36
Determination of Regression Formulas for Main Dimensions of Tankers and Bulk Carriers based on IHS Fairplay data Technical University of Denmark Hans Otto Kristensen Project no. 2010-56, Emissionsbeslutningsstøttesystem Work Package 2, Report no. 02 September 2012

Regression analysis for tankers and bulk carriers

  • Upload
    ngonhan

  • View
    228

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Regression analysis for tankers and bulk carriers

Determination of Regression Formulas for Main Dimensions of Tankers and Bulk Carriers

based on IHS Fairplay data

Technical University of Denmark Hans Otto Kristensen Project no. 2010-56, Emissionsbeslutningsstøttesystem Work Package 2, Report no. 02 September 2012

Page 2: Regression analysis for tankers and bulk carriers

1

Determination of Regression Formulas for Main Dimensions of Tankers and Bulk Carriers based on IHS Fairplay data

On the following pages are shown the results of the analysis of IHS Fairplay data for tankers and bulk carriers. All possible outliers have been left out (obvious errors in data and vessels having unusual dimensions) as described in following document: Data Analyses – Standard Vessel Determination. Tankers, Bulk Carriers and Container Vessels. Project no. 2010-56. Work Package 2, Report no. 01. University of Southern Denmark. Author: Marie Lützen Tankers have been categorized in following 7 groups:

1. Small tankers (< 10000 DWT) 2. Handysize tankers (10000 - 25000 DWT) 3. Handymax tankers (25000 - 55000 DWT) 4. Panamax tankers (55000 - 80000 DWT) 5. Aframax tankers (80000 - 120000 DWT) 6. Suezmax tankers (120000 - 170000 DWT) 7. VLCC (170000 - 330000 DWT)

The equations found by regression analysis are shown for each individual ship sub type. The equations are basis for the generic ship design model for determination of main dimensions and propulsion characteristics for all types of tankers and bulk carriers – in the following called ‘DTU and SDU model’. There are no tankers in the range from 170000 DWT to 250000 DWT, but in this area a linear interpolation has been carried out in order to establish equations for the whole deadweight range from 1000 to 330000 DWT. Regression equations for tankers can be found in App. A-G, bulk carriers in App. H-O and finally comments about water plane area coefficient and scantling and design draught in in app P. Common Structural Rules Most of the ships in the statistical analysis have been built before the introduction of Common Structural Rules (CSR) for tankers and bulk carriers for tankers longer than 150 m and bulk carriers longer than 90 m. These rules will increase the steel weight most probably by 5 – 10 %. In order to take the CSR rules into account, all lightweight formulas has been corrected, such that the lightweight for tankers longer than 150 m for and bulk carriers longer than 90 m has been increased by 5 %, by adding a factor 1.05 to the formulas for the lightweight coefficient as these coefficient formulas represent the outcome of the actual ship data of which most of them are not constructed according to the relatively new CSR rules effective after 2005. The resulting block coefficient and length displacement ratio in all the figures in this report have been determined after addition of the extra 5 % lightweight.

Page 3: Regression analysis for tankers and bulk carriers

2

Fig. 1 Length between pp as function of DWT Fig. 2 Breadth as function of DWT

Fig. 3 Depth as function of DWT Fig. 4 Maximum draught as function of DWT

Fig. 5 Lightweight as function of DWT Fig. 6 Lightweight coefficient as function of

DWT

All tankersYellow dots indicate DTU and SDU

model default values

50

110

170

230

290

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Leng

th p

p (m

)

All tankersYellow dots indicate DTU and SDU

model default values

8

16

24

32

40

48

56

64

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Bre

adth

(m)

All tankersYellow dots indicate DTU and SDU

model default values

0

4

8

12

16

20

24

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Dra

ught

(m)

All tankersYellow dots indicate DTU

and SDU model default values0

10000

20000

30000

40000

50000

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Ligh

twei

ght (

t)

All tankersYellow dots indicate DTU and SDU

model default values

0.00

0.05

0.10

0.15

0.20

0.25

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Ligh

twei

ght(L

/B/D

(t/m

3 )

All tankersYellow dots indicate DTU and SDU

model default values

0

6

12

18

24

30

36

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Dep

th (m

)

Page 4: Regression analysis for tankers and bulk carriers

3

Fig. 7 Block coefficient as function of DWT Fig. 8 Length displacement ratio as function of

DWT

All tankersYellow dots indicate DTU and

SDU model default values0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Blo

ck c

oeffi

cien

t

All tankersYellow dots indicate DTU

and SDU model default values

4.0

4.4

4.8

5.2

5.6

6.0

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Lpp/

disp

l.vol

1/3

Page 5: Regression analysis for tankers and bulk carriers

4

Appendix A - Small tankers (< 10000 DWT) Length pp = 6.809 * DWT0.3048 Breadth = 1.406 * DWT0.285 Depth = 4.4 + 0.000681 * DWT Draught = 0.33 * DWT0.343 Lightweight/Lpp/B/D = 0.2096 - 0.00000724 * DWT

Fig. A1 Length between pp as function of DWT Fig. A2 Breadth as function of DWT

Fig. A3 Depth as function of DWT Fig. A4 Maximum draught as function of DWT

Small

y = 6.809x0.3048

R2 = 0.72

40

50

60

70

80

90

100

110

120

130

0 2000 4000 6000 8000 10000 12000Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU-SDU model

Power (IHS-Fairplay data)

Small

y = 1.406x0.285

R2 = 0.73

8

10

12

14

16

18

20

22

0 2000 4000 6000 8000 10000 12000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Power (IHS-Fairplay data)

Small

y = 0.000681x + 4.40R2 = 0.78

3

5

7

9

11

0 2000 4000 6000 8000 10000 12000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Small

y = 0.33x0.343

R2 = 0.72

2

3

4

5

6

7

8

9

0 2000 4000 6000 8000 10000 12000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelPower (IHS-Fairplay data)

Page 6: Regression analysis for tankers and bulk carriers

5

Fig. A5 Block coefficient as function of DWT Fig. A6 Length displacement ratio as function of

DWT

Fig. A7 Lightweight coefficient as function of DWT

Small

0.65

0.70

0.75

0.80

0.85

0 2000 4000 6000 8000 10000 12000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data) Small4.0

4.3

4.6

4.9

5.2

5.5

0 2000 4000 6000 8000 10000 12000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Small

y = -0.00000724x + 0.2096R2 = 0.27

0.12

0.14

0.16

0.18

0.20

0.22

0 2000 4000 6000 8000 10000 12000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 7: Regression analysis for tankers and bulk carriers

6

Appendix B - Handysize tankers (10000 - 25000 DWT) Length pp = 3.9537 * DWT0.3684 Breadth = 8.99 + 0.000874 * DWT Depth = 7.56 + 0.0002405 * DWT Draught = 7 + 0.0000523 * DWT Lightweight/Lpp/B/D = 0.1584 - 0.00000145 * DWT

Fig. B1 Length between pp as function of DWT Fig. B2 Breadth as function of DWT

Fig. B3 Depth as function of DWT Fig. B4 Maximum draught as function of DWT

Handysize

y = 3.9537x0.3684

R2 = 0.474

110

120

130

140

150

160

10000 12000 14000 16000 18000 20000 22000Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay dataDTU-SDU model

Power (IHS-Fairplay data)

Handysize

y = 0.000874 x + 8.99R2 = 0.67

17

19

21

23

25

27

29

10000 12000 14000 16000 18000 20000 22000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Handysize

y = 0.0002405x + 7.56R2 = 0.59

9

10

11

12

13

14

15

10000 12000 14000 16000 18000 20000 22000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Handysize

y = 0.0000523x + 7R2 = 0.042

6

7

8

9

10

10000 12000 14000 16000 18000 20000 22000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 8: Regression analysis for tankers and bulk carriers

7

Fig. B5 Block coefficient as function of DWT Fig. B6 Length displacement ratio as function of

DWT

Fig. B7 Lightweight coefficient as function of DWT

Handysize

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

10000 12000 14000 16000 18000 20000 22000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Handysize

y = -0.00000145x + 0.1584R2 = 0.086

0.10

0.12

0.14

0.16

0.18

10000 12000 14000 16000 18000 20000 22000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Handysize

y = -0.00000145x + 0.1584R2 = 0.086

0.10

0.12

0.14

0.16

0.18

10000 12000 14000 16000 18000 20000 22000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 9: Regression analysis for tankers and bulk carriers

8

Appendix C – Handymax tankers (25000 - 55000 DWT) Length pp = 41.647 * DWT0.133

Breadth = MIN [15.04 + 0.000369 * DWT; 32.2] Depth = 9.69 + 0.000188 * DWT Draught = 7.41 + 0.000106 * DWT Lightweight/Lpp/B/D = 1.05 * (0.1765 - 0.00000175 * DWT)

Fig. C1 Length between pp as function of DWT Fig. C2 Breadth as function of DWT

Fig. C3 Depth as function of DWT Fig. C4 Maximum draught as function of DWT

Handymax

y = 41.647x0.133

R2 = 0.35

155

165

175

185

195

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay dataDTU-SDU mode

Power (IHS-Fairplay data)

Handymax

y = 0.000369x + 15.04R2 = 0.67

25

27

29

31

33

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay dataDTU-SDU modelIHS-Fairplay data (B = 32.2 m)Linear (IHS-Fairplay data)

Handymax

y = 0.000188 x + 9.69R2 = 0.61

12

14

16

18

20

22

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Handymax

y = 0.000106x + 7.41R2 = 0.62

9

10

11

12

13

14

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 10: Regression analysis for tankers and bulk carriers

9

Fig. C5 Block coefficient as function of DWT Fig. C6 Length displacement ratio as function of

DWT

Fig. C7 Lightweight coefficient as function of DWT

Handymax

0.77

0.79

0.81

0.83

0.85

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Handymax

4.2

4.4

4.6

4.8

5.0

5.2

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Handymax

y = -0.00000175x + 0.1765R2 = 0.41

0.08

0.09

0.10

0.11

0.12

0.13

0.14

25000 30000 35000 40000 45000 50000 55000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 11: Regression analysis for tankers and bulk carriers

10

Appendix D - Panamax tankers (55000 - 75000 DWT) Length pp = 193.26 + 0.000353 * DWT Breadth = 32.06 + 0.0000023 * DWT Depth = 6.14 + 0.000196 * DWT Draught = 2.76 + 0.000156 * DWT Lightweight/Lpp/B/D = 1.05 * (0.0924 + 0.000000084 * DWT)

Fig. D1 Length between pp as function of DWT Fig. D2 Breadth as function of DWT

Fig. D3 Depth as function of DWT Fig. D4 Maximum draught as function of DWT

Panamax

y = 0.000353 x + 193.26R2 = 0.20

205

210

215

220

225

230

60000 63000 66000 69000 72000 75000 78000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Panamax

y = 0.0000023x + 32.06R2 = 0.048

31.9

32.0

32.1

32.2

32.3

60000 63000 66000 69000 72000 75000 78000

Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Panamax

y = 0.000196 x + 6.14R2 = 0.80

17

18

19

20

21

22

60000 63000 66000 69000 72000 75000 78000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

ds

Panamax

y = 0.000156 x + 2.76R2 = 0.75

12.0

12.5

13.0

13.5

14.0

14.5

15.0

60000 63000 66000 69000 72000 75000 78000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 12: Regression analysis for tankers and bulk carriers

11

Fig. D5 Block coefficient as function of DWT Fig. D6 Length displacement ratio as function of

DWT

Fig. D7 Lightweight coefficient as function of DWT

Panamax

0.80

0.82

0.84

0.86

0.88

60000 63000 66000 69000 72000 75000 78000

Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay daa

DTU-SDU model

Linear (IHS-Fairplay daa)

Panamax

4.9

5.0

5.1

5.2

5.3

60000 63000 66000 69000 72000 75000 78000

Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU modelLinear (IHS-Fairplay data)

Panamax

y = 0.000000084 x + 0.0924R2 = 0.0019

0.07

0.08

0.09

0.10

0.11

0.12

60000 63000 66000 69000 72000 75000 78000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 13: Regression analysis for tankers and bulk carriers

12

Appendix E - Aframax tankers (75000 - 120000 DWT) Length pp = 187.92 +0.000431* DWT Breadth = 1.5658 * DWT0.285 Depth = 13.97 + 0.000067 * DWT Draught = 0.0848 * DWT0.4454 Lightweight/Lpp/B/D = 1.05 * (0.0859 - 0.0000000235 * DWT)

Fig. E1 Length between pp as function of DWT Fig. E2 Breadth as function of DWT

Fig. E3 Depth as function of DWT Fig. E4 Maximum draught as function of DWT

Aframax

y = 0.000431 x + 187.92R2 = 0.36

200

210

220

230

240

250

60000 70000 80000 90000 100000 110000 120000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Aframax

y = 1.5658x0.285

R2 = 0.51

35

37

39

41

43

45

47

60000 70000 80000 90000 100000 110000 120000

Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU modelPower (IHS-Fairplay data)

Aframax

y = 0.000067x + 13.97R2 = 0.41

16

18

20

22

24

60000 70000 80000 90000 100000 110000 120000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Aframax

y = 0.0848x0.4454

R2 = 0.5853

11

12

13

14

15

16

60000 70000 80000 90000 100000 110000 120000

Deadweight (tons)

Dra

ught

(m)

IHS-FairplaydataDTU-SDU modelPower (IHS-Fairplaydata)

Page 14: Regression analysis for tankers and bulk carriers

13

Fig. E5 Block coefficient as function of DWT Fig. E6 Length displacement ratio as function of

DWT

Fig. E7 Lightweight coefficient as function of DWT

Aframax0.75

0.78

0.81

0.84

0.87

0.90

60000 70000 80000 90000 100000 110000 120000

Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data) Aframax

4.4

4.6

4.8

5.0

5.2

5.4

60000 70000 80000 90000 100000 110000 120000

Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Aframax y = -0.00000002349x + 0.0859R2 = 0.00097

0.06

0.07

0.08

0.09

0.10

0.11

0.12

60000 70000 80000 90000 100000 110000 120000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 15: Regression analysis for tankers and bulk carriers

14

Appendix F - Suezmax tankers (120000 - 170000 DWT) Length pp = 222.41+ 0.000263 * DWT Breadth = 23.95 + 0.000153 * DWT Depth = 22.61 + 0.000004647 * DWT Draught = 0.2476* DWT0.353 Lightweight/Lpp/B/D = 1.05 * (0.1296 - 0.000000308 * DWT)

Fig. F1 Length between pp as function of DWT Fig. F2 Breadth as function of DWT

Fig. F3 Depth as function of DWT Fig. F4 Maximum draught as function of DWT

Suezmax

y = 0.000263x + 222.41R2 = 0.43

240

250

260

270

280

120000 130000 140000 150000 160000 170000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Suezmax

y = 0.000153x + 23.95R2 = 0.47

42

44

46

48

50

52

120000 130000 140000 150000 160000 170000

Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Suezmax

y = 0.000004647 x + 22.61R2 = 0.0034

21

22

23

24

25

26

120000 130000 140000 150000 160000 170000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay dataDTU-SDU model

Linear (IHS-Fairplay data)

Suezmax

y = 0.2476x0.353

R2 = 0.39

15

16

17

18

120000 130000 140000 150000 160000 170000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay data

DTU-SDU model

Power (IHS-Fairplay data)

Page 16: Regression analysis for tankers and bulk carriers

15

Fig. F5 Block coefficient as function of DWT Fig. F6 Length displacement ratio as function of

DWT

Fig. F7 Lightweight coefficient as function of DWT

Suezmax

0.78

0.80

0.82

0.84

0.86

0.88

120000 130000 140000 150000 160000 170000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Suezmax

4.50

4.60

4.70

4.80

4.90

120000 130000 140000 150000 160000 170000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Suezmax

y = -0.000000308x + 0.1296R2 = 0.15

0.06

0.07

0.08

0.09

0.10

0.11

0.12

120000 130000 140000 150000 160000 170000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

Page 17: Regression analysis for tankers and bulk carriers

16

Appendix G - VLCC (170000 - 250000 DWT) Length pp = 267.12 + (DWT - 170000) * 0.0005975 Breadth = 49.96 + (DWT - 170000) * 0.00009219 Depth = 23.4 + (DWT - 170000) * 0.0000825 Draught = 17.38 + (DWT - 170000) * 0.00002147 Lightweight/Lpp/B/D = 1.05 * (0.0772 - (DWT - 170000) * 0.0000001574)

The above mentioned equations have been created based on a linear interpolation between tankers having a deadweight of 170000 t and 250000 t respectively VLCC (250000 - 330000 DWT) Length pp = 293.67 + 0.000085 * DWT Breadth = 49.01 + 0.0000333 * DWT Depth = 30 m Draught = 6.85 + 0.000049 * DWT Lightweight/Lpp/B/D = 1.05 * (0.01912+0.00000018212 * DWT)

Fig. G1 Length between pp as function of DWT Fig. G2 Breadth as function of DWT

VLCC

y = 0.000085 x + 293.67R2 = 0.096

305

310

315

320

325

330

255000 270000 285000 300000 315000 330000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay dataDTU model

Linear (IHS-Fairplay data)

VLCC

y = 0.0000333x + 49.01R2 = 0.072

55

56

57

58

59

60

61

250000 270000 290000 310000 330000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay database

DTU-SDU modelLinear (IHS-Fairplay database)

Page 18: Regression analysis for tankers and bulk carriers

17

Fig. G3 Depth as function of DWT Fig. G4 Maximum draught as function of DWT

Fig. G5 Block coefficient as function of DWT Fig. G6 Length displacement ratio as function of

DWT

Fig. G7 Lightweight coefficient as function of DWT

VLCC

26

27

28

29

30

31

32

255000 270000 285000 300000 315000 330000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay database

DTU-SDU model

Linear (IHS-Fairplay database)

VLCCy = 0.000049x + 6.85

R2 = 0.45

18

19

20

21

22

23

24

255000 270000 285000 300000 315000 330000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay databaseDTU-SDU modelLinear (IHS-Fairplay database)

VLCC

0.75

0.80

0.85

0.90

255000 270000 285000 300000 315000 330000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

VLCC

4.45

4.55

4.65

4.75

4.85

255000 270000 285000 300000 315000 330000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

Linear (IHS-Fairplay data)

VLCC y = 0.000000182x + 0.01912R2 = 0.16

0.00

0.02

0.04

0.06

0.08

0.10

255000 270000 285000 300000 315000 330000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLinear (IHS-Fairplay data)

Page 19: Regression analysis for tankers and bulk carriers

18

Appendix H – All bulk carriers – summary of regression analysis Bulk carriers have been categorized in following 6 groups:

1. Small bulk carriers (< 10000 DWT) 2. Handysize bulk carrriers (10000 - 25000 DWT) 3. Handymax bulk carriers (25000 - 55000 DWT) 4. Panamax bulk carriers (55000 - 85000 DWT) 5. Capesize bulk carriers (85000 - 200000 DWT) 6. VLBC (200000 - 330000 DWT)

The equations found by regression analysis are shown for each individual ship sub type. The equations are basis for the generic ship design model for determination of main dimension and propulsion characteristics for all types of bulk carriers – in the following called ‘DTU and SDU model’.

Fig. H1 Length between pp as function of DWT Fig. H2 Breadth as function of DWT

All bulk carriersYellow dots indicate

DTU-SDU model default values

50

120

190

260

330

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Leng

th p

p (m

)

All bulk carriersYellow dots indicate

DTU - SDUmodel default values

8

17

26

35

44

53

62

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Bre

adth

(m)

Page 20: Regression analysis for tankers and bulk carriers

19

Fig. H3 Depth as function of DWT Fig. H4 Maximum draught as function of DWT

Fig. H5 Lightweight as function of DWT Fig. H6 Lightweight coefficient as function of

DWT

Fig. H7 Block coefficient as function of DWT Fig. H8 Length displacement ratio as function of

DWT

All bulk carriersYellow dots indicate

DTU-SDUmodel default values

0

4

8

12

16

20

24

28

32

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Dep

th (m

)

All bulk carriersYellow dots indicate

DTU-SDUmodel default values

0

4

8

12

16

20

24

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Dra

ught

(m)

All bulk carriersYellow dots indicate

DTU-SDUmodel default values

0

9000

18000

27000

36000

45000

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Ligh

twei

ght (

t)

All bulk carriersYellow dots indicate

DTU-SDUmodel default values

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Ligh

twei

ght(L

/B/D

(t/m

3 )

All bulk carriersYellow dots indicate

DTU-SDU model default values

0.65

0.70

0.75

0.80

0.85

0.90

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Blo

ck c

oeffi

cien

t

All bulk carriersYellow dots indicate

DTU-SDUmodel default values

4.0

4.3

4.6

4.9

5.2

5.5

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (tons)

Lpp/

disp

l.vol

1/3

Page 21: Regression analysis for tankers and bulk carriers

20

Appendix I - Small bulk carriers (< 10000 DWT) Length pp = 5.582 * DWT0.329 Breadth = 11+ 0.001 * DWT - 0.00000001675 * DWT2 Depth = 5.22 + 0.000485 * DWT Draught = 0.529 * DWT0.285 Lightweight/Lpp/B/D = 0.831 * DWT-0.2

Fig. I1 Length between pp as function of DWT Fig. I2 Breadth as function of DWT

Fig. I3 Depth as function of DWT Fig. I4 Maximum draught as function of DWT

Small

y = 5.582x0.329

R2 = 0.95

30

50

70

90

110

130

0 2000 4000 6000 8000 10000Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU-SDU model

Potens (IHS-Fairplay data)

Small

y = -0.00000001675x2 + 0.001x + 11.00R2 = 0.80

8

10

12

14

16

18

20

22

0 2000 4000 6000 8000 10000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Poly. (IHS-Fairplay data)

Small

y = 0.000485x + 5.22R2 = 0.69

2

4

6

8

10

12

0 2000 4000 6000 8000 10000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Small

y = 0.529x0.285

R2 = 0.86

2

3

4

5

6

7

8

0 2000 4000 6000 8000 10000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelPotens (IHS-Fairplay data)

Page 22: Regression analysis for tankers and bulk carriers

21

Fig. I5 Block coefficient as function of DWT Fig. I6 Length displacement ratio as function of

DWT

Fig. I7 Lightweight coefficient as function of DWT

Small

0.65

0.70

0.75

0.80

0.85

0 2000 4000 6000 8000 10000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)Small

4.0

4.3

4.6

4.9

5.2

5.5

0 2000 4000 6000 8000 10000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Small

y = 0.831x-0.2

R2 = 0.49

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0 2000 4000 6000 8000 10000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelPotens (IHS-Fairplay data)

Page 23: Regression analysis for tankers and bulk carriers

22

Appendix J – Handysize bulk carriers (10000 - 25000 DWT) Length pp = 5.463 * DWT0.3285 Breadth = 14.86 + 0.00045 * DWT Depth = 7.84 + 0.000232 * DWT Draught = 6.2 + 0.000141 * DWT Lightweight/Lpp/B/D = 1.05 * (0.153 - 0.00000158 * DWT)

Fig. J1 Length between pp as function of DWT Fig. J2 Breadth as function of DWT

Fig. J3 Depth as function of DWT Fig. J4 Maximum draught as function of DWT

Handysize

y = 5.463x0.3285

R2 = 0.75

110

120

130

140

150

160

170

10000 12000 14000 16000 18000 20000 22000 24000 26000Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay dataDTU-SDU model

Potens (IHS-Fairplay data)

Handysize

y = 0.00045x + 14.86R2 = 0.79

17

19

21

23

25

27

10000 12000 14000 16000 18000 20000 22000 24000 26000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Handysizey = 0.000232x + 7.84R2 = 0.79

9

10

11

12

13

14

15

10000 12000 14000 16000 18000 20000 22000 24000 26000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Handysize

y = 0.000141x + 6.20R2 = 0.73

6

7

8

9

10

11

10000 12000 14000 16000 18000 20000 22000 24000 26000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Page 24: Regression analysis for tankers and bulk carriers

23

Fig. J5 Block coefficient as function of DWT Fig. J6 Length displacement ratio as function of

DWT

Fig. J7 Lightweight coefficient as function of DWT

Handysize

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

10000 12000 14000 16000 18000 20000 22000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Handysize

4.6

4.8

5.0

5.2

5.4

5.6

10000 12000 14000 16000 18000 20000 22000 24000 26000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Handysize

y = -0.00000158x + 0.1531R2 = 0.13

0.10

0.12

0.14

0.16

0.18

10000 12000 14000 16000 18000 20000 22000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Page 25: Regression analysis for tankers and bulk carriers

24

Appendix K - Handymax bulk carriers (25000 - 55000 DWT) Length pp = 25.66 * DWT0.1813 Breadth = MIN(18.93 + 0.000272 * DWT; 32.2) Depth = 9.32 + 0.000158 * DWT Draught = 6.84 + 0.000101 * DWT Lightweight/Lpp/B/D = 1.05 * (0.151 - 0.00000127 * DWT)

Fig. K1 Length between pp as function of DWT Fig. K2 Breadth as function of DWT

Fig. K3 Depth as function of DWT Fig. K4 Maximum draught as function of DWT

Handymax

y = 25.66x0.1813

R2 = 0.70

155

165

175

185

195

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay dataDTU-SDU model

Potens (IHS-Fairplay data)

Handymax

23

25

27

29

31

33

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Handymax

y = 0.000158x + 9.32R2 = 0.64

12

14

16

18

20

22

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Handymax

y = 0.000101x + 6.84R2 = 0.92

9

10

11

12

13

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Page 26: Regression analysis for tankers and bulk carriers

25

Fig. K5 Block coefficient as function of DWT Fig. K6 Length displacement ratio as function of

DWT

Fig. K7 Lightweight coefficient as function of DWT

Handymax

0.77

0.79

0.81

0.83

0.85

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU-final

Lineær (IHS-Fairplay data)

Handymax

4.5

4.7

4.9

5.1

5.3

5.5

25000 30000 35000 40000 45000 50000 55000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Handymax

y = -0.00000127x + 0.151R2 = 0.47

0.06

0.08

0.10

0.12

0.14

0.16

25000 30000 35000 40000 45000 50000 55000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay dataDTU-SDU modelLineær (IHS-Fairplay data)

Page 27: Regression analysis for tankers and bulk carriers

26

Appendix L - Panamax bulk carriers (55000 - 85000 DWT) Length pp = 107.00 + 0.0014 * DWT for DWT < 60000

= 31.00 + 0.00267 * DWT for 60000 <= DWT <= 69000 = 180.50 + 0.0005 * DWT for DWT > 85000

Breadth = 32.23 Depth = 13.47 + 0.0000777 * DWT Draught = 8.43 + 0.0000735 * DWT Lightweight/Lpp/B/D = 1.05 * 0.079

Fig. L1 Length between pp as function of DWT Fig. L2 Breadth as function of DWT

Fig. L3 Depth as function of DWT Fig. L4 Maximum draught as function of DWT

Panamax

180

190

200

210

220

230

55000 60000 65000 70000 75000 80000 85000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU-SDU model

Panamax

31.9

32.0

32.1

32.2

32.3

55000 60000 65000 70000 75000 80000

Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Panamax

y = 0.0000777x + 13.47R2 = 0.88

17.5

18.0

18.5

19.0

19.5

20.0

20.5

55000 60000 65000 70000 75000 80000 85000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Panamax

y = 0.0000735x + 8.43R2 = 0.80

12.0

12.5

13.0

13.5

14.0

14.5

15.0

55000 60000 65000 70000 75000 80000 85000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Page 28: Regression analysis for tankers and bulk carriers

27

Fig. L5 Block coefficient as function of DWT Fig. L6 Length displacement ratio as function of

DWT

Fig. L7 Lightweight coefficient as function of DWT

Panamax

0.80

0.82

0.84

0.86

0.88

0.90

55000 60000 65000 70000 75000 80000 85000

Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

Panamax

4.6

4.7

4.8

4.9

5.0

5.1

5.2

55000 60000 65000 70000 75000 80000 85000

Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

Panamax

0.06

0.07

0.08

0.09

0.10

0.11

60000 64000 68000 72000 76000 80000 84000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay data

DTU-SDU model

Page 29: Regression analysis for tankers and bulk carriers

28

Appendix M - Capesize bulk carriers (85000 - 200000 DWT) Length pp = 5.705 * DWT0.322 Breadth = 27.80 + 0.00012 * DWT for DWT < 110000 = 32.75 + 0.000075 * DWT for DWT => 110000 Depth = 1.126 * DWT0.2545 Draught = 0.179 * DWT0.3814 Lightweight/Lpp/B/D = 0.0817 – 0.0000000486 * DWT

Fig. M1 Length between pp as function of DWT Fig. M2 Breadth as function of DWT

Fig. M3 Depth as function of DWT Fig. M4 Maximum draught as function of DWT

Capesize

y = 5.7045x0.3221

R2 = 0.975

190

210

230

250

270

290

310

60000 85000 110000 135000 160000 185000 210000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU - SDU model

Potens (IHS-Fairplay data)Capesize

35

38

41

44

47

50

60000 85000 110000 135000 160000 185000 210000

Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay data

DTU-SDU model

Capesize

y = 1.126x0.2545

R2 = 0.772

18

19

20

21

22

23

24

25

26

60000 85000 110000 135000 160000 185000 210000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay data

DTU-SDU model

Potens (IHS-Fairplay data)

Capesize

y = 0.179x0.3814

R2 = 0.924

11

12

13

14

15

16

17

18

19

60000 85000 110000 135000 160000 185000 210000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay data

DTU-SDU model

Potens (IHS-Fairplay data)

Page 30: Regression analysis for tankers and bulk carriers

29

Fig. M5 Block coefficient as function of DWT Fig. M6 Length displacement ratio as function of

DWT

Fig. M7 Lightweight coefficient as function of DWT

Capesize

0.78

0.80

0.82

0.84

0.86

0.88

60000 85000 110000 135000 160000 185000 210000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU modelSuezmax

4.60

4.70

4.80

4.90

5.00

60000 85000 110000 135000 160000 185000 210000

Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

Capesizey = -4.86E-08x + 0.0817

R2 = 0.023

0.04

0.05

0.06

0.07

0.08

0.09

60000 85000 110000 135000 160000 185000 210000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay data

DTU-SDU model

Lineær (IHS-Fairplay data)

Page 31: Regression analysis for tankers and bulk carriers

30

Appendix N - VLBC (200000 - 330000 DWT) Length pp = 230.00 + 0.00032 * DWT for DWT < 250000 = 250.625 + 0.0002375 * DWT for DWT => 250000 Breadth = MIN(57.5, 20 + 0.00015 * DWT) Depth = MIN(6.86 + 0.0000857 * DWT, 30) Draught = 14.95 + 0.000015 * DWT for DWT < 230000 = 7.82 + 0.000046 * DWT for DWT => 230000 Lightweight/Lpp/B/D = 1.05 * (0.076 – 0.0000000261 * DWT)

Fig. N1 Length between pp as function of DWT Fig. N2 Breadth as function of DWT

Fig. N3 Depth as function of DWT Fig. N4 Maximum draught as function of DWT

VLBC

285

290

295

300

305

310

315

320

325

330

190000 210000 230000 250000 270000 290000 310000 330000

Deadweight (tons)

Leng

th p

p (m

)

IHS-Fairplay data

DTU-SDU model

VLBC

49

51

53

55

57

59

61

190000 210000 230000 250000 270000 290000 310000 330000

Deadweight (tons)

Bre

adth

(m)

IHS-Fairplay database

DTU-SDU model

VLBC

23

24

25

26

27

28

29

30

31

32

190000 210000 230000 250000 270000 290000 310000 330000Deadweight (tons)

Dep

th (m

)

IHS-Fairplay database

DTU-SDU model

VLBC

17

18

19

20

21

22

23

24

190000 210000 230000 250000 270000 290000 310000 330000Deadweight (tons)

Dra

ught

(m)

IHS-Fairplay database

DTU-SDU model

Page 32: Regression analysis for tankers and bulk carriers

31

Fig. N5 Block coefficient as function of DWT Fig. N6 Length displacement ratio as function of

DWT

Fig. N7 Lightweight coefficient as function of DWT

VLBC

0.75

0.77

0.79

0.81

0.83

0.85

190000 210000 230000 250000 270000 290000 310000 330000Deadweight (tons)

Blo

ck c

oeffi

cien

t pp

IHS-Fairplay data

DTU-SDU model

VLBC

4.50

4.60

4.70

4.80

4.90

5.00

190000 210000 230000 250000 270000 290000 310000 330000Deadweight (tons)

Lpp/

Dis

pl.v

ol1/

3

IHS-Fairplay data

DTU-SDU model

VLBC

0.00

0.02

0.04

0.06

0.08

0.10

190000 210000 230000 250000 270000 290000 310000 330000

Deadweight (tons)

Ligh

twei

ght/L

pp/B

/D (t

/m3 )

IHS-Fairplay data

DTU-SDU model

Page 33: Regression analysis for tankers and bulk carriers

32

Appendix O – Water plane area coefficient and draught change The waterplane area coefficient, Cw, for tankers and bulk carriers is shown in Fig. O1. Cw depends on the block coefficient, Cb, as follows: Cw = 0.24 + 0.81 Cb where Cw and Cb are calculated on basis of the length between pp.

Fig. O1 Waterplane area coefficient as function

of the block coefficient for tankers and bulk carriers

Fig. O2 Waterplane area coefficient as function the relative displacement

In Fig. O2 is shown the waterplane area coefficient as function of the relative displacement. Based on the results in Fig. O2, the waterplane area coefficient at a displacement ∆2 can be approximated as follows:

𝐶𝑤(∆2) = 𝐶𝑤(∆1) − 0.08 ⋅ �1 − ∆2∆1� = [0.24 + 0.81 ∙ 𝐶𝑏(∆1)] − 0.08 ⋅ (1 −

∆2∆1

) Scantling draught and design draught All data presented in this report are presented as function of the maximum deadweight. Normally two draughts are specified for tankers and bulk carriers, namely the design draught and the scantling draught. The design draught is the draught at which the ship is expected to operate normally, while the scantling draught is the maximum permissible draught according to the class rules. Comparison of scantling draught data (Significant Ships, 1990 – 2010) with summer load line draught data (denoted maximum draught in this report) shows that the summer load line draught is nearly identical with the scantling draught (Fig. O3 and O4). The design deadweight and the scantling deadweight are shown in Fig. O5 as the ratio between design deadweight and scantling deadweight for 229 ships (181 tankers and 58 bulk carriers). The

Tankers and bulk carriers

Cw = 0.81 Cb + 0.24

0.80

0.84

0.88

0.92

0.96

0.72 0.76 0.80 0.84 0.88Block coeff. based on Lpp

Wat

erpl

. are

a co

eff.

base

d on

Lpp

TankersBulk carriersSeries2Linear (Series2)

0.80

0.85

0.90

0.95

40 50 60 70 80 90 100

Relative displacement (%)

Wat

erpl

ane

area

coe

ffici

ent (

-)

Cb = 0.799 Cb = 0.844

Cb = 0.808 Cb = 0.811

Page 34: Regression analysis for tankers and bulk carriers

33

ratio depends on the ship size, but the scatter is relatively large so a design to scantling deadweight ratio of 90 % is assumed.

Fig. O3 Draught for tankers according to

Significant Ships (1990 – 2010) Fig. O4 Draught for bulk carriers according to

Significant Ships (1990 – 2010)

Fig. O5 Design deadweight as percentage of the scantling deadweight

The design draught can be calculated according to this approximate formula:

𝑇𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑇𝑠𝑐𝑎𝑛𝑡𝑙𝑖𝑛𝑔 −𝐷𝑤𝑠𝑐𝑎𝑛𝑡𝑙𝑖𝑛𝑔 − 𝐷𝑤𝑑𝑒𝑠𝑖𝑔𝑛

[𝐶𝑤𝑠𝑐𝑎𝑛𝑡𝑙𝑖𝑛𝑔 − 0.04 ∙ (1 −∆𝑠𝑐𝑎𝑛𝑡𝑙𝑖𝑛𝑔∆𝑑𝑒𝑠𝑖𝑔𝑛

)] ⋅ 𝐿𝑝𝑝 ⋅ 𝐵 ⋅ 𝜌𝑠𝑎𝑙𝑡 𝑤𝑎𝑡𝑒𝑟

Tankers

0

4

8

12

16

20

24

0 90000 180000 270000 360000 450000

Max. deadweight (t)

Dra

ught

(m)

Maximum draught (IHS Fairplay)

Scantling draught (Significant Ships)

Design draught (Significant Ships)

Bulk carriers

0

4

8

12

16

20

24

0 50000 100000 150000 200000 250000 300000 350000

Max. deadweight (t)

Dra

ught

(m)

Maximum draught (IHS Fairplay)

Scantling draught (Significant Ships)

Design draught (Significant Ships)

68

76

84

92

100

0 90000 180000 270000 360000 450000

Maximum deadweight (t)

Des

ign

dw/M

ax. D

w (%

)

TankersBulk carriersApproximated mean linePower (Bulk carriers)Power (Tankers)

Page 35: Regression analysis for tankers and bulk carriers

34

Appendix P Service speed for tankers and bulk carriers The speed for tankers according IHS Fairplay and Significant Ships are presented in Fig. P1.

Fig. P1 Speed for tankers Based on a regression analysis of the IHS Fairplay data, following speed assumptions have been made for calculation of a default service speed: If deadweight (DWT) < = 150000 t: Speed = 9.5∙DW0.043, but not more than 15 knots If deadweight > 150000 t: Speed = 15 + (DWT - 150000)∙0.000003 The speed for bulk carriers according IHS Fairplay and Significant Ships are presented in Fig. P2. Based on a regression analysis of the IHS Fairplay data, following speed assumption has been made for calculation of a default service speed: Speed = 0.613*LN(DWT)+7.74), but not more than 15 knots

Page 36: Regression analysis for tankers and bulk carriers

35

Fig. P2 Speed for bulk carriers

Bulk carriers (1990 - 2010)

y = 0.613Ln(x) + 7.74

8

10

12

14

16

18

0 50000 100000 150000 200000 250000 300000 350000

Deadweight (t)

Spee

d (k

nots

)

IHS Fairplay data (1990 - 2010)

RINA Significant Ships data (1990 - 2010)

DTU model (normal service speed)