14
The novel shape of the Philips Pavilion was allowed by reinforced concrete. Reinforced concrete From Wikipedia, the free encyclopedia Reinforced concrete (RC) is a composite material in which concrete's relatively low tensile strength and ductility are counteracted by the inclusion of reinforcement having higher tensile strength and/or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars (rebar) and is usually embedded passively in the concrete before the concrete sets. Reinforcing schemes are generally designed to resist tensile stresses in particular regions of the concrete that might cause unacceptable cracking and/or structural failure. Modern reinforced concrete can contain varied reinforcing materials made of steel, polymers or alternate composite material in conjunction with rebar or not. Reinforced concrete may also be permanently stressed (in compression), so as to improve the behaviour of the final structure under working loads. In the United States, the most common methods of doing this are known as pretensioning and posttensioning. For a strong, ductile and durable construction the reinforcement needs to have the following properties at least: High relative strength High toleration of tensile strain Good bond to the concrete, irrespective of pH, moisture, and similar factors Thermal compatibility, not causing unacceptable stresses in response to changing temperatures. Durability in the concrete environment, irrespective of corrosion or sustained stress for example. Contents 1 History 2 Use in construction 3 Behavior of reinforced concrete 3.1 Materials 3.2 Key characteristics 3.3 Mechanism of composite action of reinforcement and concrete 3.4 Anchorage (bond) in concrete: Codes of specifications 3.5 Anticorrosion measures 4 Reinforcement and terminology of beams 5 Prestressed concrete 6 Common failure modes of steel reinforced concrete 6.1 Mechanical failure 6.2 Carbonation 6.3 Chlorides 6.4 Alkali silica reaction 6.5 Conversion of high alumina cement 6.6 Sulphates

Reinforced Concrete - Wikipedia, The Free Encyclopedia

Embed Size (px)

DESCRIPTION

behaviour and use in construction

Citation preview

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 1/14

    ThenovelshapeofthePhilipsPavilionwasallowedbyreinforcedconcrete.

    ReinforcedconcreteFromWikipedia,thefreeencyclopedia

    Reinforcedconcrete(RC)isacompositematerialinwhichconcrete'srelativelylowtensilestrengthandductilityarecounteractedbytheinclusionofreinforcementhavinghighertensilestrengthand/orductility.Thereinforcementisusually,thoughnotnecessarily,steelreinforcingbars(rebar)andisusuallyembeddedpassivelyintheconcretebeforetheconcretesets.Reinforcingschemesaregenerallydesignedtoresisttensilestressesinparticularregionsoftheconcretethatmightcauseunacceptablecrackingand/orstructuralfailure.Modernreinforcedconcretecancontainvariedreinforcingmaterialsmadeofsteel,polymersoralternatecompositematerialinconjunctionwithrebarornot.Reinforcedconcretemayalsobepermanentlystressed(incompression),soastoimprovethebehaviourofthefinalstructureunderworkingloads.IntheUnitedStates,themostcommonmethodsofdoingthisareknownaspretensioningandposttensioning.

    Forastrong,ductileanddurableconstructionthereinforcementneedstohavethefollowingpropertiesatleast:

    HighrelativestrengthHightolerationoftensilestrainGoodbondtotheconcrete,irrespectiveofpH,moisture,andsimilarfactorsThermalcompatibility,notcausingunacceptablestressesinresponsetochangingtemperatures.Durabilityintheconcreteenvironment,irrespectiveofcorrosionorsustainedstressforexample.

    Contents

    1History2Useinconstruction3Behaviorofreinforcedconcrete

    3.1Materials3.2Keycharacteristics3.3Mechanismofcompositeactionofreinforcementandconcrete3.4Anchorage(bond)inconcrete:Codesofspecifications3.5Anticorrosionmeasures

    4Reinforcementandterminologyofbeams5Prestressedconcrete6Commonfailuremodesofsteelreinforcedconcrete

    6.1Mechanicalfailure6.2Carbonation6.3Chlorides6.4Alkalisilicareaction6.5Conversionofhighaluminacement

    6.6Sulphates

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 2/14

    6.6Sulphates7Steelplateconstruction8Fiberreinforcedconcrete9Nonsteelreinforcement10Seealso11References12Furtherreading13Externallinks

    History

    FranoisCoignetwasaFrenchindustrialistofthenineteenthcentury,apioneerinthedevelopmentofstructural,prefabricatedandreinforcedconcrete.[1]Coignetwasthefirsttouseironreinforcedconcreteasatechniqueforconstructingbuildingstructures.[2]In1853Coignetbuiltthefirstironreinforcedconcretestructure,afourstoryhouseat72rueCharlesMichelsinthesuburbsofParis.[2]Coignet'sdescriptionsofreinforcingconcretesuggeststhathedidnotdoitformeansofaddingstrengthtotheconcretebutforkeepingwallsinmonolithicconstructionfromoverturning.[3]In1854,anEnglishbuildercalledWilliamB.Wilkinson,reinforcedtheconcreteroofandfloorsinthetwostoreyhousehewasconstructing.Hispositioningofthereinforcementdemonstratedthat,unlikehispredecessors,hehadknowledgeoftensilestresses.[4][5][6]

    JosephMonier,aFrenchgardenerandknowntobeoneoftheprincipalinventorsofreinforcedconcrete,wasgrantedapatentforreinforcedflowerpotsbymeansofmixingawiremeshtoamortarshell.In1877,Monierwasgrantedanotherpatentforamoreadvancedtechniqueofreinforcingconcretecolumnsandgirderswithironrodsplacedinagridpattern.ThoughMonierundoubtedlyknewreinforcingconcretewouldimproveitsinnercohesion,itislessknownifheevenknewhowmuchreinforcingactuallyimprovedconcrete'stensilestrength.[7]

    Before1877theuseofconcreteconstruction,thoughdatingbacktotheRomanEmpireandreintroducedinthemidtolate1800s,wasnotyetaprovenscientifictechnology.AmericanNewYorkerThaddeusHyattpublishedareporttitledAnAccountofSomeExperimentswithPortlandCementConcreteCombinedwithIronasaBuildingMaterial,withReferencetoEconomyofMetalinConstructionandforSecurityagainstFireintheMakingofRoofs,Floors,andWalkingSurfaceswherehestatedhisexperimentsonthebehaviorofreinforcedconcrete.Hisworkplayedamajorroleintheevolutionofconcreteconstructionasaprovenandstudiedscience.WithoutHyatt'swork,moredangeroustrialanderrormethodswouldhavelargelybeendependedonfortheadvancementinthetechnology.[3][8]

    G.A.Wayss,wasaGermancivilengineerandapioneeroftheironandsteelconcreteconstruction.In1879WayssboughttheGermanrightstoMonier'spatentsandin1884startedthefirstcommercialuseforreinforcedconcreteinhisfirmWayss&Freytag.Upuntilthe1890sWayssandhisfirmgreatlycontributedtotheadvancementofMonier'ssystemofreinforcingandestablisheditasawelldevelopedscientifictechnology.[9]

    ErnestL.Ransome,wasanEnglishbornengineerandearlyinnovatorofthereinforcedconcretetechniquesintheendofthe19thcentury.Withtheknowledgeofreinforcedconcretedevelopedduringtheprevious50years,Ransomeinnovatednearlyallstylesandtechniquesofthepreviousknowninventorsofreinforced

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 3/14

    RebarsofSagradaFamlia'sroofinconstruction(2009)

    concrete.Ransome'skeyinnovationwastotwistthereinforcingsteelbarimprovingbondingwiththeconcrete.[10]GainingincreasingfamefromhisconcreteconstructedbuildingsRansomewasabletobuildtwoofthefirstreinforcedconcretebridgesinNorthAmerica.[11]OneofthefirstconcretebuildingsconstructedintheUnitedStates,wasaprivatehome,designedbyWilliamWardin1871.Thehomewasdesignedtobefireproofforhiswife.Oneofthefirstskyscrapersmadewithreinforcedconcretewasthe16storey,IngallsBuildinginCincinnati,constructedin1904.[12]

    Useinconstruction

    Manydifferenttypesofstructuresandcomponentsofstructurescanbebuiltusingreinforcedconcreteincludingslabs,walls,beams,columns,foundations,framesandmore.

    Reinforcedconcretecanbeclassifiedasprecastorcastinplaceconcrete.

    Designingandimplementingthemostefficientfloorsystemiskeytocreatingoptimalbuildingstructures.Smallchangesinthedesignofafloorsystemcanhavesignificantimpactonmaterialcosts,constructionschedule,ultimatestrength,operatingcosts,occupancylevelsandenduseofabuilding.[13]

    Withoutreinforcement,constructingmodernstructureswithconcretematerialwouldnotbepossible.

    Behaviorofreinforcedconcrete

    Materials

    Concreteisamixtureofcoarse(stoneorbrickchips)andfine(generallysandorcrushedstone)aggregateswithapasteofbindermaterial(usuallyPortlandcement)andwater.Whencementismixedwithasmallamountofwater,ithydratestoformmicroscopicopaquecrystallatticesencapsulatingandlockingtheaggregateintoarigidstructure.Theaggregatesusedformakingconcreteshouldbefreefromharmfulsubstanceslikeorganicimpurities,silt,clay,ligniteetc.Typicalconcretemixeshavehighresistancetocompressivestresses(about4,000psi(28MPa))however,anyappreciabletension(e.g.,duetobending)willbreakthemicroscopicrigidlattice,resultingincrackingandseparationoftheconcrete.Forthisreason,typicalnonreinforcedconcretemustbewellsupportedtopreventthedevelopmentoftension.

    Ifamaterialwithhighstrengthintension,suchassteel,isplacedinconcrete,thenthecompositematerial,reinforcedconcrete,resistsnotonlycompressionbutalsobendingandotherdirecttensileactions.Areinforcedconcretesectionwheretheconcreteresiststhecompressionandsteelresiststhetensioncanbe

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 4/14

    madeintoalmostanyshapeandsizefortheconstructionindustry.

    Keycharacteristics

    Threephysicalcharacteristicsgivereinforcedconcreteitsspecialproperties:

    1. Thecoefficientofthermalexpansionofconcreteissimilartothatofsteel,eliminatinglargeinternalstressesduetodifferencesinthermalexpansionorcontraction.

    2. Whenthecementpastewithintheconcretehardens,thisconformstothesurfacedetailsofthesteel,permittinganystresstobetransmittedefficientlybetweenthedifferentmaterials.Usuallysteelbarsareroughenedorcorrugatedtofurtherimprovethebondorcohesionbetweentheconcreteandsteel.

    3. Thealkalinechemicalenvironmentprovidedbythealkalireserve(KOH,NaOH)andtheportlandite(calciumhydroxide)containedinthehardenedcementpastecausesapassivatingfilmtoformonthesurfaceofthesteel,makingitmuchmoreresistanttocorrosionthanitwouldbeinneutraloracidicconditions.WhenthecementpasteisexposedtotheairandmeteoricwaterreactswiththeatmosphericCO2,portlanditeandtheCalciumSilicateHydrate(CSH)ofthehardenedcementpastebecomeprogressivelycarbonatedandthehighpHgraduallydecreasesfrom13.512.5to8.5,thepHofwaterinequilibriumwithcalcite(calciumcarbonate)andthesteelisnolongerpassivated.

    Asaruleofthumb,onlytogiveanideaonordersofmagnitude,steelisprotectedatpHabove~11butstartstocorrodebelow~10dependingonsteelcharacteristicsandlocalphysicochemicalconditionswhenconcretebecomescarbonated.Carbonatationofconcretealongwithchlorideingressareamongstthechiefreasonsforthefailureofreinforcementbarsinconcrete.[14]

    Therelativecrosssectionalareaofsteelrequiredfortypicalreinforcedconcreteisusuallyquitesmallandvariesfrom1%formostbeamsandslabsto6%forsomecolumns.Reinforcingbarsarenormallyroundincrosssectionandvaryindiameter.Reinforcedconcretestructuressometimeshaveprovisionssuchasventilatedhollowcorestocontroltheirmoisture&humidity.

    Distributionofconcrete(inspiteofreinforcement)strengthcharacteristicsalongthecrosssectionofverticalreinforcedconcreteelementsisinhomogeneous.[15]

    Mechanismofcompositeactionofreinforcementandconcrete

    ThereinforcementinaRCstructure,suchasasteelbar,hastoundergothesamestrainordeformationasthesurroundingconcreteinordertopreventdiscontinuity,sliporseparationofthetwomaterialsunderload.Maintainingcompositeactionrequirestransferofloadbetweentheconcreteandsteel.Thedirectstressistransferredfromtheconcretetothebarinterfacesoastochangethetensilestressinthereinforcingbaralongitslength,thisloadtransferisachievedbymeansofbond(anchorage)andisidealizedasacontinuousstressfieldthatdevelopsinthevicinityofthesteelconcreteinterface.

    Anchorage(bond)inconcrete:Codesofspecifications

    Becausetheactualbondstressvariesalongthelengthofabaranchoredinazoneoftension,currentinternationalcodesofspecificationsusetheconceptofdevelopmentlengthratherthanbondstress.Themainrequirementforsafetyagainstbondfailureistoprovideasufficientextensionofthelengthofthebarbeyondthepointwherethesteelisrequiredtodevelopitsyieldstressandthislengthmustbeatleastequaltoitsdevelopmentlength.However,iftheactualavailablelengthisinadequateforfulldevelopment,

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 5/14

    Aheavyreinforcedconcretecolumn,seenbeforeandaftertheconcretehasbeencastinplacearoundtherebarcage.

    specialanchoragesmustbeprovided,suchascogsorhooksormechanicalendplates.Thesameconceptappliestolapsplicelengthmentionedinthecodeswheresplices(overlapping)providedbetweentwoadjacentbarsinordertomaintaintherequiredcontinuityofstressinthesplicezone.

    Anticorrosionmeasures

    Inwetandcoldclimates,reinforcedconcreteforroads,bridges,parkingstructuresandotherstructuresthatmaybeexposedtodeicingsaltmaybenefitfromuseofcorrosionresistantreinforcementsuchasuncoated,lowcarbon/chromium(microcomposite),epoxycoated,hotdipgalvanisedorstainlesssteelrebar.Gooddesignandawellchosenconcretemixwillprovideadditionalprotectionformanyapplications.Uncoated,lowcarbon/chromiumrebarlookssimilartostandardcarbonsteelrebarduetoitslackofacoatingitshighlycorrosionresistantfeaturesareinherentinthesteelmicrostructure.ItcanbeidentifiedbytheuniqueASTMspecifiedmillmarkingonitssmooth,darkcharcoalfinish.Epoxycoatedrebarcaneasilybeidentifiedbythelightgreencolourofitsepoxycoating.Hotdipgalvanizedrebarmaybebrightordullgreydependingonlengthofexposure,andstainlessrebarexhibitsatypicalwhitemetallicsheenthatisreadilydistinguishablefromcarbonsteelreinforcingbar.ReferenceASTMstandardspecificationsA1035/A1035MStandardSpecificationforDeformedandPlainLowcarbon,Chromium,SteelBarsforConcreteReinforcement,A767StandardSpecificationforHotDipGalvanisedReinforcingBars,A775StandardSpecificationforEpoxyCoatedSteelReinforcingBarsandA955StandardSpecificationforDeformedandPlainStainlessBarsforConcreteReinforcement.

    Another,cheaperwayofprotectingrebarsiscoatingthemwithzincphosphate.[16]Zincphosphateslowlyreactswithcalciumcationsandthehydroxylanionspresentinthecementporewaterandformsastablehydroxyapatitelayer.

    Penetratingsealantstypicallymustbeappliedsometimeaftercuring.Sealantsincludepaint,plasticfoams,filmsandaluminumfoil,feltsorfabricmatssealedwithtar,andlayersofbentoniteclay,sometimesusedtosealroadbeds.

    Corrosioninhibitors,suchascalciumnitrite[Ca(NO2)2],canalsobeaddedtothewatermixbeforepouringconcrete.Generally,12wt.%of[Ca(NO2)2]withrespecttocementweightisneededtopreventcorrosion

    oftherebars.Thenitriteanionisamildoxidizerthatoxidizesthesolubleandmobileferrousions(Fe2+)presentatthesurfaceofthecorrodingsteelandcausesthemtoprecipitateasaninsolubleferrichydroxide(Fe(OH)3).Thiscausesthepassivationofsteelattheanodicoxidationsites.Nitriteisamuchmoreactivecorrosioninhibitorthannitrate,whichisalesspowerfuloxidizerofthedivalentiron.

    Reinforcementandterminologyofbeams

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 6/14

    Rebarconstructedtoproperlyreinforceabeamelement,awaitingconcretetobepoured.

    Abeambendsunderbendingmoment,resultinginasmallcurvature.Attheouterface(tensileface)ofthecurvaturetheconcreteexperiencestensilestress,whileattheinnerface(compressiveface)itexperiencescompressivestress.

    Asinglyreinforcedbeamisoneinwhichtheconcreteelementisonlyreinforcednearthetensilefaceandthereinforcement,calledtensionsteel,isdesignedtoresistthetension.

    Adoublyreinforcedbeamisoneinwhichbesidesthetensilereinforcementtheconcreteelementisalsoreinforcednearthecompressivefacetohelptheconcreteresistcompression.Thelatterreinforcementiscalledcompressionsteel.Whenthecompressionzoneofaconcreteisinadequatetoresistthecompressivemoment(positivemoment),extrareinforcementhastobeprovidedifthearchitectlimitsthedimensionsofthesection.

    Anunderreinforcedbeamisoneinwhichthetensioncapacityofthetensilereinforcementissmallerthanthecombinedcompressioncapacityoftheconcreteandthecompressionsteel(underreinforcedattensileface).Whenthereinforcedconcreteelementissubjecttoincreasingbendingmoment,thetensionsteelyieldswhiletheconcretedoesnotreachitsultimatefailurecondition.Asthetensionsteelyieldsandstretches,an"underreinforced"concretealsoyieldsinaductilemanner,exhibitingalargedeformationandwarningbeforeitsultimatefailure.Inthiscasetheyieldstressofthesteelgovernsthedesign.

    Anoverreinforcedbeamisoneinwhichthetensioncapacityofthetensionsteelisgreaterthanthecombinedcompressioncapacityoftheconcreteandthecompressionsteel(overreinforcedattensileface).Sothe"overreinforcedconcrete"beamfailsbycrushingofthecompressivezoneconcreteandbeforethetensionzonesteelyields,whichdoesnotprovideanywarningbeforefailureasthefailureisinstantaneous.

    Abalancedreinforcedbeamisoneinwhichboththecompressiveandtensilezonesreachyieldingatthesameimposedloadonthebeam,andtheconcretewillcrushandthetensilesteelwillyieldatthesametime.Thisdesigncriterionishoweverasriskyasoverreinforcedconcrete,becausefailureissuddenastheconcretecrushesatthesametimeofthetensilesteelyields,whichgivesaverylittlewarningofdistressintensionfailure.[17]

    Steelreinforcedconcretemomentcarryingelementsshouldnormallybedesignedtobeunderreinforcedsothatusersofthestructurewillreceivewarningofimpendingcollapse.

    Thecharacteristicstrengthisthestrengthofamaterialwherelessthan5%ofthespecimenshowslowerstrength.

    Thedesignstrengthornominalstrengthisthestrengthofamaterial,includingamaterialsafetyfactor.Thevalueofthesafetyfactorgenerallyrangesfrom0.75to0.85inPermissiblestressdesign.

    Theultimatelimitstateisthetheoreticalfailurepointwithacertainprobability.Itisstatedunderfactoredloadsandfactoredresistances.

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 7/14

    ReinforcedconcretestructuresarenormallydesignedaccordingtorulesandregulationsorrecommendationofacodesuchasACI318,CEB,CP110orthelike.WSD,USDorLRFDmethodsareusedindesignofRCstructuralmembers.AnalysisanddesignofRCmemberscanbecarriedoutbyusinglinearornonlinearapproaches.Whenapplyingsafetyfactors,buildingcodesnormallyproposelinearapproaches,butforsomecasesnonlinearapproaches.Toseetheexamplesofanonlinearnumericalsimulationandcalculationvisitthereferences:[18][19]

    Prestressedconcrete

    Prestressingconcreteisatechniquethatgreatlyincreasestheloadbearingstrengthofconcretebeams.Thereinforcingsteelinthebottompartofthebeam,whichwillbesubjectedtotensileforceswheninservice,isplacedintensionbeforetheconcreteispouredaroundit.Oncetheconcretehashardened,thetensiononthereinforcingsteelisreleased,placingabuiltincompressiveforceontheconcrete.Whenloadsareapplied,thereinforcingsteeltakesonmorestressandthecompressiveforceintheconcreteisreduced,butdoesnotbecomeatensileforce.Sincetheconcreteisalwaysundercompression,itislesssubjecttocrackingandfailure.[20]

    Anotherwayistoinsertplastictubesintothebottomofthebeam.Rebarisinsertedintothesetubes.Oncetheconcretehascuredtherebarcanbetensionedandtheformworkremoved.Usuallythetensionisappliedusinghydraulicjacks.Theadvantageofthismethodisthatitiseasytomeasuretheappliedtension.Thenutsarethensnuggedupandthejobisdone.Itshouldbenotedthatallnutsandboltswhenmatedtogetherwillhaveahelicalgroovewhichisapotentialrusttrap.Aneasymethodofeliminatingthisrusttrapistoapplyrustpreventiveredoxidepainttothethreadsandtojointhenutsandboltswhilethispaintisstillwet.

    Commonfailuremodesofsteelreinforcedconcrete

    Reinforcedconcretecanfailduetoinadequatestrength,leadingtomechanicalfailure,orduetoareductioninitsdurability.Corrosionandfreeze/thawcyclesmaydamagepoorlydesignedorconstructedreinforcedconcrete.Whenrebarcorrodes,theoxidationproducts(rust)expandandtendstoflake,crackingtheconcreteandunbondingtherebarfromtheconcrete.Typicalmechanismsleadingtodurabilityproblemsarediscussedbelow.

    Mechanicalfailure

    Crackingoftheconcretesectionisnearlyimpossibletopreventhowever,thesizeandlocationofcrackscanbelimitedandcontrolledbyappropriatereinforcement,controljoints,curingmethodologyandconcretemixdesign.Crackingcanallowmoisturetopenetrateandcorrodethereinforcement.Thisisaserviceabilityfailureinlimitstatedesign.Crackingisnormallytheresultofaninadequatequantityofrebar,orrebarspacedattoogreatadistance.Theconcretethencrackseitherunderexcessloading,orduetointernaleffectssuchasearlythermalshrinkagewhileitcures.

    Ultimatefailureleadingtocollapsecanbecausedbycrushingtheconcrete,whichoccurswhencompressivestressesexceeditsstrength,byyieldingorfailureoftherebarwhenbendingorshearstressesexceedthestrengthofthereinforcement,orbybondfailurebetweentheconcreteandtherebar.

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 8/14

    Concretewallcrackingassteelreinforcingcorrodesandswells.Rusthasalowerdensitythanmetal,soitexpandsasitforms,crackingthedecorativecladdingoffthewallaswellasdamagingthestructuralconcrete.Thebreakageofmaterialfromasurfaceiscalledspalling.

    Detailedviewofspallingprobablycausedbyatoothinlayerofconcretebetweenthesteelandthesurface,accompaniedbycorrosionfromexternalexposure

    Rebarforfoundationsandwallsofasewagepumpstation.

    Carbonation

    Carbonation,orneutralisation,isachemicalreactionbetweencarbondioxideintheairandcalciumhydroxideandhydratedcalciumsilicateintheconcrete.

    Whenaconcretestructureisdesigned,itisusualtostatetheconcretecoverfortherebar(thedepthoftherebarwithintheobject).Theminimumconcretecoverisnormallyregulatedbydesignorbuildingcodes.Ifthereinforcementistooclosetothesurface,earlyfailureduetocorrosionmayoccur.Theconcretecoverdepthcanbemeasuredwithacovermeter.However,carbonatedconcreteincursadurabilityproblemonlywhenthereisalsosufficientmoistureandoxygentocauseelectropotentialcorrosionofthereinforcingsteel.

    Onemethodoftestingastructureforcarbonatationistodrillafreshholeinthesurfaceandthentreatthecutsurfacewithphenolphthaleinindicatorsolution.Thissolutionturnspinkwhenincontactwithalkalineconcrete,makingitpossibletoseethedepthofcarbonation.Usinganexistingholedoesnotsufficebecausetheexposedsurfacewillalreadybecarbonated.

    Chlorides

    Chlorides,includingsodiumchloride,canpromotethecorrosionofembeddedsteelrebarifpresentinsufficientlyhighconcentration.Chlorideanionsinducebothlocalizedcorrosion(pittingcorrosion)andgeneralizedcorrosionofsteelreinforcements.Forthisreason,oneshouldonlyusefreshrawwaterorpotablewaterformixingconcrete,ensurethatthecoarseandfineaggregatesdonotcontainchlorides,ratherthanadmixtureswhichmightcontainchlorides.

    Itwasoncecommonforcalciumchloridetobeusedasanadmixturetopromoterapidsetupoftheconcrete.Itwasalsomistakenlybelievedthatitwouldpreventfreezing.However,thispracticefellintodisfavoroncethedeleteriouseffectsofchloridesbecameknown.Itshouldbeavoided

    wheneverpossible.

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 9/14

    ThePaulinsKillViaduct,Hainesburg,NewJersey,is115feet(35m)talland1,100feet(335m)long,andwasheraldedasthelargestreinforcedconcretestructureintheworldwhenitwascompletedin1910aspartoftheLackawannaCutOffraillineproject.TheLackawannaRailroadwasapioneerintheuseofreinforcedconcrete.

    Theuseofdeicingsaltsonroadways,usedtolowerthefreezingpointofwater,isprobablyoneoftheprimarycausesofprematurefailureofreinforcedorprestressedconcretebridgedecks,roadways,andparkinggarages.Theuseofepoxycoatedreinforcingbarsandtheapplicationofcathodicprotectionhasmitigatedthisproblemtosomeextent.AlsoFRP(fiberreinforcedpolymer)rebarsareknowntobelesssusceptibletochlorides.Properlydesignedconcretemixturesthathavebeenallowedtocureproperlyareeffectivelyimpervioustotheeffectsofdeicers.

    Anotherimportantsourceofchlorideionsisseawater.Seawatercontainsbyweightapproximately3.5wt.%salts.Thesesaltsincludesodiumchloride,magnesiumsulfate,calciumsulfate,andbicarbonates.Inwaterthesesaltsdissociateinfreeions(Na+,Mg2+,Cl,SO42,HCO3)andmigratewiththewaterintothecapillariesoftheconcrete.Chlorideions,whichmakeupabout50%oftheseions,areparticularlyaggressiveasacauseofcorrosionofcarbonsteelreinforcementbars.

    Inthe1960sand1970sitwasalsorelativelycommonformagnesite,achloriderichcarbonatemineral,tobeusedasafloortoppingmaterial.Thiswasdoneprincipallyasalevellingandsoundattenuatinglayer.Howeveritisnowknownthatwhenthesematerialscomeintocontactwithmoisturetheyproduceaweaksolutionofhydrochloricacidduetothepresenceofchloridesinthemagnesite.Overaperiodoftime(typicallydecades)thesolutioncausescorrosionoftheembeddedsteelrebars.Thiswasmostcommonlyfoundinwetareasorareasrepeatedlyexposedtomoisture.

    Alkalisilicareaction

    Thisareactionofamorphoussilica(chalcedony,chert,siliceouslimestone)sometimespresentintheaggregateswiththehydroxylions(OH)fromthecementporesolution.Poorlycrystallizedsilica(SiO2)dissolvesanddissociatesathighpH(12.513.5)inalkalinewater.Thesolubledissociatedsilicicacidreactsintheporewaterwiththecalciumhydroxide(portlandite)presentinthecementpastetoformanexpansivecalciumsilicatehydrate(CSH).Thealkalisilicareaction(ASR)causeslocalisedswellingresponsiblefortensilestressandcracking.Theconditionsrequiredforalkalisilicareactionarethreefold:(1)aggregatecontaininganalkalireactiveconstituent(amorphoussilica),(2)sufficientavailabilityofhydroxylions(OH),and(3)sufficientmoisture,above75%relativehumidity(RH)withintheconcrete.[21][22]Thisphenomenonissometimespopularlyreferredtoas"concretecancer".Thisreactionoccursindependentlyofthepresenceofrebarsmassiveconcretestructuressuchasdamscanbeaffected.

    Conversionofhighaluminacement

    Resistanttoweakacidsandespeciallysulfates,thiscementcuresquicklyandhasveryhighdurabilityandstrength.ItwasfrequentlyusedafterWorldWarIItomakeprecastconcreteobjects.However,itcanlosestrengthwithheatortime(conversion),especiallywhennotproperlycured.Afterthecollapseofthree

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 10/14

    roofsmadeofprestressedconcretebeamsusinghighaluminacement,thiscementwasbannedintheUKin1976.Subsequentinquiriesintothemattershowedthatthebeamswereimproperlymanufactured,butthebanremained.[23]

    Sulphates

    Sulfates(SO4)inthesoiloringroundwater,insufficientconcentration,canreactwiththePortlandcementinconcretecausingtheformationofexpansiveproducts,e.g.,ettringiteorthaumasite,whichcanleadtoearlyfailureofthestructure.Themosttypicalattackofthistypeisonconcreteslabsandfoundationwallsatgradeswherethesulfateion,viaalternatewettinganddrying,canincreaseinconcentration.Astheconcentrationincreases,theattackonthePortlandcementcanbegin.Forburiedstructuressuchaspipe,thistypeofattackismuchrarer,especiallyintheeasternUnitedStates.Thesulfateionconcentrationincreasesmuchslowerinthesoilmassandisespeciallydependentupontheinitialamountofsulfatesinthenativesoil.Achemicalanalysisofsoilboringstocheckforthepresenceofsulfatesshouldbeundertakenduringthedesignphaseofanyprojectinvolvingconcreteincontactwiththenativesoil.Iftheconcentrationsarefoundtobeaggressive,variousprotectivecoatingscanbeapplied.Also,intheUSASTMC150Type5Portlandcementcanbeusedinthemix.Thistypeofcementisdesignedtobeparticularlyresistanttoasulfateattack.

    Steelplateconstruction

    Insteelplateconstruction,stringersjoinparallelsteelplates.Theplateassembliesarefabricatedoffsite,andweldedtogetheronsitetoformsteelwallsconnectedbystringers.Thewallsbecometheformintowhichconcreteispoured.Steelplateconstructionspeedsreinforcedconcreteconstructionbycuttingoutthetimeconsumingonsitemanualstepsoftyingrebarandbuildingforms.Themethodresultsinexcellentstrengthbecausethesteelisontheoutside,wheretensileforcesareoftengreatest.

    Fiberreinforcedconcrete

    Fiberreinforcementismainlyusedinshotcrete,butcanalsobeusedinnormalconcrete.Fiberreinforcednormalconcreteismostlyusedforongroundfloorsandpavements,butcanbeconsideredforawiderangeofconstructionparts(beams,pillars,foundations,etc.),eitheraloneorwithhandtiedrebars.

    Concretereinforcedwithfibers(whichareusuallysteel,glass,orplasticfibers)islessexpensivethanhandtiedrebar,whilestillincreasingthetensilestrengthmanytimes.Theshape,dimension,andlengthofthefiberareimportant.Athinandshortfiber,forexampleshort,hairshapedglassfiber,isonlyeffectiveduringthefirsthoursafterpouringtheconcrete(itsfunctionistoreducecrackingwhiletheconcreteisstiffening),butitwillnotincreasetheconcretetensilestrength.AnormalsizefiberforEuropeanshotcrete(1mmdiameter,45mmlengthsteelorplastic)willincreasetheconcrete'stensilestrength.

    Steelisthestrongestcommonlyavailablefiber,andcomesindifferentlengths(30to80mminEurope)andshapes(endhooks).Steelfiberscanonlybeusedonsurfacesthatcantolerateoravoidcorrosionandruststains.Insomecases,asteelfibersurfaceisfacedwithothermaterials.

    Glassfiberisinexpensiveandcorrosionproof,butnotasductileassteel.Recently,spunbasaltfiber,longavailableinEasternEurope,hasbecomeavailableintheU.S.andWesternEurope.Basaltfibreisstrongerandlessexpensivethanglass,buthistoricallyhasnotresistedthealkalineenvironmentofportlandcement

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 11/14

    wellenoughtobeusedasdirectreinforcement.Newmaterialsuseplasticbinderstoisolatethebasaltfiberfromthecement.

    Thepremiumfibersaregraphitereinforcedplasticfibers,whicharenearlyasstrongassteel,lighterinweight,andcorrosionproof.Someexperimentshavehadpromisingearlyresultswithcarbonnanotubes,butthematerialisstillfartooexpensiveforanybuilding.

    Nonsteelreinforcement

    Thereisconsiderableoverlapbetweenthesubjectsofnonsteelreinforcementandfiberreinforcementofconcrete.Theintroductionofnonsteelreinforcementofconcreteisrelativelyrecentittakestwomajorforms:nonmetallicrebarrods,andnonsteel(usuallyalsononmetallic)fibresincorporatedintothecementmatrix.Forexamplethereisincreasinginterestinglassfiberreinforcedconcrete(GFRC)andinvariousapplicationsofpolymerfibresincorporatedintoconcrete.Althoughcurrentlythereisnotmuchsuggestionthatsuchmaterialswillingeneralreplacemetalrebar,someofthemhavemajoradvantagesinspecificapplications,andtherealsoarenewapplicationsinwhichmetalrebarsimplyisnotanoption.However,thedesignandapplicationofnonsteelreinforcingisfraughtwithchallenges.Foronething,concreteisahighlyalkalineenvironment,inwhichmanymaterials,includingmostkindsofglass,haveapoorservicelife.Also,thebehaviourofsuchreinforcingmaterialsdiffersfromthebehaviourofmetals,forinstanceintermsofshearstrength,creepandelasticity.[24][25]

    FibreReinforcedPolymer(FRP)(FibrereinforcedplasticorFRP)andGlassreinforcedplastic(GRP)consistoffibresofpolymer,glass,carbon,aramidorotherpolymersorhighstrengthfibressetinaresinmatrixtoformarebarrod,orgrid,orfibres.Theserebarsareinstalledinmuchthesamemannerassteelrebars.Thecostishigherbut,suitablyapplied,thestructureshaveadvantages,inparticularadramaticreductioninproblemsrelatedtocorrosion,eitherbyintrinsicconcretealkalinityorbyexternalcorrosivefluidsthatmightpenetratetheconcrete.Thesestructurescanbesignificantlylighterandusuallyhavealongerservicelife.Thecostofthesematerialshasdroppeddramaticallysincetheirwidespreadadoptionintheaerospaceindustryandbythemilitary.

    InparticularFRProdsareusefulforstructureswherethepresenceofsteelwouldnotbeacceptable.Forexample,MRImachineshavehugemagnets,andaccordinglyrequirenonmagneticbuildings.Again,tollboothsthatreadradiotagsneedreinforcedconcretethatistransparenttoradiowaves.Also,wherethedesignlifeoftheconcretestructureismoreimportantthanitsinitialcosts,nonsteelreinforcingoftenhasitsadvantageswherecorrosionofreinforcingsteelisamajorcauseoffailure.Insuchsituationscorrosionproofreinforcingcanextendastructure'slifesubstantially,forexampleintheintertidalzone.FRProdsmayalsobeusefulinsituationswhereitislikelythattheconcretestructuremaybecompromisedinfutureyears,forexampletheedgesofbalconieswhenbalustradesarereplaced,andbathroomfloorsinmultistoryconstructionwheretheservicelifeofthefloorstructureislikelytobemanytimestheservicelifeofthewaterproofingbuildingmembrane.

    Plasticreinforcementoftenisstronger,oratleasthasabetterstrengthtoweightratiothanreinforcingsteels.Also,becauseitresistscorrosion,itdoesnotneedaprotectiveconcretecoverasthickassteelreinforcementdoes(typically30to50mmormore).FRPreinforcedstructuresthereforecanbelighterandlastlonger.Accordingly,forsomeapplicationsthewholelifecostwillbepricecompetitivewithsteelreinforcedconcrete.

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 12/14

    ThematerialpropertiesofFRPorGRPbarsdiffermarkedlyfromsteel,sotherearedifferencesinthedesignconsiderations.FRPorGRPbarshaverelativelyhighertensilestrengthbutlowerstiffness,sothatdeflectionsarelikelytobehigherthanforequivalentsteelreinforcedunits.StructureswithinternalFRPreinforcementtypicallyhaveanelasticdeformabilitycomparabletotheplasticdeformability(ductility)ofsteelreinforcedstructures.Failureineithercaseismorelikelytooccurbycompressionoftheconcretethanbyruptureofthereinforcement.Deflectionisalwaysamajordesignconsiderationforreinforcedconcrete.Deflectionlimitsaresettoensurethatcrackwidthsinsteelreinforcedconcretearecontrolledtopreventwater,airorotheraggressivesubstancesreachingthesteelandcausingcorrosion.ForFRPreinforcedconcrete,aestheticsandpossiblywatertightnesswillbethelimitingcriteriaforcrackwidthcontrol.FRProdsalsohaverelativelylowercompressivestrengthsthansteelrebar,andaccordinglyrequiredifferentdesignapproachesforreinforcedconcretecolumns.

    OnedrawbacktotheuseofFRPreinforcementistheirlimitedfireresistance.Wherefiresafetyisaconsideration,structuresemployingFRPhavetomaintaintheirstrengthandtheanchoringoftheforcesattemperaturestobeexpectedintheeventoffire.Forpurposesoffireproofinganadequatethicknessofcementconcretecoverorprotectivecladdingisnecessary.Theadditionof1kg/m3ofpolypropylenefiberstoconcretehasbeenshowntoreducespallingduringasimulatedfire.[26](Theimprovementisthoughttobeduetotheformationofpathwaysoutofthebulkoftheconcrete,allowingsteampressuretodissipate.[26])

    Anotherproblemistheeffectivenessofshearreinforcement.FRPrebarstirrupsformedbybendingbeforehardeninggenerallyperformrelativelypoorlyincomparisontosteelstirrupsortostructureswithstraightfibres.Whenstrained,thezonebetweenthestraightandcurvedregionsaresubjecttostrongbending,shear,andlongitudinalstresses.Specialdesigntechniquesarenecessarytodealwithsuchproblems.

    Thereisgrowinginterestinapplyingexternalreinforcementtoexistingstructuresusingadvancedmaterialssuchascomposite(fiberglass,basalt,carbon)rebar,whichcanimpartexceptionalstrength.Worldwidethereareanumberofbrandsofcompositerebarrecognizedbydifferentcountries,suchasAslan,DACOT,Vrod,andComBar.Thenumberofprojectsusingcompositerebarincreasesdaybydayaroundtheworld,incountriesrangingfromUSA,Russia,andSouthKoreatoGermany.

    Seealso

    References

    ConcretecoverConcreteslabCoverMeterFalseworkFerrocementFormworkKahnSystemPrecastconcreteTypesofconcreteStructuralrobustness

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 13/14

    1. Day,p.2842. EncyclopdiaBritannicaFranoisCoignet(http://www.britannica.com/EBchecked/topic/124672/Francois

    Coignet)3. Condit,CarlW.(January1968)."TechnologyandCulture"(http://www.jstor.org/stable/3102041?seq=4).The

    FirstReinforcedConcreteSkyscraper:TheIngallsBuildinginCincinnatiandItsPlaceinStructuralHistory9(1).doi:10.2307/3102041(https://dx.doi.org/10.2307%2F3102041).Retrieved20February2014.

    4. RichardW.Steiger(1995)."HistoryofConcrete"(http://www.theconcreteproducer.com/Images/The%20History%20of%20Concrete%2C%20Part%202_tcm771306954.pdf)(PDF).TheAberdeenGroup.Retrieved25April2015.

    5. W.Morgan(1995)."ReinforcedConcrete"(http://www.jfccivilengineer.com/reinforced_concrete.htm).TheElementsofStructure.JohnF.Claydon(CivilEngineer).Retrieved25April2015.

    6. DepartmentofCivilEngineering(2015)."HistoryofConcreteBuildingConstruction"(http://www.jfccivilengineer.com/reinforced_concrete.htm).UniversityofMemphis.Retrieved25April2015.

    7. Mrsch,Emil(1909).ConcretesteelConstruction:(DerEisenbetonbau)(http://books.google.com/books?id=BZI1AAAAMAAJ&pg=PA205&lpg=PA205&dq#v=onepage&q&f=false).TheEngineeringNewsPublishingCompany.pp.204210.

    8. Collins,Peter(19201981).Concrete:TheVisionofaNewArchitecture(http://books.google.com/books?id=7Zttxa_oHcEC&pg=PA58&lpg=PA58&dq=Thaddeus+Hyatt+concrete&source=bl&ots=k2wHydvwT8&sig=eosFTGCY_MzzyvHTUkc2EDRnvTU&hl=en&sa=X&ei=htYKU6bPGbbyQHv3oDoAw&ved=0CDgQ6AEwAg#v=onepage&q=Thaddeus%20Hyatt%20concrete&f=false).McGillQueen'sUniversityPress.pp.5860.ISBN0773525645.

    9. Mrsch,Emil(1909).ConcretesteelConstruction:(DerEisenbetonbau)(http://books.google.com/books?id=BZI1AAAAMAAJ&pg=PA205&lpg=PA205&dq#v=onepage&q&f=false).TheEngineeringNewsPublishingCompany.pp.204205.

    10. Mars,Roman."Episode81:RebarandtheAlvordLakeBridge"(http://99percentinvisible.org/episode/episode81rebarandthealvordlakebridge/).99%Invisible.Retrieved6August2014.

    11. Collins,Peter(19201981).Concrete:TheVisionofaNewArchitecture(http://books.google.com/books?id=7Zttxa_oHcEC&pg=PA58&lpg=PA58&dq#v=onepage&q&f=false).McGillQueen'sUniversityPress.pp.6164.ISBN0773525645.

    12. http://www.ce.memphis.edu/1101/notes/concrete/section_2_history.html13. "ReinforcingMeshForConcrete"(http://www.reinforcingsteelmesh.com).14. EmergingCorrosionControlTechnologiesforRepairandRehabilitationofConcreteStructures

    (http://www.corrosionclinic.com/corrosion_resources/corrosion_control_concrete_structures_p1.htm)15. article"ConcreteInhomogeneityofVerticalCastInSituElementsInFrameTypeBuildings"

    (http://www.concreteresearch.org/PDFsandsoon/Inhomog%20Denver.pdf).16. "Effectofzincphosphatechemicalconversioncoatingoncorrosionbehaviourofmildsteelinalkalinemedium:

    protectionofrebarsinreinforcedconcrete"Sci.Technol.Adv.Mater.9(2008)045009(freedownload(http://www.iop.org/EJ/abstract/14686996/9/4/045009))

    17. Nilson,Darwin,Dolan.DesignofConcreteStructures.theMacGrawHillEducation,2003.p.8090.18. http://121.183.206.200:8080/proto.board/abstractArticleContentView?

    page=article&journal=sem&volume=53&num=4&ordernum=7&site=korsc19. http://ijce.iust.ac.ir/browse.php?a_id=563&sid=1&slc_lang=en20. http://www.ferrericon.com/Whatis.html21. "h2g2ConcreteCancer"(http://www.bbc.co.uk/dna/h2g2/A4014172).BBC.Retrieved20091014.22. 2006alertfordefectivecement

    (https://web.archive.org/web/20061029112122/http://www.cementindustry.co.uk/main.asp?page=272)attheWaybackMachine(archivedOctober29,2006)

    23. "HAC"(http://web.archive.org/web/20050911210803/http://www.questtech.co.uk/hac.htm).Web.archive.org.Archivedfromtheoriginal(http://www.questtech.co.uk/hac.htm)on20050911.Retrieved20091014.

    24. BSEN1169:1999Precastconcreteproducts.Generalrulesforfactoryproductioncontrolofglassfibrereinforcedcement.BritishStandardsInstitute:http://shop.bsigroup.com/ISBN0580320529

    25. BSEN11705:1998Precastconcreteproducts.Testmethodforglassfibrereinforcedcement.http://shop.bsigroup.com/ISBN0580292029

  • 5/22/2015 ReinforcedconcreteWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Reinforced_concrete 14/14

    26. ArthurW.Darby(2003),"Unknowntitle"(http://www.tunnels.mottmac.com/files/project/3372/Airside_Road_Tunnel.pdf)(PDF),www.tunnels.mottmac.com:645|chapter=ignored(help)

    Furtherreading

    ThrelfallA.,etal.Reynolds'sReinforcedConcreteDesigner'sHandbook11thed.(http://www.amazon.co.uk/dp/0419258302)ISBN9780419258308.NewbyF.,EarlyReinforcedConcrete,AshgateVariorum,2001,ISBN9780860787600.Kim,S.,Surek,JandJ.BakerJarvis."ElectromagneticMetrologyonConcreteandCorrosion."(http://nvlpubs.nist.gov/nistpubs/jres/116/3/V116.N03.A02.pdf)JournalofResearchoftheNationalInstituteofStandardsandTechnology,Vol.116,No.3(MayJune2011):655669.

    Externallinks

    TheConcreteReinforcingSteelInstitute(CRSI)isanationaltradeassociationthatstandsastheauthoritativeresourceforinformationrelatedtosteelreinforcedconcreteconstruction.(http://www.crsi.org)ConcreteResearch:http://www.concreteresearch.org(http://www.concreteresearch.org)Timelineofconcrete(http://www.auburn.edu/academic/architecture/bsc/classes/bsc314/timeline/timeline.htm)

    Retrievedfrom"http://en.wikipedia.org/w/index.php?title=Reinforced_concrete&oldid=662878514"

    Categories: Compositematerials Concrete Structuralengineering

    Thispagewaslastmodifiedon18May2015,at03:41.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.WikipediaisaregisteredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.