30
Institut für Chemie Block Course “Reactivity and Catalysis” How to get to the active site ? Mass Transfer in Heterogeneous Catalysis Reinhard Schomäcker Institut für Chemie der Technischen Universität Berlin For more details see: Roland Dittmeyer and Gerhard Emig Simultaneous Heat and Mass Transfer and Chemical Reaction, chapter 6.3 in Handbook of Heterogeneous Catalysis Eds. G. Ertl, et.al Wiley-VCH, Weinhein, 2007

Reinhard Schomäcker Institut für Chemie der Technischen

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Mass Transfer in Heterogeneous Catalysis

Reinhard SchomäckerInstitut für Chemieder Technischen Universität Berlin

For more details see: Roland Dittmeyer and Gerhard EmigSimultaneous Heat and Mass Transfer and Chemical Reaction, chapter 6.3 in Handbook of Heterogeneous Catalysis Eds. G. Ertl, et.alWiley-VCH, Weinhein, 2007

Page 2: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Molecular Level: e.g. Langmuir-Hinshelwood Kinetics

A B

AA

AAA pK

pK

+=

( )21 BBAA

BBAABA

pKpK

pKpKkkr

++== θθ

AdsorptionReactionDesorption

= sequential steps

pA= partial pressure near surface

Page 3: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 4: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 5: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 6: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 7: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Pressure drop in a fixed bed

ud p

L= 1

32

2

η∆

2

1150

1)(

−=

εεεF

( ) L

pdu k

ηεε ∆−

=2

2

3

01150

1 ( ) 202

1Re u

d

Lp

k

ρλ=∆

( ) ( )Re

Re3001

3

2

εελ −= ( ) ( )

+−−= 5,3)1(3001

3 ReRe

εε

ελ

laminar laminar und turbulent, Ergun-Gl.

( )εη

ε 02 u

L

pdFu k =∆=

Page 8: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Sequential steps:

Pressure driven flow,Film diffusion,Pore diffusion

Page 9: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Steps of Heterogeneous Reaction

1. Diffusion of reactant to catalyst

2. Transport of reactant within catalyst pores

3. Adsorption of reactant on catalyst surface

4. Reaction

5. Desorption of products from catalyst surface

6. Transport of products out of catalyst pores

7. Diffusion of products away from catalyst

Transport and reaction occure simultaneously(at a catalyst under steady state conditions)

Page 10: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Impact of mass transfer limitation

k > D k < D

Feed Feed

Page 11: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Mass Transport and Heterogeneous Catalysis

PrinciplesSurface layer

catalyst

Concentration profile

fluid phase

Influence of mass transport on the temperature dependance of het. catalysis

Mass transportinfluence

Page 12: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 13: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 14: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Time Scales in a Reactor

residence time τ = VR/VF

Mixing time Θ

Time constant of reaction = CM,0/R0

Time constant of diffusion = R2/De

Page 15: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Description of pore diffusion

cgradDj −=→

A

→j

cgrad

D wg = 1

Λ =

=

k T

p

wk T

m

B

B

2

8

2πσ

π

Average free path length

Average molecular velocity

Dg ~ T1,5 und Dg ~ 1/p

1. Fick`s Law

Page 16: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

a) Diffusion in pores dp >> λ

D Deff g= ετ

b) Knudsen – Diffusion dp = λ

D Dd

weff Kp= =ε

τετ

1

2 2

DK ~ T0.5

c) Intermediate range

D

D D

eff

g K

=+

11 1

ετ

N2, X

N2, X =?

N2

Wicke-Kallenbach-Experiment

porousmaterial

cDj xexgrad−=

Page 17: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Simultaneous reaction and pore diffusion in a sperical particle

temporal change changes of material changes causedof materials within = amount by transport + by reactionsvolume element

dV

dcdt

dV j do r dVi

Vi i

V∫ ∫ ∫= − +( )

r rν ( )∫ ∫=

r r rj do div j dV

V

dc

dtdiv j ri

i i= − +→

ν

one dimensional

Spherical geometry

div jd j

dzz

→=

div jR

d

dRR jR

→= 1

22( )

Mass balance

Page 18: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

01

22= − +

R

d

dRR j ri R i( ) ν Mass balance of sperical particle

in steady state

Solution of mass balance and description of average reaction rate

Dd c

dR R

dc

dRk ceff

n( )2

2

2+ = with r= kcn and ν=-1

c R R c

dc

dR R

( )= =

==

0 0

0 0

Φ0 00

1

=−

Rkc

D

n

eff

renormalized parameter= Thiele-Modulus

c R cR

R

RR

( )sinh( )

sinh= 0

0 00

0

Φ

Φ

radial concentration profilwithin sperical pellet

Page 19: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

k > D

k < D

Page 20: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

0RReffss dR

dcDAVr

=

= r = rhet

rR

Dc

Rhet effo= −3

10 0

0

0

(tanh

Φ

r k chom = 0 Reaction without mass transport limitation

η = = −r

rhet

hom

3 1 1

0 0 0Φ Φ Φ(tanh

) Effectiveness factor

Thiele-Modul

Po

ren

wir

kun

gsg

rad

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20

effe

ctiv

enes

sfa

cto

r

Page 21: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 22: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

η ≈ 3

r k cR

D

kk c k chet

effeff= = =3 3

00

00 0Φ

k D keff eff≅ E E Eeff D= +1

2( )

Influence of pore diffusion on effectiverate constant

Influence of temperature

Page 23: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Film diffusion und Reaction

ms

mol3

*

&n S Dc c

Diff aW= −0

δ

n S c c mitD

Diff a W

.( ),= − =β β

δ0

rV

dn

dti

i= 1 1

νr

S

dn

dtSi a

i= 1 1

ν

ms

mol2

*

r r a k k a mit aS

VS Sa= = =, :

Page 24: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

)()( 0

.

WSaWa crSccSn =−= β

Discussion of a first order reaction with rs=kscw

ß(c0-cw) = kscw

cc

kWS

=+0β

β

Border cases:

ks << ß cw =c0 ( no layer formation)c0 cw

ks >> ß cw 0 c0

cw

Page 25: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

0,0 ckck

kckr effS

S

SWSS =

+==

ββ

1 1 1

k kS eff S,

= +β

k a ka

k k a

eff S eff

s

= =+

=+

, 1 11

1 1β β

Calculation of eff. volume related rate constant

1 1 1

k a keff

= +β η

dspheredd

Particle volumea

6

63

2

=== ππParticle surface

Page 26: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Temperature dependance:

Page 27: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

< 1

Generalized Thiele-Modulus

Criterion with mesasurable data only: Weisz-Modul

Criteria to exclude mass transfer limitations

T h i e le - M o d u l

Po

ren

wir

kun

gsg

rad

0

0 , 2

0 , 4

0 , 6

0 , 8

1

0 5 1 0 1 5

effe

ctiv

enes

sfa

cto

r

Page 28: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Experimental check

for pore diffusion for film diffusion

Reduce particle sizedecreaseφincreaseη το 1

Decrease reactor diameter

at constantτ, Τ, ci

τ=VR/Vf

increase u = Vf/q

at constantτ, Τ, ci

increase ß = D/δ

Page 29: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?

Page 30: Reinhard Schomäcker Institut für Chemie der Technischen

Institut für Chemie

Block Course “Reactivity and Catalysis”How to get to the active site ?