35
Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary program for pattern recognition and substructure elucidation of monoterpenes Marcelo J.P. Ferreira a , Gilberto V. Rodrigues b , Antônio J.C. Brant a and Vicente P. Emerenciano a,∗∗ a Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, 05513-970 São Paulo, Brazil b Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 30161-000 Belo Horizonte, Minas Gerais, Brazil Received 7 October 2000 Revised 5 December 2000 Abstract. The main purpose of this paper is to present a procedure that utilizes 13 C NMR for pattern recognition and substruc- ture elucidation of monoterpenes. By this reason, a novel version of the REGRAS program was developed for the specialist SISTEMAT system. This program carries out an analysis of the 13 C NMR data from a given compound and, from characteristic chemical shift ranges, recognizes the substructures and the skeleton present in a compound. At the end of this procedure, the program displays as analysis results the likely skeletons and substructures of the substance in question. The REGRAS program was tested on skeleton elucidation of 30 monoterpenes from the most varied skeleton types, exhibiting excellent results in skeleton and substructure prediction processes. Keywords: Monoterpenes, 13 C NMR, pattern recognition, structural elucidation, expert system 1. Introduction During the last three decades, numberless specialist systems have been developed for determin- ing chemical structures. Among these systems, one can point out the DENDRAL [1], ACCESS [2], DARC/EPIOS [3], SpecInfo [4] and Assemble 2.0 [5]. Each of them has a particular working way, de- spite they exhibit some common points such as, for example, the need for utilizing powerful computers and numerous chemical constraints to be imposed, in order to diminish the number of shown structural proposals. In the last ten years, our research group, more concerned with artificial intelligence programs, has de- veloped the expert SISTEMAT system [6,7]. This aims for the goal to aid researchers on natural product chemistry in processes of determining structures of substances. For that, various classes of compounds have been studied, mainly, for example, sesquiterpenes [8,9], lactone sesquiterpenes [10], diterpenes [11] and triterpenes [12]. One of the advantages of the specialist SISTEMAT system, in relation to others, is that, during creation process of data banks, carbon skeleton concept of substances was inserted into the system, so that the * Part XXIII of the series “Applications of Artificial Intelligence in Organic Chemistry”. For part XXII see [17] in this text. ** Corresponding author: Vicente P. Emerenciano. Fax: +55 11 3815 5579; E-mail: [email protected]. 0712-4813/01/$8.00 2001 – IOS Press. All rights reserved

REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

Spectroscopy 15 (2001) 65–98 65IOS Press

REGRAS: an auxiliary program for patternrecognition and substructure elucidationof monoterpenes∗

Marcelo J.P. Ferreiraa, Gilberto V. Rodriguesb, Antônio J.C. Branta andVicente P. Emerencianoa,∗∗

a Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, 05513-970 São Paulo, Brazilb Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 30161-000 Belo Horizonte,Minas Gerais, Brazil

Received 7 October 2000Revised 5 December 2000

Abstract. The main purpose of this paper is to present a procedure that utilizes13C NMR for pattern recognition and substruc-ture elucidation of monoterpenes. By this reason, a novel version of the REGRAS program was developed for the specialistSISTEMAT system. This program carries out an analysis of the13C NMR data from a given compound and, from characteristicchemical shift ranges, recognizes the substructures and the skeleton present in a compound. At the end of this procedure, theprogram displays as analysis results the likely skeletons and substructures of the substance in question. The REGRAS programwas tested on skeleton elucidation of 30 monoterpenes from the most varied skeleton types, exhibiting excellent results inskeleton and substructure prediction processes.

Keywords: Monoterpenes,13C NMR, pattern recognition, structural elucidation, expert system

1. Introduction

During the last three decades, numberless specialist systems have been developed for determin-ing chemical structures. Among these systems, one can point out the DENDRAL [1], ACCESS [2],DARC/EPIOS [3], SpecInfo [4] and Assemble 2.0 [5]. Each of them has a particular working way, de-spite they exhibit some common points such as, for example, the need for utilizing powerful computersand numerous chemical constraints to be imposed, in order to diminish the number of shown structuralproposals.

In the last ten years, our research group, more concerned with artificial intelligence programs, has de-veloped the expert SISTEMAT system [6,7]. This aims for the goal to aid researchers on natural productchemistry in processes of determining structures of substances. For that, various classes of compoundshave been studied, mainly, for example, sesquiterpenes [8,9], lactone sesquiterpenes [10], diterpenes [11]and triterpenes [12].

One of the advantages of the specialist SISTEMAT system, in relation to others, is that, during creationprocess of data banks, carbon skeleton concept of substances was inserted into the system, so that the

* Part XXIII of the series “Applications of Artificial Intelligence in Organic Chemistry”. For part XXII see [17] in this text.** Corresponding author: Vicente P. Emerenciano. Fax: +55 11 3815 5579; E-mail: [email protected].

0712-4813/01/$8.00 2001 – IOS Press. All rights reserved

Page 2: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

66 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

number of structural proposals could be reduced throughout the structural generation process. Thus, aftercreation of each database from13C NMR spectrum data, which basically are chemical shifts and multi-plicities, the system is able to realize characterization and identification of most existing carbon skeletonsthrough a set of chemical shifts from13C NMR, whose target is to identify a determined skeleton or deter-mined part of a skeleton, i.e., a substructure. This identification procedure of substructures and skeletonsfrom the13C NMR data for natural products will show a direct action on the structure generator, whichshould exhibit a less number of structural proposals to a determined data set. Therefore, combinatorialexplosion problems, observed in other systems [1–3,13–15], may be avoided. These systems excludethe proposals that do not incorporate natural products skeletons only after an exhaustive generation of allthe probable structures. Thus another advantage of our system is the spent computational time reduction.

The objective of this work is to present the ranges of chemical shifts from the13C NMR spectra, beingthe former characteristic for several monoterpene skeletons, that is, the pattern recognitions of differentskeletons and subskeletons, and in addition to verify their application in elucidation of structures of novelmonoterpenes.

2. Methodology

In order to create a monoterpene data bank, a revision on the literature was made until the year of1997, because the posterior years were used to test the program, and thereof were collected all thosemonoterpenes which showed13C NMR data. A totality of 1322 substances bearing the respective datawere obtained and these were inserted into the specialist SISTEMAT system. To date, these data arecompiled in a literature review [16].

3. The search for heuristic rules

Heuristic rules are practical rules obtained from specialist’s experience, or originated from programswhich perform “learning from machine” routine, and are aimed at solving a specific problem. In theSISTEMAT system, the search of these rules is done through the TIPCARB [11,16] and PICKUP [9,11,16] programs. The TIPCARB program can determine which carbon atoms are present in each positionof a skeleton. This information helps in the search of heuristic rules because they define whether or notthe skeleton is substituted and the kind of the substituents. This could also be done manually by a carefulanalysis on literature, but the huge data volume makes this task unfeasible for searching heuristic rules.

After the position of each carbon atom and the types of substituents were defined, these fragments, de-nominated substructures, are coded in the PICKUP program [16] that performs the search in the databasefor the chemical shift range for13C data of the carbons in the substructure. After the chemical shift es-timation, this information is evaluated in relation to its degree of recognition with complete database,allowing one to affirm that a certain group of chemical shifts characterizes a certain probability of theoccurrence of a substructure in the compound. In summary, the TIPCARB program indicates which sub-structure should be selected, and the PICKUP program obtains the chemical shift ranges of its carbonatoms and the degree of recognition of these shifts within the database.

This procedure had already been utilized successfully to obtain the chemical shift ranges of eudesmanesesquiterpene [9] and of diterpenes [11], and through this work we tested its efficiency on characterizationof monoterpene skeletons. A fact we verified is that, many times, the system lists substances from otherskeletons which fit within the specified13C NMR range, however most of these skeletons do not have

Page 3: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 67

Fig. 1. Menthane and pinane skeletons. Skeleton menthane number of: total C: 10; CH3: 3; CH2: 4; CH: 3; C: 0. Skeleton pinanenumber of: total C: 10; CH3: 3; CH2: 3; CH: 3; C: 1.

Table 1

Chemical shifts ranges utilizes for disfunctionalization of the13C NMR data

Chemical function Initial multiplicity Final multiplicity Chemical shift rangesC=O 1 3 190.0–250.0CHO 2 4 190.0–250.0R–COO–R′ 1 4 165.5–190.0C=C 1 2 113.0–165.5

2 3 104.0–167.03 4 100.0–167.0

C–OH 1 2 61.0–100.02 3 54.0– 90.03 4 54.0– 90.0

C(OR)2 1 3 100.0–113.0CH(OR)2 2 4 90.0–104.0

the same types of carbon atoms. This can be observed, for example, in the skeletons of menthane andpinane (Fig. 1). One obviously can note that the number of quaternary and methine carbons is differentin both skeletons. Hence, this kind of datum could be utilized in the distinction between two skeletons,and, therefore, could increase the percentual of recognition of a skeleton in relation to the other one. Forthat, the found solution was the utilization of the REGRAS program.

4. The REGRAS program

The REGRAS program at its initial version [17] realized disfunctionalization of13C NMR spectrum ofa substance, in order to propose, at the end of the analysis, the number of quaternary, methine, methyleneand methyl carbons on the skeleton of the substance in question. After obtaining these data, the programmatches the types of carbon atoms found with a database containing this information for all the skeletonsof a determined chemical class, thus getting the likely skeletons of a substance. Through this type ofanalysis we verify that the program can restrict the proposal number of probable skeletons, but, manytimes, it cannot infer which skeleton of the substance is, once different skeletons may present the sametypes of carbon atoms.

As during analysis on13C NMR characteristic ranges are listed different types of carbon atoms, weimplemented in a new version of REGRAS program the chemical shift ranges obtained for each skeleton.In this way, throughout an analysis, the13C NMR spectral data initially must be disfunctionalized [17]according to the data presented in Table 1, being so obtained the types of existing carbon atoms in

Page 4: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

68 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Fig. 2. REGRAS’ work flow chart.

a substance. From these data, the program will go to select the skeletons bearing such requisites, and,afterwards, research by chemical shift ranges occurs. Through connection of these data will not be chosenskeletons which are encountered on the13C NMR range and show types of carbon atoms incompatiblewith the skeleton of the substance in question. Thus, the initially found problem is solved.

Summarizing, one can say that the REGRAS program exhibits two analysis steps: the first is a “rough”research – however it is fundamental – by means of13C NMR data disfunctionalization. Skeletons whichshow a determined set of carbon atoms are selected. At the second analysis step, the program – from thepreviously selected skeletons – realizes a “fine” research through the characteristic chemical shift rangesof each skeleton or subskeleton.

Figure 2 shows the flow chart of the REGRAS program action. After entering the13C NMR spectraldata of the monoterpene bearing menthane skeleton, isolated fromSphaeranthus suaveolens[18] anddisplayed in Fig. 3, the REGRAS program makes the disfunctionalization of the substance spectrum. Thedata of13C NMR referring to the present substituents were previously identified and removed through theMACRONO program [19,20]. At this point of analysis, the program shows, for the monoterpene in Fig. 3,the skeleton probability exhibited in Table 2 (the proposed skeletons are presented in Fig. 4) and “asks”whether the user wants to carry on the analysis and realize research by characteristic13C NMR ranges.

Page 5: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 69

Fig. 3. Monoterpene utilized to demonstrate the use the program. Data from13C NMR: (CDCl3) 138.1(s), 139.4(d), 71.7(d),48.8(d), 67.4(d), 201.6(s), 60.3(t), 27.8(q), 19.7(q), 19.7(q); Ac: 170.1(s), 21.1(q).

Table 2

Skeleton probability shown by the REGRAS pro-gram in the first stage of the analysis

Skeleton ProbabilityMenthane 33.3%meta-Menthane 33.3%orto-Menthane 33.3%

Fig. 4. Skeletons proposed at the first stage of the analysis by the REGRAS program.

In this case, we proceeded the analysis, and the program displayed as result the following probability:Menthane skeleton: 100.0%.

The program can also realize research through subskeletons. For the monoterpene in Fig. 3, this analy-sis was carried out in accordance with the characteristic chemical shifts ranges obtained by the PICKUPsystem. The REGRAS program provided the substance the following subskeleton: Menthane [1EN; 3OR;6OXO] – 100.0%, that corresponds to a substructure existent in monoterpene of Fig. 3.

5. Results

The chemical shifts ranges obtained by the PICKUP system for monoterpene skeletons are presentedin Table 3.

To test validity of these ranges, 30 monoterpenes (Fig. 5) were randomly selected from the literature.They had their13C NMR data submitted to the REGRAS program, that proposed skeletons and sub-skeletons of the substances by means of disfunctionalization of the13C NMR data and further researchthrough characteristic chemical shifts ranges. The results obtained with the monoterpenes of Fig. 5 areshown in Table 4. As in the example presented previously, the data referring to the substituents wereidentified and removed by the MACRONO program.

Page 6: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

70 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Fig. 5. Substances utilized to test the REGRAS program.

Page 7: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 71

Fig. 5. Continued.

Fig. 6. Skeletons erroneously proposed by the program.

Page 8: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

72 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

6. Discussion of the results

The REGRAS program, which disfunctionalizes13C NMR spectra and does the research on the typesof carbon atoms present on the skeleton as well as those on the characteristic chemical shift rangesof skeletons and subskeletons (Table 3), showed a percentual hit of 93.3%, by considering that theprogram only committed two errors in tests 22 and 25. In test 22, the program effected the correct13C NMR spectrum disfunctionalization, however, during the search for skeletons, it uniquely found the1-ethylmenthane (Fig. 6) with the desired types of carbon atoms, once the 10-norionane skeleton (Fig. 6)– this is a new skeleton that is not included in the database yet. Therefore, in this case, a mistake didnot occur from the program directly. On the other side, in the test 25, the REGRAS program affordedan erroneous forecast, for, through the13C NMR spectrum disfunctionalization, the chemical shift atδ71.3, whose multiplicity is a singlet referring to C8 of the substance, was disfunctionalized accordingto the chemical shift ranges of Table 1. To this carbon was attributed a methine carbon on the whollydisfunctionalized skeleton. Accordingly, the program found the following types of carbon atoms for thedisfunctionalized13C NMR spectrum of the substance: 0, 4, 3 and 3, respectively related to quaternary,methine, methylene and methyl carbons. By consultation of the types of carbon atoms, the programexhibited wrong skeleton proposals.

In relation to subskeleton proposals for the test substances, the REGRAS program showed 42 subskele-ton proposals, being that, among them, the program indicated the correct subskeletons for the substancesin 90.5% of the cases. In tests 1, 5 and 20, were presented correct and incorrect subskeleton proposals,being the user up to discern the most coherent one among them.

7. Conclusion

In this paper, we demonstrated that a compound group with the same skeleton can be characterizedthrough 13C NMR chemical shift ranges. When these are associated with the information about thetypes of existing carbon atom on a determined skeleton, selectivity and reliability of the results increaseappreciably.

The REGRAS program shows to be a valuable tool for auxiliating the researchers in processes ofdeterming new monoterpene structures, and it henceforth will be embodied in our specialist SISTEMAT’sset of programs, in order that this can have its applicability extended to other natural product classes.

It is noteworthy to point out here that skeletons the REGRAS program shows, as well as the substruc-tures which are supplied by itself, will be utilized as constraints for the structure generator which is beingbuilt, once the latter can start the process of structure generation from a just found structure complement.Differently from other systems, the REGRAS program will run without combinatorial explosions. An-other important variable to be here emphasized is the fact that our system usually utilizes PCs, whereasthe other systems we cited in this study need powerful computers for such procedures. Therefore oursystem is more accessible and can be utilized by any user.

Acknowledgments

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo(FAPESP) and by the Conselho Nacional de Pesquisa (CNPq).

Page 9: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 73

Table 3

Characteristic chemical shift ranges of some monoterpene skeletons and subskeletons

Subskeleton NoC 13C NMR shifts range % Recognition

Myrcane

Myrcane [5,7EN] 5 132.8 –129.8 d 100.06 141.3 –132.1 s7 135.8 –133.8 d8 123.4 –110.5 t

Myrcane [6(10),7EN] 6 147.0 –145.3 s 100.07 139.9 –138.5 d8 116.3 –114.9 t

10 113.9 –111.0 t

Myrcane[6(10),7EN;8,10OXY] 6 125.0 –111.0 s 100.07 124.8 –111.1 d8 142.5 –139.1 d

10 143.1 –138.8 d

Myrcane [6EN; 8OXO] 6 169.3 –162.1 s 100.07 128.8 –127.5 d8 196.0 –189.3 d

Myrcane [1OXO; 2EN] 1 195.3 –195.0 d 100.02 153.6 –140.1 s3 154.6 –139.6 d

Myrcane [8OXO] 6 28.0 – 27.7 d 100.07 51.0 – 50.7 t8 203.8 –202.0 d

Myrcane [6EN; 8OXO; 8OR] 6 160.0 –149.0 s 100.07 117.5 –115.8 d8 171.6 –167.1 s

Myrcane [8OXO; 8OR] 6 30.5 – 26.7 d 100.07 42.5 – 40.7 t8 175.0 –174.1 s

Myrcane [1OXO; 1OR; 2EN] 1 173.8 –165.0 s 100.02 136.3 –127.0 s3 148.1 –137.0 d

Myrcane [1OXO; 1OR] 1 179.1 –175.3 s 100.02 39.5 – 35.2 d3 45.2 – 33.7 t

Page 10: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

74 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionMyrcane [6EN; 8OR] 5 55.7 – 29.6 t 69.7

6 156.5 –130.3 s7 129.1 –115.0 d8 71.0 – 58.2 t

Myrcane [6EN; 8Cl] 5 33.8 – 33.3 t 100.06 139.9 –139.3 s7 127.0 –126.5 d8 38.9 – 38.7 t

Myrcane [5,8OR; 6EN] 5 85.0 – 71.4 d 81.36 145.8 –138.3 s7 126.5 –118.3 d8 66.5 – 58.7 t

Myrcane [5OXO; 6EN] 5 199.6 –191.6 s 100.06 139.6 –138.6 s7 135.5 –134.8 d

Myrcane [2EN; 4OXO] 2 158.1 –128.8 s 85.73 127.3 –120.0 d4 200.8 –179.5 s

Myrcane [2,6EN; 4OR] 2 142.0 –130.1 s 100.03 154.1 –121.8 d4 79.5 – 66.4 d5 48.0 – 36.0 t6 139.6 –130.3 s

Myrcane [6(10)EN; 8OR] 6 140.1 –131.6 s 100.07 36.7 – 34.5 t8 68.8 – 66.5 t

10 115.3 –110.5 t

Myrcane [1OR; 2EN] 1 75.8 – 68.0 t 84.62 147.1 –130.8 s3 129.6 –124.5 d4 27.0 – 22.2 t5 42.2 – 36.5 t

Myrcane [8OR] 5 47.4 – 36.4 t 94.16 38.7 – 25.6 d7 44.0 – 35.0 t8 69.5 – 59.5 t

Myrcane [1OR] 1 68.5 – 67.1 t 100.02 36.9 – 35.2 d3 34.7 – 24.1 t

Myrcane [2OH] 1 29.6 – 29.1 q 100.02 70.9 – 70.3 s3 43.7 – 39.5 t4 23.2 – 21.6 t

Myrcane [2OR] 1 26.7 – 26.5 q 100.02 80.1 – 79.5 s

Page 11: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 75

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition3 38.5 – 33.2 t4 22.2 – 21.3 t

Myrcane [2(5)OXY] 2 83.5 – 81.0 s 100.03 38.5 – 38.2 t5 82.9 – 81.5 d

Myrcane [2OH; 3EN] 2 70.5 – 70.0 s 100.03 139.8 –139.5 d4 124.8 –123.5 d

Myrcane [1,2X; 3EN] 1 41.5 – 37.0 t 100.0X: Cl or Br 2 68.9 – 66.9 s

3 138.8 –133.5 d4 137.1 –127.4 d

Myrcane [2,3OR] 2 77.8 – 71.1 s 93.33 87.6 – 74.0 d4 38.5 – 23.2 t

Myrcane [2,5OH; 3OR] 2 77.8 – 71.9 s 100.03 87.6 – 74.0 d4 38.5 – 36.7 t5 73.5 – 71.5 d

Myrcane [6EP; 8OR] 6 62.4 – 58.0 s 100.07 61.0 – 60.7 d8 68.0 – 63.0 t

Myrcane [6(10)EN; 7,8OR] 6 151.8 –143.8 s 66.77 76.5 – 73.6 d8 66.6 – 64.4 t

10 113.1 –109.9 t

Myrcane [6OR; 7EN] 5 43.5 – 29.2 t 95.86 85.3 – 72.0 s7 146.5 –114.3 d8 119.2 –110.9 t

Myrcane [5,6OR; 7EN] 5 81.5 – 75.3 d 100.06 83.9 – 79.1 s7 141.8 –138.6 d8 115.4 –114.9 t

Myrcane [5,6Cl; 7EN] 5 69.5 – 68.6 d 100.06 71.6 – 71.5 s7 139.5 –139.3 d8 116.5 –116.3 t

Myrcane [6OR] 5 41.7 – 38.0 t 100.06 85.0 – 72.6 s7 34.4 – 31.0 t8 8.3 – 8.0 q

Myrcane [1Br; 1,3EN] 1 108.5 –107.7 d 100.02 135.7 –135.0 s

Page 12: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

76 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition3 138.6 –137.6 d4 133.7 –132.8 d

Myrcane [1Cl; 1,3EN] 1 143.8 –130.3 d 80.02 137.6 –136.0 s3 126.5 –122.5 d4 134.0 –119.0 d

Myrcane [1EN; 3OR] 1 114.6 –109.9 t 93.32 148.0 –143.6 s3 89.1 – 74.9 d

Myrcane [1EN; 3X] 1 115.5 –114.4 t 100.0X: Cl or Br 2 143.6 –142.6 s

3 64.9 – 57.5 d

Myrcane [1EN; 3OXO] 1 131.0 –130.3 t 100.02 141.8 –141.3 s3 191.9 –191.1 s

Myrcane [3,6OXY] 3 85.6 – 80.1 d 100.04 37.5 – 26.4 t5 38.0 – 29.2 t6 85.3 – 82.7 s

Myrcane[1,4OXY;1OXO;2EN] 1 173.9 –173.2 s 100.02 136.3 –130.1 s3 148.1 –144.3 d4 79.5 – 79.3 d

Myrcane [1,4OXY; 1OXO] 1 179.1 –178.8 s 100.02 35.7 – 35.2 d3 45.2 – 44.2 t4 75.5 – 75.0 d

Myrcane [5,8OXY; 6EN] 5 64.0 – 60.7 d 100.06 145.5 –129.3 s7 147.0 –129.3 d8 64.6 – 61.0 t

Myrcane [4,8OXY] 4 74.9 – 68.8 d 75.05 40.8 – 36.0 t8 67.8 – 62.1 t

Myrcane [6,8Cl; 7Br] 6 69.3 – 68.5 s 100.07 62.2 – 61.5 d8 46.5 – 45.7 t

Skeleton-29

Skeleton-29 [3EN; 8OR] 3 134.3 –124.8 d 83.3

Page 13: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 77

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition4 135.6 –127.5 d8 75.0 – 67.9 t

Santolinane

Santolinane [5EN] 4 58.9 – 45.5 d 100.05 139.6 –132.8 d6 125.0 –112.5 t

Santolinane [5EN; 8OR] 4 58.9 – 51.2 d 100.05 138.0 –132.8 d6 125.0 –115.8 t8 84.3 – 72.3 s

Santolinane [5EN] 4 53.0 – 48.0 d 100.05 135.0 –134.0 d6 119.5 –118.0 t8 41.0 – 38.0 d

Santolinane [3(9)OXY;9OXO] 3 85.5 – 84.0 d 100.04 53.0 – 48.0 d8 41.0 – 38.0 d9 179.0 –178.0 s

Santolinane [5,8EN] 4 52.7 – 45.5 d 100.05 139.6 –135.8 d6 114.8 –112.5 t8 151.0 –143.8 s

Santolinane [2,3OR] 2 85.4 – 74.0 s 100.03 79.0 – 78.4 d4 58.9 – 56.0 d

Santolinane [1EN; 3OR] 1 116.5 –109.9 t 100.02 145.8 –140.0 s3 91.1 – 74.5 d4 57.9 – 48.0 d

Santolinane [2EN; 7OR] 2 135.8 –131.1 s 100.03 129.0 –125.8 d4 49.2 – 49.2 d7 69.8 – 68.6 t

Lavandulane

Lavandulane [1EN; 9OR] 1 113.1 –110.0 t 87.52 146.5 –133.1 s

Page 14: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

78 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition3 50.9 – 41.2 d9 73.9 – 64.0 t

Artemisane

Artemisane [6EN] 5 41.7 – 38.5 s 100.06 147.1 –121.0 d7 113.0 –110.5 t

Skeleton-17

Skeleton-17 [6EN; 16OR] 6 137.6 –136.3 s 100.07 129.3 –121.0 d8 42.7 – 28.2 t

11 129.8 –122.1 s16 164.1 –160.3 s

Menthane

Menthane [1(4)OXY] 1 94.5 – 82.1 s 100.04 92.0 – 85.0 s8 39.7 – 26.3 d

Menthane [1(8)OXY] 1 77.1 – 69.0 s 92.54 51.9 – 28.2 d8 76.0 – 73.0 s

Menthane [2(8)OXY] 2 83.3 – 75.0 d 100.04 45.5 – 41.0 d8 83.5 – 80.5 s

Menthane [3EN] 3 123.0 –115.6 d 100.04 170.5 –140.6 s5 33.0 – 24.0 t8 35.5 – 33.7 d

Page 15: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 79

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionMenthane [2OXO] 1 44.7 – 40.9 d 100.0

2 211.8 –201.8 s6 35.0 – 31.2 t7 15.1 – 14.3 q

Menthane [1EN; 3OXO] 1 165.5 –143.8 s 100.02 127.1 –123.1 d3 203.1 –198.8 s4 55.2 – 51.5 d6 31.2 – 26.0 t

Menthane [3OXO; 4(8)EN] 3 204.0 –197.6 s 100.04 136.5 –127.6 s5 28.7 – 23.0 t8 148.5 –137.1 s

Menthane [1(7),2EN] 1 141.6 –139.3 s 100.02 128.6 –126.6 d3 134.1 –133.3 d7 116.6 –109.9 t

Menthane [8EN] 4 57.5 – 34.7 d 95.58 159.8 –140.1 s9 113.0 –108.0 t

10 28.6 – 19.2 q

Menthane [3OXO; 8EN] 3 210.1 –198.8 s 100.04 57.5 – 55.2 d8 144.8 –143.3 s9 113.0 –112.6 t

Menthane [3OR; 8EN] 3 82.5 – 66.3 d 100.04 54.0 – 39.0 d8 150.6 –136.6 s9 123.0 –111.1 t

Menthane [3OXO; 8OR] 3 215.8 –203.1 s 100.04 58.7 – 51.9 d8 73.5 – 71.4 s

Menthane [8OH; 10OR] 4 40.9 – 40.2 d 100.08 74.8 – 73.4 s

10 69.8 – 67.8 t

Menthane [8OH] 3 32.9 – 21.3 t 78.64 49.7 – 38.9 d5 32.7 – 20.1 t8 75.3 – 72.0 s

10 27.8 – 26.0 q

Menthane [8OR] 3 34.5 – 24.0 t 81.04 44.2 – 34.2 d5 26.5 – 22.2 t8 84.6 – 73.5 s

10 28.6 – 23.2 q

Page 16: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

80 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionMenthane [7OR] 1 40.5 – 33.7 d 100.0

2 39.2 – 25.7 t4 50.5 – 43.0 d6 39.2 – 25.7 t7 76.4 – 64.9 t

Menthane [2,3OR] 1 38.4 – 32.7 d 100.02 93.5 – 78.5 d3 88.5 – 71.0 d4 48.2 – 46.9 d

Menthane [1EP] 1 62.9 – 56.2 s 100.02 63.2 – 57.7 d6 32.2 – 28.0 t7 24.3 – 21.2 q

Menthane [1EN; 6OXO] 1 143.6 –134.1 s 100.02 149.0 –134.1 d6 200.1 –186.6 s7 15.6 – 15.0 q

Menthane [2OXO; 3EN] 2 203.1 –201.8 s 100.03 123.0 –119.3 d4 171.6 –169.8 s

Menthane [1EN; 7OXO; 7OR] 1 132.0 –128.6 s 100.02 144.0 –142.3 d6 27.2 – 24.2 t7 169.6 –164.8 s

Menthane [8EN; 9OR] 4 54.8 – 53.3 d 100.08 144.5 –143.0 s9 142.4 –141.2 d

10 13.0 – 11.5 q

Menthane [4(8)EN; 9OR] 4 136.5 –135.8 s 100.08 137.8 –137.1 s9 68.5 – 68.0 t

10 18.7 – 17.8 q

Menthane [3,10OXY;10OXO] 3 73.9 – 73.0 d 100.04 38.7 – 37.9 d8 44.2 – 43.4 d

10 173.6 –170.0 s

Menthane [3,10OXY; 4(8)EN] 3 84.1 – 83.4 d 100.04 124.8 –124.0 s8 131.5 –129.8 s

10 79.7 – 78.5 t

Menthane [3,10OXY] 3 167.0 –150.3 s 100.0[3,8(10)EN] 4 119.0 –117.0 s

8 119.9 –118.9 s10 140.3 –136.6 d

Menthane [1,3,5EN] 3 150.3 –149.8 s 100.0

Page 17: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 81

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition[3,10OXY; 8(10)EN] 4 127.5 –124.5 s

8 115.3 –109.5 s10 143.6 –141.5 d

Menthane [1,3,5,8EN; 9Cl] 4 127.6 –121.0 s 100.08 139.8 –135.1 s9 121.9 –121.3 d

Menthane [1,3,5EN;8,9,10OR] 4 126.0 –119.0 s 100.08 80.9 – 77.8 s9 67.5 – 62.9 t

10 67.5 – 63.5 t

Menthane [1,3,5EN; 8,9OR] 4 129.8 –126.5 s 100.08 77.5 – 77.1 s9 68.5 – 66.8 t

10 22.0 – 20.8 q

Menthane [1,3,5,8EN] 1 137.0 –122.0 s 100.04 138.5 –127.4 s8 146.0 –143.1 s9 116.6 –111.5 t

Menthane [1,3,5EN; 8EP] 4 136.1 –130.1 s 100.08 58.0 – 53.0 s9 56.4 – 51.4 t

10 20.0 – 15.0 q

Menthane[1,3,5EN;8EP10OR] 4 126.9 –110.0 s 100.08 65.6 – 56.5 s9 51.2 – 50.7 t

10 65.5 – 56.7 t

Menthane [1,3,5EN; 3OR] 2 117.6 –116.3 d 100.03 154.8 –152.5 s4 137.8 –131.6 s8 36.5 – 26.7 d

Menthane [1,3,5EN; 3,8OR] 2 126.1 –117.4 d 100.03 156.6 –147.8 s4 129.8 –119.0 s8 80.9 – 77.1 s

Menthane [1EN; 3OR; 6OXO] 1 139.9 –134.1 s 100.02 149.0 –138.5 d3 69.5 – 64.1 d6 200.3 –194.8 s

Menthane [1EN; 6OR] 1 139.1 –130.8 s 87.52 128.3 –124.1 d6 73.5 – 68.3 d7 21.1 – 19.6 q

Menthane [2OR] 1 40.0 – 30.8 d 66.72 78.3 – 70.8 d3 40.7 – 30.7 t

Page 18: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

82 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition6 37.7 – 27.2 t7 18.3 – 10.6 q

Menthane [1(7)EN; 2OR] 1 147.9 –146.8 s 100.02 78.0 – 76.0 d6 34.0 – 32.0 t7 106.5 –104.4 t

Menthane [1,2OR] 1 72.1 – 66.5 s 71.42 74.4 – 72.1 d6 34.0 – 25.0 t7 26.7 – 20.0 q

Menthane [8EN; 10OR] 8 150.6 –146.0 s 100.09 116.6 –112.3 t

10 66.0 – 64.6 t

Menthane[1(6),2EN] 1 131.1 –131.0 s 100.02 130.0 –120.3 d3 128.1 –126.9 d6 129.1 –120.5 d

Menthane[3OR; 8OH] 3 80.0 – 66.0 d 100.04 54.5 – 46.7 d8 75.0 – 71.6 s

Menthane [3OH; 8OR] 3 72.8 – 65.3 d 100.04 54.5 – 40.4 d8 82.5 – 72.4 s

Menthane [3,8OR] 3 77.9 – 71.9 d 100.04 50.2 – 36.0 d8 85.8 – 73.3 s

Menthane [2EN] 2 135.1 –126.6 d 100.03 134.1 –128.1 d4 42.5 – 36.9 d8 32.2 – 31.3 d

Menthane [1EN] 1 143.8 –131.1 s 100.02 122.5 –117.6 d3 34.5 – 24.2 t6 39.0 – 26.5 t7 23.7 – 22.2 q

Menthane [1EN; 7OH] 1 137.5 –137.1 s 100.02 123.1 –122.5 d3 30.3 – 26.6 t7 67.3 – 67.1 t

Menthane [1EN; 7OR] 1 136.1 –132.8 s 100.02 126.6 –123.9 d3 32.4 – 30.3 t7 78.9 – 68.3 t

Menthane [3OXO] 1 35.7 – 34.2 d 100.0

Page 19: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 83

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition2 51.5 – 48.0 t3 215.6 –209.6 s4 58.7 – 54.0 d

Menthane [3OXO] 2 50.9 – 46.7 t 77.83 215.6 –209.5 s4 57.2 – 46.7 d8 47.2 – 26.0 d

Menthane [9OH] 4 46.7 – 31.0 d 100.08 40.9 – 28.1 d9 66.4 – 64.0 t

10 18.2 – 12.3 q

Menthane [3OH] 1 39.5 – 25.3 d 77.82 45.7 – 36.7 t3 73.0 – 66.0 d4 54.5 – 44.2 d6 39.2 – 29.1 t

Menthane [3OH] 2 50.0 – 35.5 t 85.03 71.4 – 65.6 d4 51.0 – 40.7 d5 32.2 – 18.8 t8 39.0 – 25.7 d

Menthane [3OR] 1 32.2 – 25.5 d 100.02 47.0 – 35.5 t3 82.5 – 73.3 d4 53.4 – 39.4 d6 35.7 – 31.1 t

Menthane [3OR] 2 47.0 – 40.5 t 90.03 81.4 – 72.0 d4 50.0 – 37.9 d5 35.7 – 18.7 t8 44.2 – 24.2 d

Menthane [4OH] 3 34.2 – 30.7 t 100.04 75.8 – 71.6 s8 38.9 – 31.3 d9 17.5 – 16.2 q

Menthane [4OR] 3 32.0 – 25.7 t 100.04 87.3 – 79.5 s8 32.8 – 32.2 d9 17.7 – 17.2 q

Menthane [1EN; 3OH] 1 140.3 –136.1 s 100.02 125.4 –123.0 d3 69.8 – 64.0 d6 32.0 – 30.0 t

Menthane [1EN; 3OR] 1 143.1 –137.6 s 88.92 121.0 –117.9 d3 79.4 – 68.5 d

Page 20: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

84 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition6 31.7 – 29.3 t

Ciclogeraniolane

Ciclogeraniolane [5EN] 1 36.5 – 33.0 s 100.04 45.2 – 35.7 t5 155.6 –129.6 s6 140.6 –136.6 s

Ciclogeraniolane 4 201.8 –186.3 s 100.0[4OXO; 5EN; 7OR] 5 136.1 –133.6 s

6 160.0 –152.6 s7 66.5 – 64.9 t

Ciclogeraniolane 4 76.4 – 68.0 d 100.0[4,7OR; 5EN; 7OXO] 5 136.1 –128.8 s

6 142.0 –137.3 s7 172.6 –170.1 s

Ciclogeraniolane [4EN; 7OR] 4 120.6 –118.4 d 100.05 134.0 –132.0 s6 50.0 – 47.9 d7 69.0 – 67.5 t

Ciclogeraniolane [5EP;7OXO] 5 64.5 – 64.3 s 100.06 72.3 – 72.0 s7 200.6 –200.1 d

Ciclogeraniolane [5EP; 7OR] 5 65.5 – 61.7 s 100.06 68.5 – 65.5 s7 65.3 – 57.9 t

Ciclogeraniolane 1 57.6 – 56.0 s 100.0[6,9OR; 7OXO; 7(9)OXY] 6 84.2 – 82.9 s

7 168.6 –167.5 s9 97.5 – 93.0 d

Ferulane

Ferulane [2EN] 1 35.2 – 35.0 s 100.02 153.8 –132.8 d3 135.0 –132.3 s6 49.5 – 48.7 d

Page 21: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 85

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionNecrodane

Necrodane [4EN] 1 47.9 – 43.0 s 100.02 50.4 – 49.4 d4 131.3 –124.4 s5 163.0 –138.3 s

Necrodane [4(3 or 10)EN] 1 72.1 – 42.0 s 93.82 58.2 – 48.7 d4 156.1 –139.6 s5 53.0 – 43.0 d

Necrodane [–] 1 45.5 – 41.7 s 100.02 54.9 – 47.7 d4 50.2 – 37.4 d5 53.4 – 46.2 d

Crisantemane

Crisantemane [–] 2 37.5 – 30.7 d 100.03 31.7 – 22.5 s4 32.7 – 25.8 d

Ochtodane

Ochtodane [1,8OXY; 6EN] 1 82.5 – 80.6 d 100.06 138.3 –136.3 s7 124.8 –122.0 d8 75.5 – 75.3 t

Ochtodane [1,8OXY; 5EN; 7OH] 1 76.5 – 75.0 d 100.06 140.6 –138.6 s7 71.5 – 70.6 d8 75.1 – 74.5 t

Ochtodane [1OH; 5,7EN; 8X] 1 66.5 – 65.0 d 100.0X: Cl or Br 6 134.6 –132.8 s

7 136.6 –136.3 d8 108.0 –106.9 d

Page 22: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

86 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionOchtodane [5,7EN] 5 139.6 –138.3 d 100.0

6 136.8 –135.8 s7 128.3 –120.3 d8 113.0 –112.5 t

Ochtodane [1,6EN] 1 126.0 –124.0 d 100.02 129.0 –125.9 d6 136.3 –134.6 s7 131.9 –130.1 d

Ochtodane [1,8X; 6EN] 1 50.7 – 50.0 d 100.0X: Cl or Br 6 137.9 –137.5 s

7 132.0 –131.2 d8 38.1 – 37.0 t

Ochtodane [1(6)EN; 7Cl; 8X] 1 131.0 –127.1 d 100.0X: Cl or Br 6 134.6 –134.3 s

7 65.9 – 60.0 d8 47.9 – 30.0 t

Ochtodane [5EN; 5,8Br; 7Cl] 5 134.8 –134.5 s 100.06 131.5 –130.8 s7 62.2 – 61.5 d8 31.7 – 31.5 t

Skeleton-07

Skeleton-07 [7EN; 8X] 6 57.0 – 45.2 d 100.0X: Cl or Br 7 133.1 –131.3 d

8 121.0 –119.1 d

Skeleton-07 [5,7EN; 8X] 6 130.0 –123.8 s 100.0X: Cl or Br 7 130.3 –130.1 d

8 118.2 –117.0 d

Skeleton-08

Skeleton-08 [7EN; 8X] 6 44.7 – 40.7 s 100.0X: Cl or Br 7 140.6 –133.3 d

8 120.8 –108.0 d

Skeleton-08 [5Cl; 7EN; 8X] 5 67.9 – 48.7 d 86.7X: Cl or Br 6 43.5 – 40.7 s

7 140.3 –133.3 d8 120.8 –116.6 d

Skeleton-08 [5Br; 7EN; 8X] 5 56.7 – 55.2 d 100.0X: Cl or Br 6 44.7 – 41.4 s

7 140.6 –135.3 d

Page 23: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 87

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition8 120.5 –108.0 d

Skeleton-01

Skeleton-01 [–] 3 42.0 – 40.8 d 100.04 29.2 – 28.2 d8 32.0 – 30.3 s

Skeleton-14

Skeleton-14 [–] 1 42.0 – 30.2 t 100.03 50.5 – 48.0 d4 41.0 – 37.7 s5 46.7 – 43.5 t

Skeleton-09

Skeleton-09 [1OR] 1 90.8 – 78.3 d 100.02 39.4 – 33.9 s3 54.0 – 49.7 t

Skeleton-06

Skeleton-06 [1,8OXY] 3 56.2 – 55.2 s 100.04 31.2 – 30.6 t5 38.0 – 37.5 d8 81.0 – 80.6 d

Page 24: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

88 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionIonane

Ionane [4OXO; 5,7EN] 4 201.9 –200.8 s 100.05 130.8 –130.3 s6 163.9 –163.4 s7 127.3 –125.8 d8 142.3 –140.1 d

Ionane [5,7EN] 4 42.5 – 33.5 t 100.05 126.0 –124.9 s6 138.3 –135.6 s7 142.8 –109.8 d8 133.8 –102.5 d

Ionane [4OR; 5,7EN] 4 76.6 – 68.8 d 100.05 136.1 –125.0 s6 141.3 –140.1 s7 144.6 –127.9 d8 141.3 –133.8 d

Ionane [5EN] 1 53.2 – 37.7 s 100.05 129.6 –123.8 s6 141.1 –131.6 s7 25.6 – 21.6 t

Ionane [5EN; 7EP] 5 131.8 –131.3 s 100.06 132.6 –132.3 s7 63.0 – 62.2 d8 60.0 – 54.7 d

Ionane [5,8EN; 7OXO] 5 140.5 –140.1 s 100.06 127.5 –127.0 s7 201.0 –200.8 s8 134.3 –134.1 d9 146.6 –146.0 d

Ionane [3OXO; 4EN] 3 202.8 –170.5 s 100.04 162.1 –123.1 d5 169.5 –125.5 s6 56.9 – 51.0 d

Ionane [3OXO; 4EN; 6OR] 3 201.3 –196.5 s 100.04 162.0 –125.6 d5 171.6 –127.1 s6 80.0 – 77.9 s

Ionane [5EP] 1 35.0 – 34.4 s 100.05 70.4 – 69.6 s6 67.0 – 65.5 s

Ionane [5EP; 7EN; 9OR] 5 68.0 – 65.1 s 100.0

Page 25: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 89

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition6 71.4 – 69.8 s7 126.9 –125.8 d8 139.1 –133.6 d9 70.5 – 68.7 d

Ionane [5EP; 7EN; 9OXO] 5 67.0 – 65.0 s 100.06 70.4 – 69.6 s7 143.0 –140.6 d8 133.3 –132.6 d9 197.6 –197.0 s

Ionane [5,6OR] 1 43.4 – 38.5 s 100.05 90.5 – 79.0 s6 82.9 – 74.5 s

Ionane [13OR] 1 39.0 – 34.7 s 100.05 44.5 – 37.7 d6 48.7 – 46.5 d

13 65.5 – 63.7 t

Ionane [4EN] 3 24.1 – 22.8 t 100.04 124.5 –121.6 d5 135.3 –130.3 s

Ionane [7EN; 9OR] 1 37.9 – 32.9 s 100.06 56.9 – 52.9 d7 138.8 –127.0 d8 140.3 –126.0 d9 77.8 – 68.5 d

Ionane [7EN; 9OXO] 1 38.5 – 31.1 s 100.06 61.2 – 52.2 d7 149.8 –142.1 d8 135.0 –130.5 d9 202.1 –197.6 s

Ionane [5EN; 9OR] 1 38.9 – 38.0 s 100.06 138.8 –135.8 s7 25.6 – 24.2 t8 40.7 – 37.4 t9 78.4 – 69.1 d

Ionane [5EN; 9OXO] 1 53.2 – 37.7 s 100.06 141.1 –131.6 s7 22.6 – 21.6 t8 44.4 – 43.2 t9 209.0 –207.3 s

Ionane [6,9OR; 7EN] 1 43.0 – 38.7 s 100.06 80.0 – 76.8 s7 136.1 –127.0 d8 137.1 –129.0 d9 78.6 – 58.7 d

Ionane [6OR; 7EN; 9OXO] 1 44.5 – 38.5 s 100.06 83.9 – 78.8 s

Page 26: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

90 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition7 154.3 –144.3 d8 132.3 –129.8 d9 201.3 –196.0 s

Ionane [9OR] 1 39.0 – 34.7 s 100.06 51.0 – 46.5 d7 36.7 – 24.7 t8 41.9 – 26.0 t9 76.3 – 67.5 d

Ionane [9OXO] 1 40.5 – 39.8 s 100.06 49.7 – 49.1 d7 21.8 – 21.2 t8 44.9 – 44.3 t9 207.8 –207.0 s

Ionane [6,9OR] 1 42.9 – 39.5 s 100.06 90.1 – 76.5 s7 35.2 – 27.5 t8 35.9 – 33.5 t9 76.8 – 68.8 d

Ionane [3OXO] 1 43.0 – 38.5 s 100.02 56.5 – 47.0 t3 211.6 –209.3 s4 52.9 – 45.4 t

Ionane [–] 1 39.4 – 32.7 s 100.02 40.4 – 36.0 t3 19.7 – 17.7 t4 37.0 – 19.8 t

Ionane [2OR] 1 44.5 – 39.9 s 100.02 82.0 – 74.3 d3 27.6 – 23.7 t4 36.0 – 22.7 t

Ionane [3OR] 1 53.2 – 33.7 s 81.62 50.0 – 37.7 t3 77.1 – 63.7 d4 49.0 – 34.2 t

Ionane [4OR] 1 35.5 – 33.5 s 100.02 36.0 – 33.9 t3 32.2 – 27.7 t4 76.6 – 70.4 d

Ionane [7EP] 1 32.9 – 31.2 s 100.07 63.0 – 52.5 d8 61.2 – 52.2 d

Page 27: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 91

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionIsocamphane

Isocamphane [–] 1 37.5 – 34.2 t 75.02 55.0 – 39.0 d4 29.8 – 23.7 t5 50.5 – 44.0 d6 45.2 – 36.4 s

Pinane

Pinane [–] 2 54.7 – 38.2 d 86.73 40.7 – 19.8 t4 58.0 – 36.5 d8 54.0 – 37.5 s

Pinane [3OXO] 2 72.4 – 66.9 d 100.03 206.8 –204.8 s4 62.5 – 50.7 d8 33.0 – 30.1 s

Pinane [3OR] 2 55.2 – 50.2 d 100.03 84.2 – 62.9 d4 47.5 – 44.5 d8 37.7 – 31.7 s

Pinane [2OR] 2 88.8 – 81.4 s 100.03 31.8 – 22.6 t4 51.0 – 40.0 d8 71.5 – 59.0 s

Pinane [7OR] 1 44.4 – 37.5 d 100.06 18.8 – 18.2 t7 67.4 – 66.5 t8 44.2 – 38.7 s

Pinane [1(6)EN; 5OR] 1 150.3 –147.0 s 100.05 80.8 – 70.3 d6 119.5 –115.3 d8 46.2 – 38.0 s

Pinane [1(7)EN; 6OR] 1 155.3 –148.3 s 87.56 80.5 – 65.8 d7 115.0 –106.4 t8 41.7 – 33.0 s

Page 28: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

92 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionPinane [1(6)EN] 1 147.0 –135.3 s 100.0

5 33.0 – 26.8 t6 119.0 –116.0 d7 23.7 – 22.6 q8 38.0 – 30.1 s

Pinane [5OR] 1 34.5 – 28.0 d 100.05 73.1 – 68.8 d6 36.2 – 35.5 t8 39.5 – 38.2 s

Pinane [1,6OR] 1 77.0 – 73.6 s 100.05 37.7 – 34.5 t6 74.0 – 68.8 d8 39.0 – 38.7 s

Pinane [1OR; 5EN] 1 76.4 – 74.1 s 100.05 137.8 –136.6 d6 130.3 –130.0 d8 47.9 – 45.9 s

Pinane [–] 1 37.0 – 29.5 d 100.05 27.0 – 23.2 t6 24.0 – 23.7 t7 22.8 – 21.6 q

Pinane [6OXO] 1 51.2 – 46.5 d 100.05 44.7 – 44.5 t6 215.6 –215.0 s8 39.5 – 39.2 s

Pinane [5OXO] 1 31.1 – 26.2 d 100.05 214.0 –212.3 s6 42.0 – 41.4 t8 41.7 – 40.2 s

Pinane [1OR] 1 76.1 – 74.8 s 100.05 25.0 – 24.3 t6 32.0 – 31.7 t7 31.7 – 31.3 q

Pinane [1,7OR] 1 82.4 – 77.0 s 100.05 24.7 – 24.2 t6 27.1 – 24.7 t7 73.5 – 69.5 t

Pinane [6OR] 1 47.7 – 35.9 d 83.36 71.5 – 64.1 d7 23.5 – 15.1 q8 40.2 – 38.2 s

Page 29: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 93

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionBornane

Bornane [–] 1 64.3 – 43.0 s 81.84 59.2 – 39.2 d8 57.7 – 39.7 s

Bornane [2OXO] 1 64.3 – 44.2 s 88.02 220.8 –206.5 s4 59.2 – 39.2 d8 57.7 – 39.7 s

Bornane [2,3OR] 1 47.5 – 44.7 s 100.02 86.9 – 73.9 d3 84.3 – 68.0 d4 52.7 – 48.2 d

Bornane [2OR] 1 53.5 – 43.0 s 73.72 89.4 – 75.0 d3 45.7 – 34.2 t4 53.7 – 39.7 d

Carane

Carane [–] 3 39.7 – 13.8 d 81.54 39.7 – 15.8 d8 33.5 – 15.8 s9 18.5 – 13.1 q

Thujane

Thujane [–] 4 43.5 – 27.8 s 100.05 38.5 – 11.0 t6 41.7 – 24.1 d8 33.4 – 25.8 d

Page 30: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

94 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % Recognition

Thujane [1EN] 1 181.3 –141.5 s 100.02 149.5 –121.0 d4 40.7 – 33.7 s5 38.5 – 21.2 t6 31.5 – 24.1 d

Thujane [1(7)EN] 1 156.5 –148.3 s 100.04 38.7 – 37.0 s6 30.2 – 28.8 d7 109.6 –101.8 t

Thujane [2EN] 2 135.0 –134.0 d 100.03 137.6 –135.3 d4 29.6 – 29.2 s6 41.7 – 40.7 d

Thujane [1OR] 1 88.0 – 80.5 s 100.04 34.7 – 29.2 s6 41.7 – 31.6 d

Thujane [2OR] 1 42.7 – 37.5 d 100.02 79.0 – 72.3 d4 33.0 – 30.1 s6 28.8 – 26.2 d

Thujane [2OXO] 1 47.9 – 46.8 d 100.02 181.2 –180.0 s4 29.7 – 27.8 s6 26.0 – 25.0 d

Fenchane

Fenchane [7OXO] 2 60.5 – 53.4 s 90.05 50.9 – 44.5 d6 48.0 – 45.2 s7 221.8 –219.1 s

Fenchane [7OR] 2 49.0 – 48.5 s 100.05 55.5 – 48.0 d6 43.5 – 38.7 s7 86.4 – 83.5 d

Fenchane [1OR] 1 86.6 – 86.4 d 100.02 58.9 – 58.0 s5 50.9 – 50.7 d6 48.0 – 47.7 s

Page 31: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 95

Table 3. Continued

Subskeleton NoC 13C NMR shifts range % RecognitionTriciclane

Triciclano [–] 1 27.0 – 26.0 s 100.02 21.0 – 20.0 d8 44.0 – 42.5 s

3,7-Ciclofenchane

3,7-Ciclofenchane [–] 2 22.0 – 20.0 s 100.06 43.9 – 43.0 s7 30.0 – 28.0 d

Table 4

Substructures proposed by the system for monoterpenes in Fig. 5

Substance Skeleton 13C NMR data (C1–C10) Proposed substructures Refs.I Myrcane 111.5t, 148.7s, 76.1d, 34.2t, 36.6t, Myrcane [1EN; 8OR] – 93.3% [21]

142.1s, 121.4d, 66.3t, 29.9q, 16.6q Myrcane [5,8OR; 6EN] – 81.3%Myrcane [6EN; 8OR] – 69.2%

II Myrcane 25.9q, 132.5s, 125.0d, 27.4t, 40.6t, Myrcane [6EN; 8OR] – 69.2% [21]142.0s, 121.4d, 66.5t, 17.8q, 16.5q Skeleton-29 – 2.3%

Other myrcanes – 28.5%

III Myrcane 24.9q, 82.4s, 128.7d, 137.6d, 43.4t, Myrcane [6EN; 8OR] – 69.2% [21]140.8s, 122.2d, 66.6t, 24.9q, 16.6q Skeleton-29 – 2.3%

Other myrcanes – 28.5%

IV Myrcane 25.7q, 73.8s, 78.9d, 30.4t, 37.7t, Myrcane [6EN; 8OR] – 69.2% [21]142.3s, 121.6d, 66.6t, 25.0q, 16.6q Skeleton-29 – 2.3%

Myrcane [2,3OR] – 93.3%

V Myrcane 27.7q, 134.0s, 128.1d, 27.8t, 39.2t, Myrcane [8OR] – 94.1% [22]31.5d, 38.6t, 72.0t, 19.8q, 21.6q Myrcane [1OR; 2EN] – 84.6%

VI Myrcane 111.0t, 147.2s, 75.2d, 32.5t, 35.4t, Myrcane [1EN; 3OR] – 93.3% [23]141.0s, 120.6d, 69.2t, 17.4q, 16.1q Myrcane [6EN; 8OR] – 69.2%

VII Myrcane 25.5q, 85.4s, 76.6d, 35.4t, 80.7d, – [24]75.8s, 140.6d, 107.3d, 22.3q, 26.0q

Page 32: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

96 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

Table 4. Continued

Substance Skeleton 13C NMR data (C1–C10) Proposed substructures Refs.VIII Menthane 140.4s, 116.8d, 153.4s, 121.0s, Menthane [1,3,5,8EN; 9Cl] – 100.0% [25]

130.0d, 121.3d, 21.2q, 135.3s, 121.6d,62.7t

IX Menthane 164.2s, 125.0d, 202.2s, 55.8d,28.8t, Menthane [1EN; 3OXO] – 100.0% [26]26.7t, 71.2t, 144.8s, 20.9q, 114.1t Menthane [3OXO; 8EN] – 100.0%

Menthane [8EN] – 95.5%

X Menthane 139.6s, 138.6d, 67.4d, 46.8d,73.8d, Menthane [1EN; 3OR; 6OXO] – 100.0% [18]195.0s, 60.5t, 27.8d, 19.7q, 19.6q

XI Menthane 139.7s, 124.6d, 69.2d, 40.2d,68.9d, Menthane [1EN; 6OR] – 87.5% [18]65.9d, 63.0t, 26.7d, 20.1q, 20.0q Other menthanes – 12.5%

XII Menthane 71.2s, 132.0d, 132.1d, 38.6d, 28.8t, Menthane [2EN] – 100.0% [27]73.5d, 23.5q, 32.0d, 20.0q, 19.9q Menthane [1,2OR] – 71.4%

XIII Menthane 71.0s, 72.9d, 32.8t, 33.9d, 22.0t, Menthane [1(8)OXI] – 92.5% [27]26.1t, 23.1q, 73.8s, 28.9q, 28.1q Menthane [1,2OR] – 71.4%

XIV Menthane 72.6s, 74.2d, 30.2t, 42.1d, 69.0d, Menthane [1(8)OXI] – 92.5% [28]42.4t, 23.6q, 73.9s, 31.6q, 30.5q Menthane [3OH; 8OR] – 100.0%

XV Ciclogeraniolane 36.3s, 49.5t, 203.2s, 127.6d,165.5s, – [29]52.8d, 69.3t, 27.3q, 29.4q, 24.2q

XVI Ciclogeraniolane 36.7s, 44.0t, 67.0d, 84.2d, 151.2s, Ciclogeraniolane [5EN] – 100.0% [29]142.6s, 194.9d, 29.2q, 27.3q, 17.4q

XVII Ciclogeraniolane 39.8s, 52.9t, 201.9s, 125.1d,154.9s, – [29]150.1s, 114.6t, 28.6q, 28.6q, 68.5t

XVIII Ionane 35.9s, 45.7t, 73.0d, 38.5t, 67.7s, Ionane [5EP; 7EN; 9OR] – 100.0% [30]71.3s, 125.8d, 139.1d, 68.7d,23.8q, Ionane [3OR] – 81.6%20.2q, 25.2q, 29.8q

XIX Ionane 40.7s, 42.9t, 75.8d, 38.5t, 35.5d, Ionane [6,9OR; 7EN] – 100.0% [31]78.8s, 136.5d, 131.2d, 75.4d,68.0t, Ionane [3OR] – 81.6%26.5q, 26.2q, 16.8q

XX Ionane 34.6s, 40.7t, 73.9d, 125.9d, 136.7s, Ionane [7EN; 9OXO] – 100.0% [32]55.7d, 149.7d, 134.4d, 201.0s, Ionane [7EN; 9OR] – 100.0%27.1q, 29.6q, 25.4q, 22.9q Ionane [3OR] – 81.6%

XXI Ionane 37.2s, 48.0t, 202.3s, 125.3d,170.0s, Ionane [3OXO; 4EN] – 100.0% [32]52.3d, 26.7t, 37.7t, 75.0d, 19.8q,27.5q, 29.0q, 25.0q

XXII 10-Nor-Ionane 40.9s, 45.7t, 67.3d, 39.6t, 35.3d, – [33]78.9s, 154.3d, 123.3d, 170.3s, –,25.2q, 25.9q, 16.4q

Page 33: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition 97

Table 4. Continued

Substance Skeleton 13C NMR data (C1–C10) Proposed substructures Refs.XXIII Crisantemane 64.7t, 27.9d, 30.8d, 89.8d, 143.7s, Crisantemane [–] – 100% [34]

113.6t, 17.6q, 21.8s, 21.5q, 21.9q

XXIV Thujane 42.5d, 23.4d, 11.0t, 37.6d, 25.1t, Thujane [–] – 100% [35]27.3t, 67.4t, 71.3s, 28.1q, 27.4q

XXV Pinane 85.8s, 88.7s, 22.7t, 43.6d, 105.7s, Pinane [2OR] – 100% [36]44.5t, 19.6q, 71.3s, 61.2t, 101.5d

XXVI Pinane 173.4s, 84.4s, 43.4t, 48.1d, 201.1s, – [36]121.3d, 19.9q, 63.6s, 66.3t, 16.1q

XXVII Pinane 141.9s, 45.0d, 83.4d, 50.6d, 31.9t, Pinane [3OR] – 100.0% [37]118.2d, 22.6q, 37.4s, 26.5q, 22.7q Pinane [1(6)EN] – 100.0%

XXVIII Pinane 53.7d, 40.5d, 29.7t, 38.2d, 44.6t, Pinane [6OXO] – 100% [35]216.3s, 63.3t, 39.8s, 19.9q, 26.1q Pinane C2−4,8 [–] – 86.7%

XXIX Bornane 63.8s, 216.7s, 43.5t, 41.5d, 37.7t, Bornane [2OXO] – 88% [38]75.9d, 7.3q, 48.7s, 20.7q, 19.8q

XXX Bornane 54.5s, 28.0t, 28.7t, 42.3d, 36.5t, Bornane [2OR] – 73.7% [39]84.2d, 14.8q, 50.0s, 15.2q, 64.5t Bornane [–] – 81.8%

Solvents: CD3OD: I–IV, IX, XV–XXII; D 2O: V–VI; CDCl3: VII–VIII, X–XIII, XXIII–XIV, XXVII–XXIX; C 5D5N: XIV,XXV–XXVI, XXX.

References

[1] R.K. Lindsay, B.G. Buchanan, E.A. Fergenbaum and J. Lederberg,Applications of Artificial Intelligence for OrganicChemistry: the DENDRAL Project, McGraw-Hill, New York, 1980.

[2] W. Bremser and W. Fachinger, Multidimensional spectroscopy,Magn. Res. Chem.23 (1985), 1056–1071.[3] R. Attias, DARC substructure search system: a new approach to chemical information,J. Chem. Inform. Comp. Sci.23

(1983), 102–108.[4] M. Will, W. Fachinger and J.R. Richert, Fully automated structure elucidation – A spectroscopist’s dream comes true,

J. Chem. Inform. Comp. Sci.36 (1996), 221–227.[5] M. Badertscher, A. Korytko, K.P. Schulz, M. Madison, M.E. Munk, P. Portmann, M. Junghans, P. Fontana and E. Pretsch,

Assemble 2.0: a structure generator,Chemometrics and Intelligent Laboratory Systems51 (2000), 73–79.[6] J.P. Gastmans, M. Furlan, M.N. Lopes, J.H.G. Borges and V.P. Emerenciano, A inteligência artificial aplicada à química

de produtos naturais. O programa SISTEMAT. Parte I – Bases teóricas,Química Nova13 (1990), 10–16.[7] V.P. Emerenciano, G.V. Rodrigues, P.A.T. Macari, S.A. Vestri, J.H.G. Borges, J.P. Gastmans and D.L.G. Fromanteau,

Applications d’intelligence artificielle dans la chimie organique. XVII. Nouveaux programmes du projet SISTEMAT,Spectroscopy12 (1994), 91–98.

[8] V.P. Emerenciano, A.C. Bussolini, G.V. Rodrigues, M. Furlan and D.L.G. Fromanteau, A pattern recognition method on13C NMR spectroscopy of sesquiterpene skeletal types,Spectroscopy11 (1993), 95–115.

[9] F.C. Oliveira, M.J.P. Ferreira, C.V. Nuñez, G.V. Rodrigues and V.P. Emerenciano,13C NMR spectroscopy of eudesmanesesquiterpenes,Progr. Nucl. Magn. Res. Spectr.35 (2000), 1–45.

[10] G.V. Rodrigues, Criação de um sistema especialista em determinação estrutural de sesquiterpenos lactonizados – Umenfoque multiespectral aliado a requisitos botânicos, Doctoral Thesis, Institute of Chemistry, University of São Paulo,1996.

[11] S.A.V. Alvarenga, J.P. Gastmans, G.V. Rodrigues and V.P. Emerenciano, Ditregra – an auxiliary program for structuraldetermination of diterpens,Spectroscopy13 (1997), 227–249.

[12] P.A.T. Macari, J.P. Gastmans, G.V. Rodrigues and V.P. Emerenciano, An expert system for structure elucidation of triter-penes,Spectroscopy12 (1994), 139–166.

[13] M.E. Munk, Computer-based structure determination: Then and now,J. Chem. Inform. Comp. Sci.38 (1998), 997–1009.[14] K. Funatsu and S. Sasaki, Recent advances in the automated structure elucidation system, CHEMICS. Utilization of two-

Page 34: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

98 M.J.P. Ferreira et al. / REGRAS: an auxiliary program for pattern recognition

dimensional NMR spectral information and development of peripheral functions for examination of candidates,J. Chem.Inform. Comp. Sci.36 (1996), 190–204.

[15] M. Jaspars, Computer assisted structure elucidation of natural products using two-dimensional NMR spectroscopy,Nat.Prod. Reports16 (1999), 241–247.

[16] M.J.P. Ferreira, V.P. Emerenciano, G.A.R. Linia, P. Romoff, P.A.T. Macari and G.V. Rodrigues,13C NMR spectroscopyof monoterpenoids,Progr. Nucl. Magn. Res. Spectr.33 (1998), 153–206.

[17] M.J.P. Ferreira, A.J.C. Brant, G.V. Rodrigues and V.P. Emerenciano, Automatic identification of terpenoid skeletonsthrough13C NMR data disfunctionalization,Analytica Chimica Acta429 (2001), 151–170.

[18] A.A. Ahmed and A.A. Mahmoud, Carvotacetone derivates from the Egyptian plantSphaeranthus suaveolens, Phytochem-istry 45 (1997), 533–535.

[19] G.V. Rodrigues, I.P.A. Campos and V.P. Emerenciano, Applications of artificial intelligence to structure determinationof organic compounds. XX. Determination of groups attached to the skeleton of natural products using13C NMR spec-troscopy,Spectroscopy13 (1997), 191–200.

[20] M.J.P. Ferreira, F.C. Oliveira, S.A.V. Alvarenga, P.A.T. Macari, G.V. Rodrigues and V.P. Emerenciano, Automatic identifi-cation by13C NMR of substituents groups bonded in natural products skeletons,Chemometrics and Intelligent LaboratorySystems, submitted.

[21] J. Tian, H. Zhang, H. Sun, L. Pan, P. Yao and D. Chen, Monoterpenoid glycosides fromLigustrum robustum, Phytochem-istry 48 (1998), 1013–1018.

[22] N. Oka, A. Ikegami, M. Ohki, K. Sakata, A. Yagi and N. Watanabe, Citronellyl disaccharide glycoside as na aromaprecursor from Rose flowers,Phytochemistry47 (1998), 1527–1529.

[23] K. Gao, W. Wang and Z. Jia, Coniferyl and sinapyl alcohol derivatives fromLigularia duciformis, Phytochemistry47(1998), 269–272.

[24] M. Cueto and J. Darias, Uncommon tetrahydrofuran monoterpenes from AntarcticPantoneura plocamioides, Tetrahedron52 (1996), 5899–5906.

[25] C.M. Passreiter, U. Matthiesen and G. Willuhn, 10-Acetoxy-9-chloro-8,9-dehydrothymol and further thymol derivativesfrom Arnica sachalinensis, Phytochemistry49 (1998), 777–781.

[26] S. Park, K. Kim, Y. Suzuki and S. Kim, Metabolism of isopiperitenones in cell suspension culture ofMentha piperita,Phytochemistry44 (1997), 623–626.

[27] L. Sy and G.D. Brown, Oxygenated bisabolanes fromAlpinia densibracteata, Phytochemistry45 (1997), 537–544.[28] M. Ono, Y. Ito, T. Ishikawa, J. Kitajima, Y. Tanaka, Y. Niiho and T. Nohara, Five new monoterpene glycosides and other

compounds from Foeniculi fructus (fruit ofFoeniculum vulgareMILLER), Chem. Pharmac. Bull.44 (1996), 337–342.[29] K. Machida, R. Onodera, K. Furuta and M. Kikuchi, Studies of the constituents ofGardeniaspecies. I. Monoterpenoids

from Gardeniae fructus,Chem. Pharmac. Bull.46 (1998), 1295–1300.[30] M. Yoshikawa, H. Shimada, M. Saka, S. Yoshizumi, J. Yamahara and H. Matsuda, Medicinal foodstuffs. V. Moroheiya.

(1): Absolute stereostructures of corchoionosides A, B, and C, histamine release inhibitors from the leaves of VietnameseCorchorus olitoriusL. (Tiliaceae),Chem. Pharmac. Bull.45 (1997), 464–469.

[31] N. Zhu, N. Sharapin and J. Zhang, Three glycosides fromMaytenus ilicifolia, Phytochemistry47 (1998), 265–268.[32] Y. Takeda, H. Zhang, T. Masuda, G. Honda, H. Otsuka, E. Sezik, E. Yesilada and H. Sun, Megastigmane glucosides from

Stachys byzantina, Phytochemistry44 (1997), 1335–1337.[33] A.K. Chakravarty, B. Das, K. Masuda and H. Ageta, Glycoric acid possessing a new 10-normegastigmane skeleton from

Glycosmis arborea, Chem. Pharmac. Bull.44 (1996), 1421–1423.[34] U. Kastner, J. Breuer, S. Glasl, A. Baumann, W. Robien, J. Jurenitsch, G. Rücker and W. Kubelka, Guaianolide-

endoperoxide and monoterpene-hydroperoxides fromAchillea nobilis, Planta Medica61 (1995), 83–85.[35] M. Miyazawa, Y. Suzuki and H. Kameoka, Biotransformation of (−)-cis-myrtanol and (+)-trans-myrtanol by plant

pathogenic fungus,Glomerella cingulata, Phytochemistry45 (1997), 935–943.[36] H. Lin, H. Ding, T. Wu and P. Wu, Monoterpene glycosides fromPaeonia suffruticosa, Phytochemistry41 (1996), 237–

242.[37] C.Y. Ragasa, J.A. Rideout, J.O. Sy, D. Alcachupas, V.M.L. Inte and J.C. Coll, Bioactive monoterpene glycosides from

Erigeron linifolius, Phytochemistry46 (1997), 151–154.[38] J.A. Marco, J.F. Sanz-Cervera, V. García-Lliso and N. Batlle, Sesquiterpene lactones fromArtemisia lucentina, Phyto-

chemistry45 (1997), 775–763.[39] J. Kitajima, C. Okamura, T. Ishikawa and Y. Tanaka, Monoterpenoid glycosides ofGlehnia littoralis root and rhizoma,

Chem. Pharmac. Bull.46 (1998), 1595–1598.

Page 35: REGRAS: an auxiliary program for pattern recognition and ...downloads.hindawi.com/journals/spectroscopy/2001/679106.pdf · Spectroscopy 15 (2001) 65–98 65 IOS Press REGRAS: an auxiliary

Submit your manuscripts athttp://www.hindawi.com

Chromatography Research International

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com

International Journal of

Analytical ChemistryVolume 2013

ISRN Chromatography

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Hindawi Publishing Corporation http://www.hindawi.com Volume 2013Hindawi Publishing Corporation http://www.hindawi.com Volume 2013

The Scientific World Journal

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

CatalystsJournal of

ISRN Analytical Chemistry

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation http://www.hindawi.com Volume 2013

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Advances in

Physical Chemistry

ISRN Physical Chemistry

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

ISRN Inorganic Chemistry

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Journal of

Chemistry

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation http://www.hindawi.com Volume 2013

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttp://www.hindawi.com

Analytical Methods in Chemistry

Journal of

Volume 2013

ISRN Organic Chemistry

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2013

Journal of

Spectroscopy