−ΔP )SG

⋅293.15273+tout

Page 15: Relationships Between Cv Kv and C

Joukomatic. [3]Liquids and gases

[4]Cv for gasesSub-critical flow

Kv * 18.9 * (DP * (2 * Pin - DP) / SG * (293/(273+tout)) )^0.5

SCFH

psia

paiaT: absolute temperature °RSG: Gas specific gravity

Where the reference density is airat 70°F and 14.7 psia

[4] Q =Cv for gases Kv =Critical flow DP =

Pin =Sg =tout =Q =

[3]http://detector-gas-systems.web.cern.ch/detector-gas-systems/downloads/kv_calc_doc.pdf

JoucomaticEngineering informationFlow data Flow factor and orifice size

QG: Gas flow rate

P1: Inlet pressure

P2: Oulet pressure

SG = rG / rAir

Q=Kv⋅18 . 9⋅√ ΔP⋅(2⋅P in−ΔP )SG

⋅293.15273+tout

Cv=QG

962⋅√SG⋅TP1

2−P22

QG=962⋅Cv⋅√P12−P2

2

SG⋅T

Cv=QG

816⋅P1

⋅√SG⋅T

QG=Cv⋅816⋅P1

√ SG⋅T

Liquids

Q [m3

h ]=Kv⋅√ΔP [bar ]SG

SGwater=1______________Gases

Q [Nm3

h ]=Kv⋅18 .9⋅√ΔP⋅(2⋅Pin−ΔP )[bar ]SG

and with temperature correction

Q=Kv⋅18 .9⋅√ΔP⋅(2⋅Pin−ΔP )SG

⋅293.15273+tout

SGair=1 (1 bar absolute and 15 ° C )

Page 16: Relationships Between Cv Kv and C

Joukomatic. [3]Liquids and gases

Kv * 18.9 * (DP * (2 * Pin - DP) / SG * (293/(273+tout)) )^0.51.80.5 bar4 bar1

20 °C65.9 m³/h

http://detector-gas-systems.web.cern.ch/detector-gas-systems/downloads/kv_calc_doc.pdf

Engineering information

Flow factor and orifice size

Microsoft Editor de ecuaciones 3.0

Liquids

Q [m3

h ]=Kv⋅√ΔP [bar ]SG

SGwater=1______________Gases

Q [Nm3

h ]=Kv⋅18 .9⋅√ΔP⋅(2⋅Pin−ΔP )[bar ]SG

and with temperature correction

Q=Kv⋅18 .9⋅√ΔP⋅(2⋅Pin−ΔP )SG

⋅293.15273+tout

SGair=1 (1 bar absolute and 15 ° C )

Page 17: Relationships Between Cv Kv and C

Cv Coeficiente de caudal para válvulas de mariposaTabla Cv Coeficiente de caudal para válvulas de mariposa en función de la posición de oberturaTamaño Cv [gpm] [psi]NPS DN Apertura - posición del disco

(inches) (mm) 90º80º 70º 60º 50º

Abierta1 25 61 56 36 21 11

1 1/2 40 147 129 87 50 262 50 244 172 123 73 45

2 1/2 65 439 310 201 115 713 80 691 488 290 165 1024 100 1282 906 515 294 1825 125 2070 1416 805 459 2846 150 2786 1873 1065 607 3768 200 5191 3402 1935 1147 714

10 250 8238 5385 3062 1815 113012 300 12102 7820 4448 2636 164214 350 15210 9829 5590 3313 206416 400 19940 12885 7328 4343 270618 450 26150 16898 9610 5695 354920 500 32690 21124 12014 7120 4436

(*) Datos según catálogo: Bray Series 20/21 Butterfly lined valve

http://www.valvias.com/coeficiente-de-caudal-valvula-de-mariposa.php

Page 18: Relationships Between Cv Kv and C

Tabla Cv Coeficiente de caudal para válvulas de mariposa en función de la posición de obertura From table in sheet "Bray"Cv [gpm] [psi] dn =Apertura - posición del disco Cv =

40º 30º 20º 10º

5.6 2.7 0.97 0.0712.8 5.9 1.7 0.2527 16 7 0.8943 25 11 1.462 35 16 2

110 63 28 3.6172 98 44 6227 130 59 7427 244 106 13675 387 168 21981 562 245 31

1234 706 307 401617 925 403 522121 1213 528 682651 1517 660 85

Page 19: Relationships Between Cv Kv and C

From table in sheet "Bray"20 in

32690

Page 20: Relationships Between Cv Kv and C

Size Cv [gpm] [psi]

90º 80º 70º 60º 50º 40º 30º 20º 10º

NPS (Iinch)

ND (mm)

Opening - disc position

Page 21: Relationships Between Cv Kv and C
Page 22: Relationships Between Cv Kv and C

Pressure loss coefficient "K" for gas flow

a =

b =b =

Fluid airSG =

c =

a =b =c =

From Sheet Air blown linehv =

Pressure loss coefficient

K =

hv =K =

a * DP^2 + b *

Pin =

C = (SG*Qm3h^2) / (Kv

Qm3h =

tout =

Kvm3h,bar =

DP =

DP =DP =

DP =

DP =

Microsoft Editor de ecuaciones 3.0

c=SG⋅Qm3h

2

Kvm3h ,bar2 ⋅18 .92

⋅273+ tout293 . 15

ΔPbar2 −2⋅P inbar

⋅ΔPbar+c=0Gases

Q [Nm3

h ]=Kv⋅18 . 9⋅√ΔP⋅(2⋅Pin−ΔP )[bar ]SG

and with temperature correction

Q=Kv⋅18 . 9⋅√ΔP⋅(2⋅Pin−ΔP )SG

⋅293.15273+tout

Qm3 h=Kvm 3h,bar⋅18 .9⋅√ ΔPbar⋅(2⋅Pinbar−ΔPbar )

SG⋅293 . 15273+ tout

Qm3 h

Kvm3h ,bar⋅18 .9=√ΔPbar⋅(2⋅Pinbar

−ΔPbar )

SG⋅293 .15273+tout

SG⋅Qm3 h2

Kvm3h ,bar2 ⋅18 .92

⋅273+tout293 .15

=ΔPbar⋅(2⋅Pinbar−ΔPbar )

c=SG⋅Qm3h

2

Kvm3h ,bar2 ⋅18 .92

⋅273+ tout293 . 15

ΔPbar⋅(2⋅P inbar−ΔPbar )=c

2⋅Pinbar⋅ΔPbar−ΔPbar

2 −c=0

ΔPbar2 −2⋅P inbar

⋅ΔPbar+c=0

Page 23: Relationships Between Cv Kv and C

Rev. 01.02.2014

Singular coefficient for a valve with gasSolution using the VBA function

K = K_Gas_PinBar_SG_QNm3h_HvPascal_Cv_toutCelcius

Pin = 1.44 bar1 SG = 1 -

1.44 bar Q = 74,760 Nm³/h

Hv = 170.1 Pa-2.88 Cv = 126,000

tout = 128.6 ªCK = #VALUE! -

Pressur lossK * hv

K = #VALUE! -1 - hv = 170.1 Pa

74,760 Nm³/h #VALUE! Pa

128.6 ºC

109,112 (Annex A) Check of flow rate0.0018

(- b - (b^2 - 4 * a * c)^0.5 ) / (2 * a)1 Q = Kv * 18.9 * (DP*(2*Pin-DP)/SG*293.15/(273 ))^0.5

-2.88 Kv = 109,1120.00180 DP = 0.000626 bar0.0006 bar Pin = 1.44 bar

62.6 Pa SG = 1

128.6 ºCFrom Sheet Air blown line Q = 74,760 Nm³/h

170.1 Pa

Pressure loss coefficientK * hv

63 Pa170.12 Pa0.3677

a * DP^2 + b * DP + c = 0

-2 * Pin

C = (SG*Qm3h^2) / (Kvm3h,bar^2*18.9^2) * (273+tout)/293.15 DP =

DP =

tout =

DP / hv

c=SG⋅Qm3h

2

Kvm3h ,bar2 ⋅18 .92

⋅273+ tout293 . 15

ΔPbar2 −2⋅P inbar

⋅ΔPbar+c=0

Qm3 h=Kvm 3h,bar⋅18 .9⋅√ ΔPbar⋅(2⋅Pinbar−ΔPbar )

SG⋅293 . 15273+ tout

Page 24: Relationships Between Cv Kv and C

Rev. 01.02.2014

Annex A

Pipe nominal diameter (CS)dn = 36 in

Valve: Norris butterfly From table, for 200 psi valvesFully open valve value(Shhet Norris. B.V.)

Cv = 126,000

Kv value

0.865972 * CvCv = 126,000

109,112

Kvm3h,bar =

Kvm3h,bar =

Page 25: Relationships Between Cv Kv and C

[2a] Norris butterfly valveshttp://www.norriseal.com/files/comm_id_47/BV_HowTo_Brochure_120811.pdf

Page 26: Relationships Between Cv Kv and C

Valve diameter (Air blown line)dn = 36 in

From table, for 200 psi valvesFully open valve value

Cv = 126,000

Kv-valueRelation Kv - Cv

0.865972 * CvCv = 126,000

109112.5

Kvm3h,bar =

Kvm3h,bar =

Kvm3h ,bar=0. 864972⋅Cv

Page 27: Relationships Between Cv Kv and C

[1]

[2] Coeficiente de descarga

[3] http://detector-gas-systems.web.cern.ch/detector-gas-systems/downloads/kv_calc_doc.pdf

JoucomaticEngineering informationFlow data Flow factor and orifice size

[4] http://www.fnwvalve.com/FNWValve/assets/images/PDFs/FNW/tech_AboutCv.pdfFNWAbout CV.(Flow coefficients)

[5] Ideal valveFlow calculation for gaseshttp://www.idealvalve.com/pdf/Flow-Calculation-for-Gases.pdf

[6] Spiraxsarcohttp://www.spiraxsarco.com/resources/steam-engineering-tutorials/control-hardware-el-pn-actuation/control-valve-sizing-for-steam-systems.asp

[7] Intellsitesuitehttp://help.intellisitesuite.com/Hydrocarbon/papers/6110.pdf

[8]

[9] Joucomatichttp://detector-gas-systems.web.cern.ch/detector-gas-systems/downloads/kv_calc_doc.pdf

Engineering informationFlow data Flow factor and orifice size

http://www.valvias.com/coeficiente-de-caudal-valvula-de-bola.php

http://www.valvias.com/ecuaciones-de-fluidos-coeficiente-de-descarga-c.php#c-K

Page 28: Relationships Between Cv Kv and C

http://detector-gas-systems.web.cern.ch/detector-gas-systems/downloads/kv_calc_doc.pdf

http://www.spiraxsarco.com/resources/steam-engineering-tutorials/control-hardware-el-pn-actuation/control-valve-sizing-for-steam-systems.asp

Microsoft Editor de ecuaciones 3.0